1
|
Wu C, Guo J, Duan Y, He J, Xu S, Liu G, Zhou C, Ding Y, Zhu X, Ji X, Wu D. Mitigating Early Phosphatidylserine Exposure in a Tmem30a-Dependent Way Ameliorates Neuronal Damages After Ischemic Stroke. MedComm (Beijing) 2025; 6:e70140. [PMID: 40104262 PMCID: PMC11914776 DOI: 10.1002/mco2.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Phosphatidylserine (PS) exposes to the outer plasma membrane after a pathological insult (e.g., stroke) but not under normal conditions whereby PS remains within the inner plasma membrane. However, the reversibility and translational potential of PS exposure in damaged cells after stroke are still unknown. Here, we demonstrated that plasma Annexin V, which has a high affinity to membranes bearing PS, was increased in patients with salvage penumbra after endovascular therapy, and associated with early neurological improvement. Moreover, Annexin V treatment could decrease PS exposure and mitigate neurological impairments in transient ischemia/reperfusion mouse models, but not in permanent ischemia. Furthermore, we used a combination of cell, rodent, and nonhuman primate ischemia/reperfusion models and found that transmembrane protein 30A (Tmem30a) was increased in the ischemic penumbra after stroke and imperative for less PS exposure and better neurological functions. Mechanistically, mitigation of PS exposure mediated by Tmem30a/Annexin V connection led to decreased expression of apoptosis and necroptosis markers in neurons of penumbra. Overall, our findings reveal a previously unappreciated role of reducing PS exposure by Annexin V treatment in protecting the penumbra in a clinically relevant ischemia/reperfusion model. Tmem30a is essential for reducing PS exposure in the penumbra after ischemic stroke.
Collapse
Affiliation(s)
- Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Jiachen He
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
| | - Guiyou Liu
- Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Chen Zhou
- Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Yuchuan Ding
- Department of Neurosurgery Wayne State University School of Medicine Detroit Michigan USA
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine Center for Medical Genetics Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu Sichuan China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience Beijing Institute of Geriatrics Xuanwu Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Capital Medical University Beijing China
| |
Collapse
|
2
|
Kanayama T, Hatakeyama M, Akiyama N, Otsu Y, Onodera O, Shimohata T, Kanazawa M. Oxygen-glucose-deprived peripheral blood mononuclear cells act on hypoxic lesions after ischemia-reperfusion injury. Exp Neurol 2025; 385:115121. [PMID: 39710242 DOI: 10.1016/j.expneurol.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Despite advances in reperfusion therapies, ischemic stroke remains a major cause of long-term disability due to residual hypoxic lesions persisting after macrovascular reperfusion. These residual hypoxic lesions, caused by microvascular dysfunction, represent an important therapeutic target. We previously demonstrated that oxygen-glucose-deprived peripheral blood mononuclear cells (OGD-PBMCs) migrate to ischemic brain regions and promote functional recovery after stroke. This recovery occurs through mechanisms involving hypoxia-inducible factor-1α, exosomal miR-155-5p, and vascular endothelial growth factor (VEGF). However, it remains unclear whether OGD-PBMCs target hypoxic regions. METHODS We evaluated cerebral blood flow using a laser speckle flow imaging system. Next, we utilized pimonidazole to investigate the presence of hypoxic lesions after ischemia-reperfusion injury in a rat suture occlusion model in immunohistochemical analyses. We also compared levels of a cell surface receptor in human PBMCs by flow cytometric analysis under normoxic and OGD conditions. RESULTS We found persistent pimonidazole-positive hypoxic lesions at 10- and 28-days post-reperfusion despite restored gross cerebral perfusion. Treatment with the C-X-C motif chemokine receptor 4 (CXCR4) inhibitor AMD3100 before and after OGD-PBMCs administration reduced the number of OGD-PBMCs in the brain parenchyma compared to the control group (P = 0.018). Administered OGD-PBMCs localized within these hypoxic regions via the stromal cell-derived factor-1/CXCR4 chemotactic axis. OGD-PBMCs enhanced VEGF expression, specifically within hypoxic lesions, compared to the phosphate-buffered saline group (P < 0.01). Furthermore, OGD-PBMCs reduced the number of pimonidazole-positive hypoxic cells in the ischemic core on 28 days. These findings demonstrate that OGD-PBMCs selectively migrate to and modulate the microenvironment of hypoxic lesions following cerebral ischemia-reperfusion injury. CONCLUSION Targeting these residual hypoxic regions may underline the therapeutic effects of OGD-PBMC treatment and represent a promising strategy for improving stroke recovery despite successful recanalization.
