1
|
Bahari F, Dzhala V, Balena T, Lillis KP, Staley KJ. Intraventricular haemorrhage in premature infants: the role of immature neuronal salt and water transport. Brain 2024; 147:3216-3233. [PMID: 38815055 PMCID: PMC11370806 DOI: 10.1093/brain/awae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.
Collapse
Affiliation(s)
- Fatemeh Bahari
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Balena
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. J Cereb Blood Flow Metab 2024:271678X241257887. [PMID: 39053498 PMCID: PMC11574936 DOI: 10.1177/0271678x241257887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial function is tightly linked to morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered rapidly reversible fragmentation of dendritic mitochondria alongside dendritic beading; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular, and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
Affiliation(s)
- Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ioulia V Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sergei A Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Tichauer JE, Lira M, Cerpa W, Orellana JA, Sáez JC, Rovegno M. Inhibition of astroglial hemichannels prevents synaptic transmission decline during spreading depression. Biol Res 2024; 57:39. [PMID: 38867288 PMCID: PMC11167948 DOI: 10.1186/s40659-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576364. [PMID: 38328069 PMCID: PMC10849532 DOI: 10.1101/2024.01.22.576364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial function is tightly linked to their morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered a rapid fragmentation of dendritic mitochondria alongside dendritic beading, both reversible; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
|
5
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
6
|
Ochoa A, Abelian A, Evans CL, Palopoli-Trojani K, Hoffmann U, Won DS. Detection of spreading depolarization events and spatiotemporal analysis for advancing stroke therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4900-4903. [PMID: 36085660 DOI: 10.1109/embc48229.2022.9871768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While the presence of spreading depolarization (SD) and associated spreading depression have been well studied and known to be associated with post-ischemic brain damage, the spatiotemporal spread of these events from the site of injury is not well understood. With the recent development of high-density micro-electrocorticographic (ECoG) electrode arrays, monitoring the spread of the depolarizing events and associated depression is possible. The goal of this work is to define the electrocorticographic features of SD and associated depression across the multichannel array and search for patterns in these features that emerge across both space and time. We present the spatial distribution of features found from chronic ECoG recordings acquired from awake behaving rats induced with a rodent model of stroke. SD events were detected with an unsupervised algorithm that searched for a stereotyped pattern in the first derivative of the ECoG. The algorithm yielded a 58% correct detection rate on average across four rats, and a 36% false positive rate. We defined key electrophysiological features and mapped them onto the physical brain regions using MATLAB, such as the peak-to-peak amplitude of each SD event, the width (or duration) of the SD event, direct current (DC) level, and average rate of decline in the signal baseline. We performed k-means clustering to the activity in this feature space which yielded three contiguous regions in physical space. The elbow optimization method was applied to a distortion metric and indicated that 3 clusters was optimal. These findings motivate us to conduct future studies that would verify whether these 3 clusters in electrode-space correspond to immunohistochemically defined regions of tissue health, namely, infarct, penumbra, and healthy tissue. Clinical Relevance- The extent and severity of damage that stroke ultimately causes is suspected to be related to the progression of spreading depolarization and associated depression. An understanding of how the features of these electrophysiological events progress across the brain and over time is an important step toward eventual development of closed-loop therapies which limit and minimize the long-term effects of stroke.
Collapse
|
7
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Colbourn R, Hrabe J, Nicholson C, Perkins M, Goodman JH, Hrabetova S. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter. J Physiol 2021; 599:3195-3220. [PMID: 33942325 DOI: 10.1113/jp281544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Extracellular space (ECS) rapid volume pulsation (RVP) accompanying epileptiform activity is described for the first time. Such RVP occurs robustly in several in vitro and in vivo mouse models of epileptiform activity. In the in vitro 4-aminopyridine model of epileptiform activity, RVP depends on the activity of the electrogenic Na+ /HCO3 - cotransporter (NBCe1). NBCe1 pharmacological inhibition suppresses RVP and epileptiform activity. Inhibition of changes in ECS volume may be a useful target in epilepsy patients who are resistant to current treatments. ABSTRACT: The extracellular space (ECS) of the brain shrinks persistently by approximately 35% during epileptic seizures. Here we report the discovery of rapid volume pulsation (RVP), further transient drops in ECS volume which accompany events of epileptiform activity. These transient ECS contractions were observed in multiple mouse models of epileptiform activity both in vivo (bicuculline methiodide model) and in vitro (hyaluronan synthase 3 knock-out, picrotoxin, bicuculline and 4-aminopyridine models). By using the probe transients quantification (PTQ) method we show that individual pulses of RVP shrank the ECS by almost 15% in vivo. In the 4-aminopyridine in vitro model, the individual pulses of RVP shrank the ECS by more than 4%, and these transient changes were superimposed on a persistent ECS shrinkage of 36% measured with the real-time iontophoretic method. In this in vitro model, we investigated several channels and transporters that may be required for the generation of RVP and epileptiform activity. Pharmacological blockages of Na+ /K+ /2Cl- cotransporter type 1 (NKCC1), K+ /Cl- cotransporter (KCC2), the water channel aquaporin-4 (AQP4) and inwardly rectifying potassium channel 4.1 (Kir4.1) were ineffective in halting the RVP and the epileptiform activity. In contrast, pharmacological blockade of the electrogenic Na+ /HCO3 - cotransporter (NBCe1) by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminated both the RVP and the persistent ECS shrinkage. Importantly, this blocker also stopped the epileptiform activity. These results demonstrate that RVP is closely associated with epileptiform activity across several models of epileptiform activity and therefore the underlying mechanism could potentially represent a novel target for epilepsy management and treatment.
