1
|
Wu Y, Zhu Y, Zheng S, Mingxing D. Resveratrol alleviates depressive-like behavior via the activation of SIRT1/NF-κB signaling pathway in microglia. Future Sci OA 2025; 11:2463852. [PMID: 39967065 PMCID: PMC11845112 DOI: 10.1080/20565623.2025.2463852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Currently, the pathogenesis of depression remains poorly understood, leading to many patients receiving ineffective treatment. Resveratrol has demonstrated beneficial effects in the prevention and treatment of depression. However, it remains unknown whether resveratrol administration can counteract depression-like behaviors by regulating the SIRT1/NF-κB signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS Male C57BL/6 mice were randomly assigned to a control group, a depression group, and a resveratrol group. The depression model was established using chronic unpredictable mild stress (CUMS) for 5 weeks. Behavioral tests were conducted to assess depressive-like behaviors. The expression levels of SIRT1 and NF-κB in the hippocampus of mice and BV2 microglial cells were measured. After 5 weeks of modeling, the results indicated that mice in the depression group exhibited significant depressive-like behaviors and inhibited activation of the SIRT1/NF-κB signaling pathway. In contrast, resveratrol administration effectively reversed these changes. Results from in vitro experiments showed that LPS stimulation increased microglial activity and downregulated the SIRT1/NF-κB signaling pathway in microglia; however, resveratrol treatment mitigated these effects. CONCLUSIONS/SIGNIFICANCE Our findings suggested that resveratrol can alleviate CUMS-induced depression-like behaviors via the activation of the Sirt1/NF-κB pathway in microglia.
Collapse
Affiliation(s)
- Yuehong Wu
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Yixia Zhu
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Shun Zheng
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Ding Mingxing
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
| |
Collapse
|
2
|
Begni V, Silipo DM, Bottanelli C, Papp M, Cattaneo A, Riva MA. Chronic treatment with the antipsychotic lurasidone modulates the neuroinflammatory changes associated with the vulnerability to chronic mild stress exposure in female rats. Brain Behav Immun 2025; 123:586-596. [PMID: 39384053 DOI: 10.1016/j.bbi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Stress exposure is a key risk factor for the developmentof depressive-like conditions. However, despite the higher incidence of Major Depressive Disorder in the female population, classical stress-based experimental paradigms have primarily focused on males. In the present study, we used the well-established chronic mild stress (CMS) paradigm to investigate the development of anhedonia, a cardinal symptom of affective disorders, in the female animals and we also studied the potential effect of the antipsychotic drug lurasidone in normalizing the alterations brought about by stress exposure. We found that three weeks of CMS exposure produced a significant reduction of sucrose intake in 50% of the animals (vulnerable, CMS-V), whereas the others were resilient (CMS-R). The development of an anhedonic phenotype in CMS-V was associated with a significant elevation of different immune markers, such as Complement C3 and C4, and inflammatory cytokines, including INFß and Il1ß in dorsal and ventral hippocampus. Interestingly, sub-chronic treatment with the antipsychotic drug lurasidone was able to revert the anhedonic phenotype while normalizing most of the molecular alterations found in rats vulnerable to CMS exposure. This study extends the ability of lurasidone to normalize the anhedonic phenotype in CMS rats also to females. Moreover, we provide novel evidence on lurasidone's potential effectiveness in treating mental disorders characterized by immune-inflammatory dysfunction.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Chiara Bottanelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna Street 12, Krakow 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
3
|
Brivio P, Gallo MT, Audano M, Galassi G, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Exposure to an acute stress impaired the metabolic plasticity of resilient rats by enhancing fatty acid β-oxidation in the ventral hippocampus. Transl Psychiatry 2024; 14:366. [PMID: 39256372 PMCID: PMC11387825 DOI: 10.1038/s41398-024-03080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
The concept of resilience has changed over time and nowadays it refers to the positive adaptation to life adversities, rather than to the absence of a pathological response normally occurring in susceptible people. Based on our previous data showing that the exposure to the chronic mild stress (CMS) paradigm differently affected bioenergetics in the ventral hippocampus of vulnerable and resilient animals, here we investigated whether resilience is a stable trait or if the energetic strategy set in motion to sustain resilience unveils a vulnerability feature in a more dynamic situation. To this aim, vulnerable and resilient rats after 6 weeks of CMS were subjected to a further acute, unfamiliar restraint stress (ARS) and metabolomic studies were conducted in the ventral hippocampus. We observed that exposure to a single novel challenge negatively affects the fuel utilization of resilient animals. Indeed, while they increase glycolysis to sustain the non-hedonic phenotype when exposed to CMS, they shift to fatty acid β-oxidation after ARS, as vulnerable animals following CMS, suggesting that the energy strategy that guarantees resilience is fragile and can be negatively modified by a different environmental condition. These results suggest that strengthening resilience to foster individuals to bounce back from stressful life events may represent a strategy to decrease vulnerability or prevent the risk of relapsing to a pathological state.