Collapse
Affiliation(s)
- Takeshi Kanayama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Natsuki Akiyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan.
| |
Collapse
|
3
|
Gillani SA, Ma X, Huang Y, Bains NK, Fakih R, Siddiq F, French BR, Gomez CR, Lyden PD, Qureshi AI. Effect of post thrombolytic intracerebral hemorrhage volume on 90-day outcomes in acute ischemic stroke patients. J Stroke Cerebrovasc Dis 2024; 33:107962. [PMID: 39191317 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Post thrombolytic intracerebral hemorrhage (ICH) is associated with higher rate of death or disability in acute ischemic stroke patients. We investigated the relationship between post thrombolytic ICH volume and change in volume and death or disability at 90 days in acute ischemic stroke patients. METHODS We analyzed 110 patents recruited in the Safety Evaluation of 3K3A-APC in Ischemic Stroke (RHAPSODY) trial who received intravenous tissue plasminogen activator (tPA) followed by mechanical thrombectomy (if indicated) and 3K3A-APC or placebo. ICH volume was measured at Day 2 and Day 7 using susceptibility weighted sequence (SWI) on magnetic resonance imaging (MRI). We also calculated the post thrombolytic ICH volume change between Day 2 and Day 7. Outcomes were determined by using utility weighted modified Rankin scale (UW-mRs) at 90-days, Outcomes were determined by using utility weighted modified Rankin scale (UW-mRS) at 90 days. To minimize interpretation bias, outcome assessors were blinded to the treatment allocation and clinical data.We adjusted for age, gender, National Institutes of Health Stroke Scale (NIHSS) score (<10,10-19 and ≥20), location of hemorrhage (single basal ganglia hemorrhage, single lobar, single cerebellum, and multiple sites) in multivariate regression analysis. RESULTS A total of 88 (80%) of 110 patients had post thrombolytic ICH (mean volume 28.3 ml ± SD 62 ml). The strata of ICH volume were not associated with UW-mRs at 90 days: <20 cc (regression coefficient (RC)-0.05, p= 0.58), 20-39 cc (RC-0.22, p=0.17), or ≥40 cc (RC-0.34, p= 0.083) compared with no ICH after adjusting for potential confounders. Change in ICH mean volume 26.78 ml ±59.68, 52 had increase in volume) between Day 2 and day 7 was not associated with UW-mRS at 90 days (RC -67.71, p= 0.06). CONCLUSIONS We did not observe any independent effect of post thrombolytic ICH volume on death or disability in acute ischemic stroke patients. Although further studies must be done, our data suggest that strategies to prevent ICH expansion such as antifibrinolytic medications and reduction in ICH volume such as surgical evacuation may not reduce death or disability in acute ischemic stroke patients with post thrombolytic ICH.
Collapse
Affiliation(s)
- Syed A Gillani
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| | - Xiaoyu Ma
- Department of Statistics, University of Missouri, Columbia, MO, USA.
| | - Yilun Huang
- Department of Statistics, University of Missouri, Columbia, MO, USA.
| | - Navpreet K Bains
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| | - Rami Fakih
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| | - Farhan Siddiq
- Department of Neurosurgery, University of Missouri, Columbia, MO, USA.
| | - Brandi R French
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| | - Camilo R Gomez
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| | - Patrick D Lyden
- Department of Physiology and Neuroscience and the Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Adnan I Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Pérez-Mato M, López-Arias E, Bugallo-Casal A, Correa-Paz C, Arias S, Rodríguez-Yáñez M, Santamaría-Cadavid M, Campos F. New Perspectives in Neuroprotection for Ischemic Stroke. Neuroscience 2024; 550:30-42. [PMID: 38387732 DOI: 10.1016/j.neuroscience.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The constant failure of new neuroprotective therapies for ischemic stroke has partially halted the search for new therapies in recent years, mainly because of the high investment risk required to develop a new treatment for a complex pathology, such as stroke, with a narrow intervention window and associated comorbidities. However, owing to recent progress in understanding the stroke pathophysiology, improvement in patient care in stroke units, development of new imaging techniques, search for new biomarkers for early diagnosis, and increasingly widespread use of mechanical recanalization therapies, new opportunities have opened for the study of neuroprotection. This review summarizes the main protective agents currently in use, some of which are already in the clinical evaluation phase. It also includes an analysis of how recanalization therapies, new imaging techniques, and biomarkers have improved their efficacy.