Collapse
Affiliation(s)
- Robert Colbourn
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Neural and Behavioral Science Graduate Program, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jan Hrabe
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Charles Nicholson
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Matthew Perkins
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.,Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
9
|
Kirov SA, Fomitcheva IV, Sword J. Rapid Neuronal Ultrastructure Disruption and Recovery during Spreading Depolarization-Induced Cytotoxic Edema. Cereb Cortex 2020; 30:5517-5531. [PMID: 32483593 PMCID: PMC7566686 DOI: 10.1093/cercor/bhaa134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
Two major pathogenic events that cause acute brain damage during neurologic emergencies of stroke, head trauma, and cardiac arrest are spreading depolarizing waves and the associated brain edema that course across the cortex injuring brain cells. Virtually nothing is known about how spreading depolarization (SD)-induced cytotoxic edema evolves at the ultrastructural level immediately after insult and during recovery. In vivo 2-photon imaging followed by quantitative serial section electron microscopy was used to assess synaptic circuit integrity in the neocortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. SD triggered a rapid fragmentation of dendritic mitochondria. A large increase in the density of synapses on swollen dendritic shafts implies that some dendritic spines were overwhelmed by swelling or merely retracted. The overall synaptic density was unchanged. The postsynaptic dendritic membranes remained attached to axonal boutons, providing a structural basis for the recovery of synaptic circuits. Upon immediate reperfusion, cytotoxic edema mainly subsides as affirmed by a recovery of dendritic ultrastructure. Dendritic recuperation from swelling and reversibility of mitochondrial fragmentation suggests that neurointensive care to improve tissue perfusion should be paralleled by treatments targeting mitochondrial recovery and minimizing the occurrence of SDs.
Collapse
Affiliation(s)
- Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Nielsen BS, Toft-Bertelsen TL, Lolansen SD, Anderson CL, Nielsen MS, Thompson RJ, MacAulay N. Pannexin 1 activation and inhibition is permeant-selective. J Physiol 2020; 598:361-379. [PMID: 31698505 DOI: 10.1113/jp278759] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.