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Gaia Galassi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Begni V, Marizzoni M, Creutzberg KC, Silipo DM, Papp M, Cattaneo A, Riva MA. Transcriptomic analyses of rats exposed to chronic mild stress: Modulation by chronic treatment with the antipsychotic drug lurasidone. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110885. [PMID: 37865392 DOI: 10.1016/j.pnpbp.2023.110885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Exposure to stressful experiences accounts for almost half of the risk for mental disorders. Hence, stress-induced alterations represent a key target for pharmacological interventions aimed at restoring brain function in affected individuals. We have previously demonstrated that lurasidone, a multi-receptor antipsychotic drug approved for the treatment of schizophrenia and bipolar depression, can normalize the functional and molecular impairments induced by stress exposure, representing a valuable tool for the treatment of stress-induced mental illnesses. However, the mechanisms that may contribute to the therapeutic effects of lurasidone are still poorly understood. Here, we performed a transcriptomic analysis on the prefrontal cortex (PFC) of adult male rats exposed to the chronic mild stress (CMS) paradigm and we investigated the impact of chronic lurasidone treatment on such changes. We found that CMS exposure leads to an anhedonic phenotype associated with a down-regulation of different pathways associated to neuronal guidance and synaptic plasticity within the PFC. Interestingly, a significant part of these alterations (around 25%) were counteracted by lurasidone treatment. In summary, we provided new insights on the transcriptional changes relevant for the therapeutic intervention with lurasidone, which may ultimately promote resilience.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy; Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Institute of Pharmacology and Polish Academy of Sciences, Smętna Street 12, Kraków 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
5
|
Bielawski A, Zelek-Molik A, Rafa-Zabłocka K, Kowalska M, Gruca P, Papp M, Nalepa I. Elevated Expression of HSP72 in the Prefrontal Cortex and Hippocampus of Rats Subjected to Chronic Mild Stress and Treated with Imipramine. Int J Mol Sci 2023; 25:243. [PMID: 38203414 PMCID: PMC10779295 DOI: 10.3390/ijms25010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.
Collapse
Affiliation(s)
- Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Marta Kowalska
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Piotr Gruca
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Mariusz Papp
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| |
Collapse
|
6
|
Miura I, Horikoshi S, Ichinose M, Suzuki Y, Watanabe K. Lurasidone for the Treatment of Schizophrenia: Design, Development, and Place in Therapy. Drug Des Devel Ther 2023; 17:3023-3031. [PMID: 37789971 PMCID: PMC10544203 DOI: 10.2147/dddt.s366769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
This review aims to provide a comprehensive overview of the current literature on the drug design, development, and therapy of lurasidone for the treatment of schizophrenia. Lurasidone has antagonistic effects on the dopamine D2, 5-hydroxytryptamine (5-HT)2A, and 5-HT7 receptors and a partial agonistic effect on the 5-HT1A receptor with low affinities for muscarinic M1, histamine H1, and a1 adrenergic receptors. The receptor-binding profile of lurasidone is thought to be associated with fewer side effects such as anticholinergic effects, lipid abnormalities, hyperglycemia, and weight gain. Behavioral pharmacological studies have demonstrated that lurasidone exerts anxiolytic and antidepressive effects and improves cognitive function, which are associated with the modulation of 5-HT7 and 5-HT1A receptors. Literature search using PubMed was performed to find published studies of randomized controlled trials and recent meta-analyses regarding efficacy and safety, particularly metabolic side effects of lurasidone in schizophrenia. In short-term studies, the results of randomized placebo-controlled trials and meta-analyses have suggested that lurasidone was superior to placebo in improving total psychopathology, positive symptoms, negative symptoms, and general psychopathology in patients with acute schizophrenia. Regarding safety, lurasidone had minimal metabolic side effects, and was identified as one of the drugs with the most benign profiles for metabolic side effects. Long-term trials revealed that lurasidone had the preventive effects on relapse, with minimal effects on weight gain and other metabolic side effects. Furthermore, lurasidone improves cognitive and functional performance of patients with schizophrenia, especially in long-term treatment. Patients with schizophrenia require long-term treatment with antipsychotics for relapse prevention; thus, minimizing weight gain and other side effects is crucial. Lurasidone is suitable as one of the first-line antipsychotic drugs in the acute phase, and a switching strategy should be considered during the maintenance phase, to balance efficacy and adverse effects and achieve favorable outcomes in the long-term course of schizophrenia.