Collapse
Affiliation(s)
- María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Esteban López-Arias
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Arias
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - María Santamaría-Cadavid
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Bindal P, Kumar V, Kapil L, Singh C, Singh A. Therapeutic management of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2651-2679. [PMID: 37966570 DOI: 10.1007/s00210-023-02804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Stroke is the third leading cause of years lost due to disability and the second-largest cause of mortality worldwide. Most occurrences of stroke are brought on by the sudden occlusion of an artery (ischemic stroke), but sometimes they are brought on by bleeding into brain tissue after a blood vessel has ruptured (hemorrhagic stroke). Alteplase is the only therapy the American Food and Drug Administration has approved for ischemic stroke under the thrombolysis category. Current views as well as relevant clinical research on the diagnosis, assessment, and management of stroke are reviewed to suggest appropriate treatment strategies. We searched PubMed and Google Scholar for the available therapeutic regimes in the past, present, and future. With the advent of endovascular therapy in 2015 and intravenous thrombolysis in 1995, the therapeutic options for ischemic stroke have expanded significantly. A novel approach such as vagus nerve stimulation could be life-changing for many stroke patients. Therapeutic hypothermia, the process of cooling the body or brain to preserve organ integrity, is one of the most potent neuroprotectants in both clinical and preclinical contexts. The rapid intervention has been linked to more favorable clinical results. This study focuses on the pathogenesis of stroke, as well as its recent advancements, future prospects, and potential therapeutic targets in stroke therapy.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
6
|
Giorgi C, Castelli V, d’Angelo M, Cimini A. Organoids Modeling Stroke in a Petri Dish. Biomedicines 2024; 12:877. [PMID: 38672231 PMCID: PMC11048104 DOI: 10.3390/biomedicines12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Stroke is a common neurological disorder, the second leading cause of death, and the third leading cause of disability. Unfortunately, the only approved drug for it is tissue plasminogen, but the therapeutic window is limited. In this context, preclinical studies are relevant to better dissect the underlying mechanisms of stroke and for the drug screening of potential therapies. Brain organoids could be relevant in this setting. They are derived from pluripotent stem cells or isolated organ progenitors that differentiate to form an organ-like tissue, exhibiting multiple cell types that self-organize to form a structure not unlike the organ in vivo. Brain organoids mimic many key features of early human brain development at molecular, cellular, structural, and functional levels and have emerged as novel model systems that can be used to investigate human brain diseases including stroke. Brain organoids are a promising and powerful tool for ischemic stroke studies; however, there are a few concerns that need to be addressed, including the lack of vascularization and the many cell types that are typically present in the human brain. The aim of this review is to discuss the potential of brain organoids as a novel model system for studying ischemic stroke, highlighting both the advantages and disadvantages in the use of this technology.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| |
Collapse
|
7
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Li Y, Chen J, Quan X, Chen Y, Han Y, Chen J, Yang L, Xu Y, Shen X, Wang R, Zhao Y. Extracellular Vesicles Maintain Blood-Brain Barrier Integrity by the Suppression of Caveolin-1/CD147/VEGFR2/MMP Pathway After Ischemic Stroke. Int J Nanomedicine 2024; 19:1451-1467. [PMID: 38371456 PMCID: PMC10874237 DOI: 10.2147/ijn.s444009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, People’s Republic of China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| |
Collapse
|
9
|
Chen X, Xu S, Li M, Wu D, Ji X. Transnasal cooling: New prospect of selective hypothermia in acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:310-312. [PMID: 37898106 PMCID: PMC10993875 DOI: 10.1177/0271678x231211726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Rapid and selective therapeutic hypothermia is a promising neuroprotective method for acute ischemic stroke. A recent study developed a simple but efficient technique of transnasal cooling, in which air at ambient temperature was passed through standard nasal cannula to induce evaporative cooling of the brain. Selective brain temperature decrease was achieved within 25 minutes in piglets. It is a major step forward to initiate early brain cooling. However, it is still necessary to devise a more comprehensive strategy to enhance the benefits of selective brain cooling in the era of effective reperfusion.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Ronaldson PT, Williams EI, Betterton RD, Stanton JA, Nilles KL, Davis TP. CNS Drug Delivery in Stroke: Improving Therapeutic Translation From the Bench to the Bedside. Stroke 2024; 55:190-202. [PMID: 38134249 PMCID: PMC10752297 DOI: 10.1161/strokeaha.123.043764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Erica I Williams
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Robert D Betterton
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Joshua A Stanton
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Kelsy L Nilles
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| |
Collapse
|
11
|
