1
|
Rosenberg BM, Barnes-Horowitz NM, Zbozinek TD, Craske MG. Reward processes in extinction learning and applications to exposure therapy. J Anxiety Disord 2024; 106:102911. [PMID: 39128178 PMCID: PMC11384290 DOI: 10.1016/j.janxdis.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Anxiety disorders are common and highly distressing mental health conditions. Exposure therapy is a gold-standard treatment for anxiety disorders. Mechanisms of Pavlovian fear learning, and particularly fear extinction, are central to exposure therapy. A growing body of evidence suggests an important role of reward processes during Pavlovian fear extinction. Nonetheless, predominant models of exposure therapy do not currently incorporate reward processes. Herein, we present a theoretical model of reward processes in relation to Pavlovian mechanisms of exposure therapy, including a focus on dopaminergic prediction error signaling, coinciding positive emotional experiences (i.e., relief), and unexpected positive outcomes. We then highlight avenues for further research and discuss potential strategies to leverage reward processes to maximize exposure therapy response, such as pre-exposure interventions to increase reward sensitivity or post-exposure rehearsal (e.g., savoring, imaginal recounting strategies) to enhance retrieval and retention of learned associations.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Nora M Barnes-Horowitz
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Tomislav D Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
2
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
3
|
Hou G, Jiang S, Chen G, Deng X, Li F, Xu H, Chen B, Zhu Y. Opioid Receptors Modulate Firing and Synaptic Transmission in the Paraventricular Nucleus of the Thalamus. J Neurosci 2023; 43:2682-2695. [PMID: 36898836 PMCID: PMC10089236 DOI: 10.1523/jneurosci.1766-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is involved in drug addiction-related behaviors, and morphine is a widely used opioid for the relief of severe pain. Morphine acts via opioid receptors, but the function of opioid receptors in the PVT has not been fully elucidated. Here, we used in vitro electrophysiology to study neuronal activity and synaptic transmission in the PVT of male and female mice. Activation of opioid receptors suppresses the firing and inhibitory synaptic transmission of PVT neurons in brain slices. On the other hand, the involvement of opioid modulation is reduced after chronic morphine exposure, probably because of desensitization and internalization of opioid receptors in the PVT. Overall, the opioid system is essential for the modulation of PVT activities.SIGNIFICANCE STATEMENT Opioid receptors modulate the activities and synaptic transmission in the PVT by suppressing the firing rate and inhibitory synaptic inputs. These modulations were largely diminished after chronic morphine exposure.
Collapse
Affiliation(s)
- Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shaolei Jiang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
5
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
7
|
Lee J, Kim N, Jeong H, Jun JY, Yoo SY, Lee SH, Lee J, Lee YJ, Kim SJ. Gray Matter Volume of Thalamic Nuclei in Traumatized North Korean Refugees. Front Psychiatry 2022; 13:756202. [PMID: 35573348 PMCID: PMC9095986 DOI: 10.3389/fpsyt.2022.756202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current study investigated differences in the regional gray matter (GM) volume of specific thalamic nuclei between North Korean (NK) refugees and South Korean (SK) residents. It also investigated associations between thalamic GM volume changes and psychological symptoms. Psychological evaluations and magnetic resonance imaging were conducted on 50 traumatized NK refugees and 55 non-traumatized SK residents. The regional GM volume ratios in the bilateral thalami were calculated for all participants using voxel-based morphometry. NK refugees showed greater GM volume ratios in the right medial-posterior nuclei and left medial nuclei compared with SK residents. NK refugees also exhibited more depressive symptoms than SK residents. However, increased GM volume ratios in both right medial-posterior nuclei and left medial nuclei were correlated with fewer depressive symptoms in NK refugees, but not in SK residents. The findings indicate that traumatized NK refugees had increased GM volumes in the right medial-posterior nuclei and left medial nuclei, which were associated with fewer depressive symptoms. The enlarged specific thalamic nuclei presented among refugees in the current study might be associated with a neurobiological compensatory mechanism that prevents the development or progression of depression in refugees after repetitive traumatic experiences.