Collapse
Affiliation(s)
- Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Neuropsychiatry, Horikoshi Psychosomatic Clinic, Fukushima, Japan
| | - Mizue Ichinose
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Neuropsychiatry, Hoshigaoka Hospital, Koriyama, Japan
| | - Yuhei Suzuki
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenya Watanabe
- Department of Pharmacy, Fukushima Medical University Hospital, Fukushima, Japan
| |
Collapse
|
7
|
Brivio P, Audano M, Gallo MT, Miceli E, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Venlafaxine's effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacology 2023; 48:1475-1483. [PMID: 37380799 PMCID: PMC10425382 DOI: 10.1038/s41386-023-01633-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Eleonora Miceli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Creutzberg KC, Begni V, Marchisella F, Papp M, Riva MA. Early effects of lurasidone treatment in a chronic mild stress model in male rats. Psychopharmacology (Berl) 2023; 240:1001-1010. [PMID: 36820870 PMCID: PMC10006266 DOI: 10.1007/s00213-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
RATIONALE Stress represents a major contributor to the development of mental illness. Accordingly, exposure of adult rats to chronic stress represents a valuable tool to investigate the ability of a pharmacological intervention to counteract the adverse effects produced by stress exposure. OBJECTIVES The aim of this study was to perform a time course analysis of the treatment with the antipsychotic drug lurasidone in normalizing the anhedonic phenotype in the chronic mild stress (CMS) model in order to identify early mechanisms that may contribute to its therapeutic activity. METHODS Male Wistar rats were exposed to CMS or left undisturbed for 7 weeks. After two weeks of stress, both controls and CMS rats were randomly divided into two subgroups that received vehicle or lurasidone for five weeks. Weekly measures of sucrose intake were recorded to evaluate anhedonic behavior, and animals were sacrificed at different weeks of treatment for molecular analyses. RESULTS We found that CMS-induced anhedonia was progressively improved by lurasidone treatment. Interestingly, after two weeks of lurasidone treatment, 50% of the animals showed a full recovery of the phenotype, which was associated with increased activation of the prefrontal and recruitment of parvalbumin-positive cells that may lead to a restoration of excitatory/inhibitory balance. CONCLUSION These results suggest that the capacity of lurasidone to normalize anhedonia at an early stage of treatment may depend on its ability to modulate the function of the prefrontal cortex.
Collapse
Affiliation(s)
- Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125, Brescia, Italy.