Zeng Y, Xue T, Zhang D, Lv M. Transcriptomic Analysis of lncRNAs and their mRNA Networks in Cerebral Ischemia in Young and Aged Mice. Comb Chem High Throughput Screen 2024; 27:823-833. [PMID: 37340753 DOI: 10.2174/1386207326666230619091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Ischemic stroke comprises 75% of all strokes and it is associated with a great frailty and casualty rate. Certain data suggest multiple long non-coding Ribonucleic Acids (lncRNAs) assist the transcriptional, post-transcriptional, and epigenetic regulation of genes expressed in the CNS (Central Nervous System). However, these studies generally focus on differences in the expression patterns of lncRNAs and Messenger Ribonucleic Acids (mRNAs) in tissue samples before and after cerebral ischemic injury, ignoring the effects of age. METHODS In this study, differentially expressed lncRNA analysis was performed based on RNAseq data from the transcriptomic analysis of murine brain microglia related to cerebral ischemia injury in mice at different ages (10 weeks and 18 months). RESULTS The results showed that the number of downregulate differentially expressed genes (DEGs) in aged mice was 37 less than in young mice. Among them, lncRNA Gm-15987, RP24- 80F7.5, XLOC_379730, XLOC_379726 were significantly down-regulated. Then, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these specific lncRNAs were mainly related to inflammation. Based on the lncRNA/mRNA coexpression network, the mRNA co-expressed with lncRNA was mainly enriched in pathways, such as immune system progression, immune response, cell adhesion, B cell activation, and T cell differentiation. Our results indicate that the downregulation of lncRNA, such as Gm-15987, RP24- 80F7.5, XLOC_379730, and XLOC_379726 in aged mice may attenuate microglial-induced inflammation via the progress of immune system progression immune response, cell adhesion, B cell activation, and T cell differentiation. CONCLUSION The reported lncRNAs and their target mRNA during this pathology have potentially key regulatory functions in the cerebral ischemia in aged mice while being important for diagnosing and treating cerebral ischemia in the elderly.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tengteng Xue
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Zhang
- Department of New Media and Arts, Harbin Institute of Technology, Harbin, 150001, China
| | - Manhua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
12
|
He X, Wang X, Wang H, Wang T, Yang F, Chen Y, Pei Z, Bai Y, Li W, Wu Z, Chen G. NeuroD1 Regulated Endothelial Gene Expression to Modulate Transduction of AAV-PHP.eB and Recovery Progress after Ischemic Stroke. Aging Dis 2023; 15:2632-2649. [PMID: 38270116 PMCID: PMC11567258 DOI: 10.14336/ad.2023.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
AAV-PHP.eB depends on endothelial cells to highly transduce the central nervous system (CNS) and is widely used for intravenous gene therapy. However, the transduction profile and therapeutic efficiency after endothelial cell injury such as ischemic stroke is largely unknown. In this study, we tested the transduction profiles of AAV-PHP.eB and developed intravenous NeuroD1 gene therapy to treat ischemic stroke in mice. We found that AAV-PHP.eB-GFP control virus crossed the BBB and infected brain cells efficiently in normal brain. However, after stroke, AAV-PHP.eB-GFP control virus was highly restricted in the blood vessels. Surprisingly, after switching to therapeutic vector AAV-PHP.eB-NeuroD1-GFP, the viral vector successfully crossed blood vessels and infected brain cells. Using Tie2-cre transgenic mice, we demonstrated that NeuroD1 regulated endothelial gene expression to modulate AAV-PHP.eB transduction. Following the changes of signaling pathways in endothelial cells, NeuroD1 effectively protected BBB integrity, attenuated neuroinflammation, inhibited neuron apoptosis and rescued motor deficits after ischemic stroke. Moreover, NeuroD1 over-expression in brain cells further promoted neural regeneration. These results indicate that intravenous gene therapy using AAV-PHP.eB for ischemic stroke differs from intracranial gene therapy and NeuroD1 intravenous delivery using AAV-PHP.eB efficiently rescue both vascular damage and neuronal loss, providing an advancing therapeutic treatment for stroke.
Collapse
Affiliation(s)
- Xiaosong He
- Emergency Department, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Neurology of the Sixth Affiliated Hospital of Guangzhou Medical University, Department of Human Anatomy in School of Basic Science of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Xin Wang
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Hui Wang
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Tao Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Fuhan Yang
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yuchen Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Zifei Pei
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yuting Bai
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Wen Li
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Zheng Wu
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Zhou J, Khateeb K, Yazdan-Shahmorad A. Early Intervention with Electrical Stimulation Reduces Neural Damage After Stroke in Non-human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572235. [PMID: 38187669 PMCID: PMC10769281 DOI: 10.1101/2023.12.18.572235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ischemic stroke is a neurological condition that results in significant mortality and long-term disability for adults, creating huge health burdens worldwide. For stroke patients, acute intervention offers the most critical therapeutic opportunity as it can reduce irreversible tissue injury and improve functional outcomes. However, currently available treatments within the acute window are highly limited. Although emerging neuromodulation therapies have been tested for chronic stroke patients, acute stimulation is rarely studied due to the risk of causing adverse effects related to ischemia-induced electrical instability. To address this gap, we combined electrophysiology and histology tools to investigate the effects of acute electrical stimulation on ischemic neural damage in non-human primates. Specifically, we induced photothrombotic lesions in the monkey sensorimotor cortex while collecting electrocorticography (ECoG) signals through a customized neural interface. Gamma activity in ECoG was used as an electrophysiological marker to track the effects of stimulation on neural activation. Meanwhile, histological analysis including Nissl, cFos, and microglial staining was performed to evaluate the tissue response to ischemic injury. Comparing stimulated monkeys to controls, we found that theta-burst stimulation administered directly adjacent to the ischemic infarct at 1 hour post-stroke briefly inhibits peri-infarct neuronal activation as reflected by decreased ECoG gamma power and cFos expression. Meanwhile, lower microglial activation and smaller lesion volumes were observed in animals receiving post-stroke stimulation. Together, these results suggest that acute electrical stimulation can be used safely and effectively as an early stroke intervention to reduce excitotoxicity and inflammation, thus mitigating neural damage and enhancing stroke outcomes.