Collapse
Affiliation(s)
- Jiye Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nambeom Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Hyunwoo Jeong
- Geumsan-gun Public Health Center, Seoul, South Korea
| | - Jin Yong Jun
- Department of Psychiatry, Seoul National Hospital, Seoul, South Korea
| | - So Young Yoo
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - So Hee Lee
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - Jooyoung Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Seog Ju Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
9
|
Meier IM, Eikemo M, Leknes S. The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies. CURRENT ADDICTION REPORTS 2021; 8:306-318. [PMID: 34722114 PMCID: PMC8550464 DOI: 10.1007/s40429-021-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Opioid receptors are widely expressed in the human brain. A number of features commonly associated with drug use disorder, such as difficulties in emotional learning, emotion regulation and anhedonia, have been linked to endogenous opioid signalling. Whereas chronic substance use and misuse are thought to alter the function of the mu-opioid system, the specific mechanisms are not well understood. We argue that understanding exogenous and endogenous opioid effects in the healthy human brain is an essential foundation for bridging preclinical and clinical findings related to opioid misuse. Here, we will examine psychopharmacological evidence to outline the role of the mu-opioid receptor (MOR) system in the processing of threat and reward, and discuss how disruption of these processes by chronic opioid use might alter emotional learning and reward responsiveness. RECENT FINDINGS In healthy people, studies using opioid antagonist drugs indicate that the brain's endogenous opioids downregulate fear reactivity and upregulate learning from safety. At the same time, endogenous opioids increase the liking of and motivation to engage with high reward value cues. Studies of acute opioid agonist effects indicate that with non-sedative doses, drugs such as morphine and buprenorphine can mimic endogenous opioid effects on liking and wanting. Disruption of endogenous opioid signalling due to prolonged opioid exposure is associated with some degree of anhedonia to non-drug rewards; however, new results leave open the possibility that this is not directly opioid-mediated. SUMMARY The available human psychopharmacological evidence indicates that the healthy mu-opioid system contributes to the regulation of reward and threat processing. Overall, endogenous opioids can subtly increase liking and wanting responses to a wide variety of rewards, from sweet tastes to feelings of being connected to close others. For threat-related processing, human evidence suggests that endogenous opioids inhibit fear conditioning and reduce the sensitivity to aversive stimuli, although inconsistencies remain. The size of effects reported in healthy humans are however modest, clearly indicating that MORs play out their role in close concert with other neurotransmitter systems. Relevant candidate systems for future research include dopamine, serotonin and endocannabinoid signalling. Nevertheless, it is possible that endogenous opioid fine-tuning of reward and threat processing, when unbalanced by e.g. opioid misuse, could over time develop into symptoms associated with opioid use disorder, such as anhedonia and depression/anxiety.
Collapse
Affiliation(s)
- Isabell M. Meier
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| | - Siri Leknes
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| |
Collapse
|
10
|
The Role of the Thalamus in Post-Traumatic Stress Disorder. Int J Mol Sci 2021; 22:ijms22041730. [PMID: 33572198 PMCID: PMC7915053 DOI: 10.3390/ijms22041730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) has a high lifetime prevalence and is one of the more serious challenges in mental health care. Fear-conditioned learning involving the amygdala has been thought to be one of the main causative factors; however, recent studies have reported abnormalities in the thalamus of PTSD patients, which may explain the mechanism of interventions such as eye movement desensitization and reprocessing (EMDR). Therefore, I conducted a miniature literature review on the potential contribution of the thalamus to the pathogenesis of PTSD and the validation of therapeutic approaches. As a result, we noticed the importance of the retinotectal pathway (superior colliculus−pulvinar−amygdala connection) and discussed therapeutic indicators.
Collapse
|
11
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|