| |
Collapse
|
9
|
Olivola M, Bassetti N, Parente S, Arienti V, Civardi SC, Topa PA, Brondino N. Cognitive Effects of Lurasidone and Cariprazine: A Mini Systematic Review. Curr Neuropharmacol 2023; 21:2431-2446. [PMID: 37519001 PMCID: PMC10616918 DOI: 10.2174/1570159x21666230727140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 08/01/2023] Open
Abstract
Cognitive deficits are associated with schizophrenia and show a progressive worsening, often being unresponsive to treatment. New antipsychotic molecules acting as antagonist at the serotoninergic 5-hydroxytryptamine receptor 7 (e.g. lurasidone) or partial agonists at dopamine D3 receptor (e.g. cariprazine) could have an impact on cognition in this patient group. The aim of the systematic review is to explore the efficacy of lurasidone and cariprazine in improving cognition in both animal models and human studies. The following terms: (lurasidone AND cognit*) OR (cariprazine AND cognit*) were searched in Web of Science from inception to December 2021. We included all studies that assessed changes in cognitive function after treatment with cariprazine or lurasidone. Of 201 selected articles, 36 were included. Twenty-four articles used animal models (rats, mice and marmosets), five evaluating the effects of cariprazine and 19 the effects of lurasidone. Twelve articles were clinical studies (cariprazine n = 2; lurasidone n = 10). In both animal and human studies lurasidone showed a greater efficacy on cognitive performance compared to placebo, quetiapine, ziprasidone or treatmentas- usual. Cariprazine was superior to other antipsychotics in improving cognitive functions in both animal and human studies. The cognitive effect of lurasidone could be explained by its potent antagonism at the 5-HT7 receptors combined with partial agonism at 5-HT1A receptors. The pro-cognitive effect of cariprazine is probably explained by its very high affinity for D3 receptors. Head-to-head studies comparing lurasidone and cariprazine are needed to establish the "first-choice" treatment for cognitive dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- Miriam Olivola
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| | - Nicola Bassetti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Parente
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Vincenzo Arienti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Chiara Civardi
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | | | - Natascia Brondino
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| |
Collapse
|
10
|
Exposure to chronic stress impairs the ability to cope with an acute challenge: Modulation by lurasidone treatment. Eur Neuropsychopharmacol 2022; 61:78-90. [PMID: 35830759 DOI: 10.1016/j.euroneuro.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
Chronic stress represents a major contributor for the development of mental illness. This study aimed to investigate how animals exposed to chronic mild stress (CMS) responded to an acute stress (AS), as a vulnerability's challenge, and to establish the potential effects of the antipsychotic drug lurasidone on such mechanisms. Adult male Wistar rats were exposed or not (controls) to a CMS paradigm for 7 weeks. Starting from the end of week 2, animals were randomized to receive vehicle or lurasidone for 5 weeks. Sucrose intake was used to measure anhedonia. At the end, half of the animals were exposed to an acute stress before sacrifice. Exposure to CMS produced a significant reduction in sucrose consumption, whereas lurasidone progressively normalized such alteration. We found that exposure to AS produced an upregulation of Brain derived neurotrophic factor (Bdnf) in the prefrontal cortex of controls animals. This response was impaired in CMS rats and restored by lurasidone treatment. While in control animals, AS-induced increase of Bdnf mRNA levels was specific for Parvalbumin cells, CMS rats treated with lurasidone show a significant upregulation of Bdnf in pyramidal cells. Furthermore, when investigating the activation of different brain regions, CMS rats showed an impairment in the global response to the acute stressor, that was largely restored by lurasidone treatment. Our results suggest that lurasidone treatment in CMS rats may regulate specific circuits and mechanisms, which will ultimately contribute to boost resilience under stressful challenges.
Collapse
|
11
|
Bosch K, Sbrini G, Burattini I, Nieuwenhuis D, Calabrese F, Schubert D, Henckens MJAG, Homberg JR. Repeated testing modulates chronic unpredictable mild stress effects in male rats. Behav Brain Res 2022; 432:113960. [PMID: 35697177 DOI: 10.1016/j.bbr.2022.113960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Depression is a highly prevalent, debilitating mental disorder. Chronic unpredictable mild stress (CUMS) is the most widely applied model to study this affliction in rodents. While studies incorporating CUMS prior to an intervention often require long-lasting stress effects that persist after exposure is ceased, the longevity of these effects is rarely studied. Additionally, it is unclear whether behavioural assessments can be performed before and after interventions without repeated testing effects. In rats, we investigated CUMS effects on components of depressive-like behaviour both acutely after stress cessation and after a recovery period, as well as effects of repeated testing. We observed acute disruptions of the circadian locomotor rhythm and a reduced sucrose preference immediately after CUMS exposure. While circadian locomotor rhythm effects persisted up until four weeks after stress cessation, independently of repeated testing, sucrose preference effects did not. Interestingly, CUMS animals tested once after a recovery period of four weeks showed reduced anxiety-like behaviour in the open field and elevated plus maze compared to their control group and repeatedly-tested CUMS animals. These findings suggest that distinct CUMS-induced components of depressive-like behaviour are affected differentially by recovery time and repeated testing; these aspects should be considered carefully in future study designs.
Collapse
Affiliation(s)
- Kari Bosch
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands.