Collapse
Affiliation(s)
- Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195
| |
Collapse
|
14
|
Lu J, Li H, Zhang G, Yang F, Zhang X, Ping A, Xu Z, Gu Y, Wang R, Ying D, Liu J, Zhang J, Shi L. Age-Related Alterations in Peripheral Immune Landscape with Magnified Impact on Post-Stroke Brain. RESEARCH (WASHINGTON, D.C.) 2023; 6:0287. [PMID: 38090608 PMCID: PMC10712880 DOI: 10.34133/research.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 07/31/2024]
Abstract
Immunosenescence refers to the multifaceted and profound alterations in the immune system brought about by aging, exerting complex influences on the pathophysiological processes of diseases that manifest upon it. Using a combination of single-cell RNA sequencing, cytometry by time of flight, and various immunological assays, we investigated the characteristics of immunosenescence in the peripheral blood of aged mice and its impact on the cerebral immune environment after ischemic stroke. Our results revealed some features of immunosenescence. We observed an increase in neutrophil counts, concurrent with accelerated neutrophil aging, characterized by altered expression of aging-associated markers like CD62L and consequential changes in neutrophil-mediated immune functions. Monocytes/macrophages in aged mice exhibited enhanced antigen-presentation capabilities. T cell profiles shifted from naive to effector or memory states, with a specific rise in T helper 1 cells and T helper 17 cells subpopulations and increased regulatory T cell activation in CD4 T cells. Furthermore, regulatory CD8 T cells marked by Klra decreased with aging, while a subpopulation of exhausted-like CD8 T cells expanded, retaining potent immunostimulatory and proinflammatory functions. Critically, these inherent disparities not only persisted but were further amplified within the ischemic hemispheres following stroke. In summary, our comprehensive insights into the key attributes of peripheral immunosenescence provide a vital theoretical foundation for understanding not only ischemic strokes but also other age-associated diseases.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Huaming Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Guoqiang Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Fan Yang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - An Ping
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhouhan Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yichen Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Dan Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianjian Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Brain Research Institute,
Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science,
Zhejiang University, Hangzhou, Zhejiang, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Hou W, Yao J, Liu J, Lin X, Wei J, Yin X, Huang H, Chen X, Yang G, He X. USP14 inhibition promotes recovery by protecting BBB integrity and attenuating neuroinflammation in MCAO mice. CNS Neurosci Ther 2023; 29:3612-3623. [PMID: 37269080 PMCID: PMC10580339 DOI: 10.1111/cns.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023] Open
Abstract
AIM Blood-brain barrier (BBB) dysfunction is one of the hallmarks of ischemic stroke. USP14 has been reported to play a detrimental role in ischemic brain injury. However, the role of USP14 in BBB dysfunction after ischemic stroke is unclear. METHODS In this study, we tested the role of USP14 in disrupting BBB integrity after ischemic stroke. The USP14-specific inhibitor IU1 was injected into middle cerebral artery occlusion (MCAO) mice once a day. The Evans blue (EB) assay and IgG staining were used to assess BBB leakage 3 days after MCAO. FITC-detran test was slected to examine the BBB leakage in vitro. Behavior tests were conducted to evaluate recovery from ischemic stroke. RESULTS Middle cerebral artery occlusion increased endothelial cell USP14 expression in the brain. Furthermore, the EB assay and IgG staining showed that USP14 inhibition through IU1 injection protected against BBB leakage after MCAO. Analysis of protein expression revealed a reduction in the inflammatory response and chemokine release after IU1 treatment. In addition, IU1 treatment was found to rescue neuronal loss resulting from ischemic stroke. Behavior tests showed a positive effect of IU1 in attenuating brain injury and improving motor function recovery. In vitro study showed that IU1 treatment could alleviate endothelial cell leakage induced by OGD in cultured bend.3 cells through modulating ZO-1 expression. CONCLUSIONS Our results demonstrate a role for USP14 in disrupting the integrity of the BBB and promoting neuroinflammation after MCAO.