Collapse
Affiliation(s)
- Brian Skriver Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Walch E, Murphy TR, Cuvelier N, Aldoghmi M, Morozova C, Donohue J, Young G, Samant A, Garcia S, Alvarez C, Bilas A, Davila D, Binder DK, Fiacco TA. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na +/K + ATPase and Occurs Independently of Aquaporin 4. ASN Neuro 2020; 12:1759091420967152. [PMID: 33092407 PMCID: PMC7586494 DOI: 10.1177/1759091420967152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
| | - Thomas R. Murphy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Nicholas Cuvelier
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Murad Aldoghmi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Cristine Morozova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Jordan Donohue
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Gaby Young
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Anuja Samant
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Stacy Garcia
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Camila Alvarez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Alex Bilas
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - David Davila
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| |
Collapse
|
13
|
Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain 2019; 20:45. [PMID: 31046659 PMCID: PMC6734429 DOI: 10.1186/s10194-019-1001-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of near-complete depolarization of neurons and glial cells across the cortex. SD is thought to contribute to the underlying pathophysiology of migraine aura, and possibly also an intrinsic brain activity causing migraine headache. Experimental models of SD have recapitulated multiple migraine-related phenomena and are considered highly translational. In this review, we summarize conventional and novel methods to trigger SD, with specific focus on optogenetic methods. We outline physiological triggers that might affect SD susceptibility, review a multitude of physiological, biochemical, and behavioral consequences of SD, and elaborate their relevance to migraine pathophysiology. The possibility of constructing a recurrent episodic or chronic migraine model using SD is also discussed.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Zhang J, Wang Y, Zheng Z, Sun X, Chen T, Li C, Zhang X, Guo J. Intracellular ion and protein nanoparticle-induced osmotic pressure modify astrocyte swelling and brain edema in response to glutamate stimuli. Redox Biol 2019; 21:101112. [PMID: 30685709 PMCID: PMC6351271 DOI: 10.1016/j.redox.2019.101112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Intracellular tension activity plays a crucial role in cytotoxic brain edema and astrocyte swelling. Here, a few genetically encoded FRET-based tension probes were designed to detect cytoskeletal structural tension optically, including their magnitude and vectors. The astrocyte swelling resulted in GFAP tension increment, which is associated with the antagonistic effect of inward microfilaments (MFs) and microtubules (MTs) forces. In glutamate-induced astrocyte swelling, GFAP tension rise resulted from outward ion and protein nanoparticle-induced osmotic pressure (PN-OP) increases, where PN-OP could be elicited by MF and MT depolymerization, protein nanoparticle production, and activation of cofilin and stathmin-1. Attenuation of both ion osmotic pressure and PN-OP by drug combinations, together with free-radical scavenger, relieved cerebral edema in vivo. The study suggests that intracellular osmotic pressure (especially PN-OP) has a pivotal role in glutamate-induced astrocyte swelling and brain edema. Recovery of cytoplasmic potential is a promising target to develop new drugs and cure brain edema.
Collapse
Affiliation(s)
- JiaRui Zhang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - YuXuan Wang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - ZiHui Zheng
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - XiaoHe Sun
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - TingTing Chen
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Chen Li
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - XiaoLong Zhang
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, PR China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
15
|
Moshkforoush A, Valdes-Hernandez PA, Rivera-Espada DE, Mori Y, Riera J. waveCSD: A method for estimating transmembrane currents originated from propagating neuronal activity in the neocortex: Application to study cortical spreading depression. J Neurosci Methods 2018; 307:106-124. [PMID: 29997062 PMCID: PMC6086575 DOI: 10.1016/j.jneumeth.2018.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent years have witnessed an upsurge in the development of methods for estimating current source densities (CSDs) in the neocortical tissue from their recorded local field potential (LFP) reflections using microelectrode arrays. Among these, methods utilizing linear arrays work under the assumption that CSDs vary as a function of cortical depth; whereas they are constant in the tangential direction, infinitely or in a confined cylinder. This assumption is violated in the analysis of neuronal activity propagating along the neocortical sheet, e.g. propagation of alpha waves or cortical spreading depression. NEW METHOD Here, we developed a novel mathematical method (waveCSD) for CSD analysis of LFPs associated with a planar wave of neocortical neuronal activity propagating at a constant velocity towards a linear probe. RESULTS Results show that the algorithm is robust to the presence of noise in LFP data and uncertainties in knowledge of propagation velocity. Also, results show high level of accuracy of the method in a wide range of electrode resolutions. Using in vivo experimental recordings from the rat neocortex, we employed waveCSD to characterize transmembrane currents associated with cortical spreading depressions. COMPARISON WITH EXISTING METHOD(S) Simulation results indicate that waveCSD has a significantly higher reconstruction accuracy compared to the widely-used inverse CSD method (iCSD), and the regularized kernel CSD method (kCSD), in the analysis of CSDs originating from propagating neuronal activity. CONCLUSIONS The waveCSD method provides a theoretical platform for estimation of transmembrane currents from their LFPs in experimental paradigms involving wave propagation.
Collapse
Affiliation(s)
- Arash Moshkforoush
- Department Biomedical Engineering, Florida International University, United States
| | | | | | - Yoichiro Mori
- Department of Mathematics, University of Minnesota Twin Cities, United States
| | - Jorge Riera
- Department Biomedical Engineering, Florida International University, United States.
| |
Collapse
|
16
|
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2017; 134:189-207. [PMID: 28941738 DOI: 10.1016/j.neuropharm.2017.09.027] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Departments of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. J Neurosci 2017; 37:333-348. [PMID: 28077713 DOI: 10.1523/jneurosci.1510-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022] Open
Abstract
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1-2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions.
Collapse
|