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Irene Burattini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Desirée Nieuwenhuis
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
12
|
Rami FZ, Nguyen TB, Oh YE, Karamikheirabad M, Le TH, Chung YC. Risperidone Induced DNA Methylation Changes in Dopamine Receptor and Stathmin Genes in Mice Exposed to Social Defeat Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:373-388. [PMID: 35466108 PMCID: PMC9048015 DOI: 10.9758/cpn.2022.20.2.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thong Ba Nguyen
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Eun Oh
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Maryam Karamikheirabad
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
13
|
Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Transl Psychiatry 2022; 12:87. [PMID: 35228511 PMCID: PMC8885712 DOI: 10.1038/s41398-022-01856-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Stress is the foremost environmental factor involved in the pathophysiology of major depressive disorder (MDD). However, individual differences among people are critical as some people exhibit vulnerability while other are resilient to repeated exposure to stress. Among the others, a recent theory postulates that alterations of energy metabolism might contribute to the development of psychopathologies. Here we show that the bioenergetic status in the ventral hippocampus (vHip), a brain subregion tightly involved in the regulation of MDD, defined the development of vulnerability or resilience following two weeks of chronic mild stress. Among the different metabolomic signatures observed, the glycolysis and tricarboxylic acid cycle may be specifically involved in defining vulnerability, revealing a previously unappreciated mechanism of sensitivity to stress. These findings point to mitochondrial morphology and recycling as critical in the ability to cope with stress. We show that vulnerable rats favor mitochondrial fusion to counteract the overproduction of reactive oxidative species whereas resilient rats activate fission to guarantee metabolic efficiency. Our results indicate that the modulation of the energetic metabolite profile in vHip under chronic stress exposure may represent a mechanism to explain the difference between vulnerable and resilient rats, unraveling novel and promising targets for specific therapeutic interventions.
Collapse
|
14
|
Spero V, Paladini MS, Brivio P, Riva MA, Calabrese F, Molteni R. Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology (Berl) 2022; 239:2547-2557. [PMID: 35459959 PMCID: PMC9294027 DOI: 10.1007/s00213-022-06140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy ,Present Address: Department of Physical Therapy and Rehabilitation Science; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA USA
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
15
|
Brivio P, Buoso E, Masi M, Gallo MT, Gruca P, Lason M, Litwa E, Papp M, Fumagalli F, Racchi M, Corsini E, Calabrese F. The coupling of RACK1 with the beta isoform of the glucocorticoid receptor promotes resilience to chronic stress exposure. Neurobiol Stress 2021; 15:100372. [PMID: 34401408 PMCID: PMC8350424 DOI: 10.1016/j.ynstr.2021.100372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022] Open
Abstract
Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal (HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress (CMS) paradigm, we studied the role of the Grβ-RACK1-Bdnf signaling in the different susceptibility to chronic stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
- Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
| | - Emanuela Corsini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Stress Modifies the Expression of Glucocorticoid-Responsive Genes by Acting at Epigenetic Levels in the Rat Prefrontal Cortex: Modulatory Activity of Lurasidone. Int J Mol Sci 2021; 22:ijms22126197. [PMID: 34201279 PMCID: PMC8228132 DOI: 10.3390/ijms22126197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023] Open
Abstract
Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.
Collapse
|
17
|