Collapse
Affiliation(s)
- Wenzhong Hou
- Department of Cerebrovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQianyuanChina
| | - Jianping Yao
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - Junjie Liu
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - Xiaohong Lin
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - JueXian Wei
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaofan Yin
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbiao Huang
- Department of Pathophysiology, School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Xiaohui Chen
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guo‐Yuan Yang
- Neuroscience and Neuroengineering CenterShanghai Jiao Tong University School of Biomedical EngineeringShanghaiChina
| | - Xiaosong He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
- School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Williams EI, Betterton RD, Stanton JA, Moreno-Rodriguez VM, Lochhead JJ, Davis TP, Ronaldson PT. Oatp (Organic Anion Transporting Polypeptide)-Mediated Transport: A Mechanism for Atorvastatin Neuroprotection in Stroke. Stroke 2023; 54:2875-2885. [PMID: 37750296 PMCID: PMC10615849 DOI: 10.1161/strokeaha.123.043649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Drug discovery for stroke is challenging as indicated by poor clinical translatability. In contrast, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (ie, statins) improve poststroke neurological outcomes. This property requires transport across the blood-brain barrier via an endogenous uptake transporter (ie, Oatp1a4 [organic anion transporting polypeptide 1a4]). Our goal was to study Oatp1a4 as a drug delivery mechanism because the blood-brain barrier cannot be assumed to be completely open for all drugs in ischemic stroke. METHODS Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (90 minutes) followed by reperfusion for up to 7 days. Atorvastatin (20 mg/kg, IV) was administered 2 hours following intraluminal suture removal. Involvement of Oatp-mediated transport was determined using fexofenadine (3.2 mg/kg, IV), a competitive Oatp inhibitor. Oatp1a4 transport activity was measured by in situ brain perfusion. Infarction volumes/brain edema ratios and neuronal nuclei expression were determined using 2,3,5-triphenyltetrazolium chloride-stained brain tissue slices and confocal microscopy, respectively. Poststroke functional outcomes were assessed via neurological deficit scores and rotarod analysis. RESULTS At 2-hour post-middle cerebral artery occlusion, [3H]atorvastatin uptake was increased in ischemic brain tissue. A single dose of atorvastatin significantly reduced post-middle cerebral artery occlusion infarction volume, decreased brain edema ratio, increased caudoputamen neuronal nuclei expression, and improved functional neurological outcomes. All middle cerebral artery occlusion positive effects of atorvastatin were attenuated by fexofenadine coadministration (ie, an Oatp transport inhibitor). CONCLUSIONS Our data demonstrate that neuroprotective effects of atorvastatin may require central nervous system delivery by Oatp-mediated transport at the blood-brain barrier, a mechanism that persists despite increased cerebrovascular permeability in ischemic stroke. These novel and translational findings support utility of blood-brain barrier transporters in drug delivery for neuroprotective agents.
Collapse
Affiliation(s)
- Erica I. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Robert D. Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Joshua A. Stanton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Jeffrey J. Lochhead
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Hou D, Pei C, Yu D, Yang G. miR-188-5p silencing improves cerebral ischemia/reperfusion injury by targeting Lin28a. Metab Brain Dis 2023; 38:2327-2338. [PMID: 37572229 DOI: 10.1007/s11011-023-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
This report aimed to explore whether miR-188-5p regulated the pathological regulatory network of cerebral ischemia/reperfusion (I/R) injury. We simulated the cerebral I/R injury model with MACO/R and OGD/R treatments. Neuronal viability and apoptosis were assessed. The contents of miR-188-5p and Lin 28a were evaluated. The abundances of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured. The interaction of miR-188-5p and Lin28a was confirmed. Lin28a silencing was supplemented to determine the delicate regulation of miR-188-5p. We revealed that miR-188-5p was upregulated and Lin28a was downregulated in I/R rats and OGD/R-induced cells. miR-188-5p silencing remarkably reduced the cerebral infarction volume, neurobehavioral score, brain edema, and Evans blue leakage. miR-188-5p silencing enhanced neuronal viability and alleviated apoptosis. The abundance of Bax and cleaved caspase-3 was reduced by miR-188-5p silencing, while Bcl-2 was augmented. miR-188-5p silencing impeded the contents of TNF-α, IL-1β, and IL-6. miR-188-5p interacted with Lin28a and negatively regulated its expression. Interestingly, extra Lin28a silencing reversed apoptosis and the content of inflammatory cytokines. Our studies confirmed that miR-188-5p silencing alleviated neuronal apoptosis and inflammation by mediating the expression of Lin28a. The crosstalk of miR-188-5p and Lin28a offered a different direction for ischemic stroke therapy.
Collapse
Affiliation(s)
- Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| |
Collapse
|
18
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Xiao Z, Li P, Shen Y, Manaenko A, Yang W, Wang P, Li X, Liu F, Xie P, Li Q. Multi-time point metabolomics reveals key metabolic features from the ultra-early stage of intracerebral hemorrhage in mice. Exp Neurol 2023; 368:114507. [PMID: 37598880 DOI: 10.1016/j.expneurol.2023.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Despite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance. To investigate this, the collagenase ICH mouse model was employed in this study. ICH or sham-operated mice were euthanized at the ultra-early stage of 3 h and the acute stage of 24 h and 72 h after the operation. Then, the metabolic changes in the perihematomal tissues were detected by liquid chromatography coupled with tandem mass spectrometry. In total, alterations in the levels of 465 metabolites were detected. A total of 136 metabolites were significantly changed at 3 h. At 24 h and 72 h, the amounts were 132 and 126, respectively. Additionally, the key corresponding metabolic pathways for these time points were analyzed through KEGG. To gather additional information, quantitative real-time transcription polymerase chain reaction, enzyme-linked immunosorbent assay and Western blots were performed to validate the metabolic changes. Overall, ICH significantly alters important physiological functions such as cysteine metabolism, purine metabolism, synaptic alterations, the synaptic vesicle cycle, and the ATP-binding cassette transporter system. These might be the key pathologic mechanisms of the ultra-early stage induced by ICH.
Collapse
Affiliation(s)
- Zhongsong Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peizheng Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiqing Shen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anatol Manaenko
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wensong Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinhui Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangyu Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qi Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, Chen C, Wu Y, Yang T, Ye Q, Wang H, Stetler RA, Chen J, Shi Y. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation 2023; 20:178. [PMID: 37516843 PMCID: PMC10385956 DOI: 10.1186/s12974-023-02860-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Caixia Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yun Wu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
21
|
Ho YJ, Cheng HL, Liao LD, Lin YC, Tsai HC, Yeh CK. Oxygen-loaded microbubble-mediated sonoperfusion and oxygenation for neuroprotection after ischemic stroke reperfusion. Biomater Res 2023; 27:65. [PMID: 37415210 DOI: 10.1186/s40824-023-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Ischemic stroke-reperfusion (S/R) injury is a crucial issue in the protection of brain function after thrombolysis. The vasodilation induced by ultrasound (US)-stimulated microbubble cavitation has been applied to reduce S/R injury through sonoperfusion. The present study uses oxygen-loaded microbubbles (OMBs) with US stimulation to provide sonoperfusion and local oxygen therapy for the reduction of brain infarct size and neuroprotection after S/R. METHODS The murine S/R model was established by photodynamic thrombosis and thrombolysis at the remote branch of the anterior cerebral artery. In vivo blood flow, partial oxygen pressure (pO2), and brain infarct staining were examined to analyze the validity of the animal model and OMB treatment results. The animal behaviors and measurement of the brain infarct area were used to evaluate long-term recovery of brain function. RESULTS The percentage of blood flow was 45 ± 3%, 70 ± 3%, and 86 ± 2% after 60 min stroke, 20 min reperfusion, and 10 min OMB treatment, respectively, demonstrating sonoperfusion, and the corresponding pO2 level was 60 ± 1%, 76 ± 2%, and 79 ± 4%, showing reoxygenation. After 14 days of treatment, a 87 ± 3% reduction in brain infarction and recovery of limb coordination were observed in S/R mice. The expression of NF-κB, HIF-1α, IL-1β, and MMP-9 was inhibited and that of eNOS, BDNF, Bcl2, and IL-10 was enhanced, indicating activation of anti-inflammatory and anti-apoptosis responses and neuroprotection. Our study demonstrated that OMB treatment combines the beneficial effects of sonoperfusion and local oxygen therapy to reduce brain infarction and activate neuroprotection to prevent S/R injury.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiang-Lung Cheng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, No.5Fuxing St.Guishan Dist., Taoyuan City, 333, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
22
|
Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, Villalba H, Abbruscato T. Permeability of Metformin across an In Vitro Blood-Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023; 15:1357. [PMID: 37242599 PMCID: PMC10220878 DOI: 10.3390/pharmaceutics15051357] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
23
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RL, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 PMCID: PMC11934118 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
- Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Neurology, Yangjiang People’s Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjien Han
- Department of Neurosurgery, Pingdingshan Second People’s Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
24
|