Jiao H, Yang H, Yan Z, Chen J, Xu M, Jiang Y, Liu Y, Xue Z, Ma Q, Li X, Chen J. Traditional Chinese Formula Xiaoyaosan Alleviates Depressive-Like Behavior in CUMS Mice by Regulating PEBP1-GPX4-Mediated Ferroptosis in the Hippocampus. Neuropsychiatr Dis Treat 2021; 17:1001-1019. [PMID: 33854318 PMCID: PMC8039849 DOI: 10.2147/ndt.s302443] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND At present, the pathogenesis of depression is not fully understood, and nearly half of depression patients experience no obvious effects during treatment. This study aimed to establish a depression mouse model to explore the possible role of ferroptosis in the pathogenesis of depression, and observe the effects of Xiaoyaosan on PEBP1-GPX4-mediated ferroptosis in the hippocampus. METHODS Forty-eight male C57BL/6 mice were randomly divided into a control group, CUMS group, Xiaoyaosan group and fluoxetine group, and the model was established by chronic unpredictable mild stress (CUMS) for a successive 6 weeks. The medication procedure was performed from the 4th to the 6th week of modeling. The behavioral evaluations were measured to evaluate depressive-like behaviors. The expressions of GPX4, FTH1, ACSL4 and COX2 were detected as ferroptosis-related indicators. Then, the total iron and ferrous content in the hippocampus were measured. The levels of PEBP1 and ERK1/2 were observed, and the expressions of GFAP and IBA1 were also detected to measure the functions of astrocytes and microglia in the hippocampus. RESULTS Eight herbs of Xiaoyaosan had 133 active ingredients which could regulate the 43 ferroptosis-related genes in depression. After 6 weeks of modeling, the data showed that mice in the CUMS group had obvious depressive-like behaviors, and medication with Xiaoyaosan or fluoxetine could significantly improve the behavioral changes. The expressions of GPX4, FTH1, ACSL4, COX2, PEBP1, ERK1/2, GFAP and IBA1 changed in the CUMS group mice, while the total iron and ferrous content also changed. Xiaoyaosan and fluoxetine had obvious curative effects that could significantly alleviate the above changes in the hippocampus. CONCLUSION Our results revealed that the activation of ferroptosis might exist in the hippocampi of CUMS-induced mice. The PEBP1-GPX4-mediated ferroptosis could be involved in the antidepressant mechanism of Xiaoyaosan. It also implied that ferroptosis could become a new target for research into the depression mechanism and antidepressant drugs.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hongjun Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Mengbai Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Youming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Qingyu Ma
- Formula-Pattern Research center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Xiaojuan Li
- Formula-Pattern Research center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Formula-Pattern Research center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Riva MA, Albert U, de Filippis S, Vita A, De Berardis D. Identification of clinical phenotypes in schizophrenia: the role of lurasidone. Ther Adv Psychopharmacol 2021; 11:20451253211012250. [PMID: 34025981 PMCID: PMC8120523 DOI: 10.1177/20451253211012250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of schizophrenia includes the control of symptoms, the prevention of relapses, and amelioration of adaptive skills for patient re-integration into society. Antipsychotic drugs are the agents of choice for the treatment of schizophrenia, as they reduce the positive symptoms of psychosis. Lurasidone is a second-generation antipsychotic drug representing a novel and useful clinical tool for the management of schizophrenia. A board consisting of a panel of Italian expert psychiatrists was organized with the following aims: (a) defining the current modalities of use of lurasidone, highlighted through 17 specific questions; (b) defining and agreeing the main features of the drug and the principal reasons to suggest its administration. We established that lurasidone is suggested at any age, with no gender difference, at all stages of the disease. The switch from previous treatments is done primarily because of lack of efficacy as well as poor adherence/tolerability. Lurasidone is among the best-tolerated antipsychotics, and its use is indicated in the presence of different comorbidities. A wide range of dosages is available, allowing safe titration in particular cases, with the highest dose (148 mg) generally used for the treatment of the acute phase. The discontinuation rate due to poor tolerability, low compliance, and interactions with other drugs is very low. Akathisia is the most reported adverse event, but it may be controlled by dose reduction. Lurasidone does not possess a marked sedative action but, in agitated patients, can be associated with sedative drugs, such as benzodiazepines. The most frequent reason for switching to other therapies is the need for long-acting formulations, as in patients at risk of very low adherence or suicide. Lurasidone does not strongly impact metabolism or the cardiovascular system (QT interval), and does not influence the metabolism of other drugs, showing good efficacy and tolerability.
Collapse
Affiliation(s)
- Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Friuli-Venezia Giulia, Italy
| | | | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Hospital "G. Mazzini", ASL 4, Teramo, 64100, Italy
| |
Collapse
|
19
|
Cattaneo A, Suderman M, Cattane N, Mazzelli M, Begni V, Maj C, D'Aprile I, Pariante CM, Luoni A, Berry A, Wurst K, Hommers L, Domschke K, Cirulli F, Szyf M, Menke A, Riva MA. Long-term effects of stress early in life on microRNA-30a and its network: Preventive effects of lurasidone and potential implications for depression vulnerability. Neurobiol Stress 2020; 13:100271. [PMID: 33344724 PMCID: PMC7739180 DOI: 10.1016/j.ynstr.2020.100271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to early life stress can interfere with neurodevelopmental trajectories to increase the vulnerability for psychiatric disorders later in life. With this respect, epigenetic mechanisms play a key role for the long-lasting changes in brain functions that may elicit and sustain psychopathologic outcomes. Here, we investigated DNA methylation changes as possible epigenetic mechanism mediating the effect of prenatal stress (PNS), an experimental paradigm associated with behavioral and molecular alterations relevant for psychiatric disorders. We identified 138 genes as being differentially methylated in the prefrontal cortex (PFC) and in the hippocampus (HIP) of male and female adult rats exposed to PNS. Among these genes, miR-30a and Neurod1 emerged as potential players for the negative outcomes associated with PNS exposure. Indeed, in addition to showing consistent methylation differences in both brain regions and in both sexes, and interacting with each other, they are both involved in Axon guidance and Neurotrophin signaling, which are important to neurodevelopmental disorders. We also found a significant reduction in the expression of a panel of genes (CAMK2A, c-JUN, LIMK1, MAP2K1, MAP2K2, PIK3CA and PLCG1) that belong to these two biological pathways and are also validated targets of miR-30a, pointing to a down-regulation of these pathways as a consequence of PNS exposure. Interestingly, we also found that miR-30a levels were significantly upregulated in depressed patients exposed to childhood trauma, as compared to control individuals. Importantly, we also found that a sub-chronic treatment with the atypical antipsychotic drug, lurasidone, during adolescence was able to prevent the up-regulation of miR-30a and normalized the expression of its target genes in response to PNS exposure. Our results demonstrate that miR-30a undergoes epigenetic changes following early life stress exposure and suggest that this miRNA could play a key role in producing broad and long-lasting alterations in neuroplasticity-related pathways, contributing to the etiology of psychiatric disorders. MiR-30a and Neurod1 undergo epigenetic changes following PNS exposure. MiR-30 and Neurod1 are involved in Axon guidance and Neurotrophin signaling, two important pathways for neurodevelopment. We found lower expression levels of a panel of genes targeted by miR-30a. MiR-30a was significantly up-regulated in depressed patients exposed to childhood trauma. A chronic treatment with lurasidone during adolescence prevented the up-regulation of miR-30a following PNS exposure.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, BSB 1TH, UK
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Mazzelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| | - Alessandra Berry
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Katharina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesca Cirulli
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade #1311, Montreal, Quebec, Canada, H3G 1Y6
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
20
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
21
|
Brivio P, Sbrini G, Corsini G, Paladini MS, Racagni G, Molteni R, Calabrese F. Chronic Restraint Stress Inhibits the Response to a Second Hit in Adult Male Rats: A Role for BDNF Signaling. Int J Mol Sci 2020; 21:ijms21176261. [PMID: 32872446 PMCID: PMC7503736 DOI: 10.3390/ijms21176261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Corsini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
- Correspondence:
| |
Collapse
|
22
|
Sbrini G, Brivio P, Peeva PM, Todiras M, Bader M, Alenina N, Calabrese F. The Absence of Serotonin in the Brain Alters Acute Stress Responsiveness by Interfering With the Genomic Function of the Glucocorticoid Receptors. Front Cell Neurosci 2020; 14:128. [PMID: 32547368 PMCID: PMC7278285 DOI: 10.3389/fncel.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Alterations in serotonergic transmission have been related to a major predisposition to develop psychiatric pathologies, such as depression. We took advantage of tryptophan hydroxylase (TPH) 2 deficient rats, characterized by a complete absence of serotonin in the brain, to evaluate whether a vulnerable genotype may influence the reaction to an acute stressor. In this context, we investigated if the glucocorticoid receptor (GR) genomic pathway activation was altered by the lack of serotonin in the central nervous system. Moreover, we analyzed the transcription pattern of the clock genes that can be affected by acute stressors. Adult wild type (TPH2+/+) and TPH2-deficient (TPH2-/-) male rats were sacrificed after exposure to one single session of acute restraint stress. Protein and gene expression analyses were conducted in the prefrontal cortex (PFC). The acute stress enhanced the translocation of GRs in the nucleus of TPH2+/+ animals. This effect was blunted in TPH2-/- rats, suggesting an impairment of the GR genomic mechanism. This alteration was mirrored in the expression of GR-responsive genes: acute stress led to the up-regulation of GR-target gene expression in TPH2+/+, but not in TPH2-/- animals. Finally, clock genes were differently modulated in the two genotypes after the acute restraint stress. Overall our findings suggest that the absence of serotonin within the brain interferes with the ability of the HPA axis to correctly modulate the response to acute stress, by altering the nuclear mechanisms of the GR and modulation of clock genes expression.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Polina Mineva Peeva
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charite-University Medicine, Berlin, Germany
| | - Natalia Alenina
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|