Han W, Song Y, Rocha M, Shi Y. Ischemic brain edema: Emerging cellular mechanisms and therapeutic approaches. Neurobiol Dis 2023; 178:106029. [PMID: 36736599 DOI: 10.1016/j.nbd.2023.106029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Brain edema is one of the most devastating consequences of ischemic stroke. Malignant cerebral edema is the main reason accounting for the high mortality rate of large hemispheric strokes. Despite decades of tremendous efforts to elucidate mechanisms underlying the formation of ischemic brain edema and search for therapeutic targets, current treatments for ischemic brain edema remain largely symptom-relieving rather than aiming to stop the formation and progression of edema. Recent preclinical research reveals novel cellular mechanisms underlying edema formation after brain ischemia and reperfusion. Advancement in neuroimaging techniques also offers opportunities for early diagnosis and prediction of malignant brain edema in stroke patients to rapidly adopt life-saving surgical interventions. As reperfusion therapies become increasingly used in clinical practice, understanding how therapeutic reperfusion influences the formation of cerebral edema after ischemic stroke is critical for decision-making and post-reperfusion management. In this review, we summarize these research advances in the past decade on the cellular mechanisms, and evaluation, prediction, and intervention of ischemic brain edema in clinical settings, aiming to provide insight into future preclinical and clinical research on the diagnosis and treatment of brain edema after stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yang Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Marcelo Rocha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
25
|
Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, Chen Y, Shen X, Zheng Y, Zhao Y. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology 2023; 21:70. [PMID: 36855156 PMCID: PMC9976550 DOI: 10.1186/s12951-023-01828-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a major adverse event after ischemic stroke (IS). Caveolin-1 (Cav-1), a scaffolding protein, played multiple roles in BBB permeability after IS, while the pros and cons of Cav-1 on BBB permeability remain controversial. Numerous studies revealed that extracellular vesicles (EVs), especially stem cells derived EVs, exerted therapeutic efficacy on IS; however, the mechanisms of BBB permeability needed to be clearly illustrated. Herein, we compared the protective efficacy on BBB integrity between bone marrow mesenchymal stem cells derived extracellular vesicles (BMSC-EVs) and EVs from brain endothelial cells (BEC-EVs) after acute IS and investigated whether the mechanism was associated with EVs antagonizing Cav-1-dependent tight junction proteins endocytosis. METHODS BMSC-EVs and BEC-EVs were isolated and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscope. Oxygen and glucose deprivation (OGD) treated b. End3 cells were utilized to evaluate brain endothelial cell leakage. CCK-8 and TRITC-dextran leakage assays were used to measure cell viability and transwell monolayer permeability. Permanent middle cerebral artery occlusion (pMCAo) model was established, and EVs were intravenously administered in rats. Animal neurological function tests were applied, and microvessels were isolated from the ischemic cortex. BBB leakage and tight junction proteins were analyzed by Evans Blue (EB) staining and western blotting, respectively. Co-IP assay and Cav-1 siRNA/pcDNA 3.1 vector transfection were employed to verify the endocytosis efficacy of Cav-1 on tight junction proteins. RESULTS Both kinds of EVs exerted similar efficacies in reducing the cerebral infarction volume and BBB leakage and enhancing the expressions of ZO-1 and Claudin-5 after 24 h pMCAo in rats. At the same time, BMSC-EVs were outstanding in ameliorating neurological function. Simultaneously, both EVs treatments suppressed the highly expressed Cav-1 in OGD-exposed b. End3 cells and ischemic cerebral microvessels, and this efficacy was more prominent after BMSC-EVs administration. Cav-1 knockdown reduced OGD-treated b. End3 cells monolayer permeability and recovered ZO-1 and Claudin-5 expressions, whereas Cav-1 overexpression aggravated permeability and enhanced the colocalization of Cav-1 with ZO-1 and Claudin-5. Furthermore, Cav-1 overexpression partly reversed the lower cell leakage by BMSC-EVs and BEC-EVs administrations in OGD-treated b. End3 cells. CONCLUSIONS Our results demonstrated that Cav-1 aggravated BBB permeability in acute ischemic stroke, and BMSC-EVs exerted similar antagonistic efficacy to BEC-EVs on Cav-1-dependent ZO-1 and Claudin-5 endocytosis. BMSC-EVs treatment was superior in Cav-1 suppression and neurological function amelioration.
Collapse
Affiliation(s)
- Yiyang Li
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Bowen Liu
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Zhao
- grid.259384.10000 0000 8945 4455Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR China
| | - Xingping Quan
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yan Han
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yaxin Cheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China
| | - Yanling Chen
- grid.417409.f0000 0001 0240 6969Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong China
| | - Xu Shen
- grid.410745.30000 0004 1765 1045Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zheng
- grid.437123.00000 0004 1794 8068Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
26
|
D'Netto P, Rumbach A, Dunn K, Finch E. Clinical Predictors of Dysphagia Recovery After Stroke: A Systematic Review. Dysphagia 2023; 38:1-22. [PMID: 35445366 PMCID: PMC9873776 DOI: 10.1007/s00455-022-10443-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/28/2022] [Indexed: 01/28/2023]
Abstract
Oropharyngeal dysphagia is common post-stroke and can have serious consequences for patients. Understanding dysphagia recovery is critically important to inform prognostication and support patients and professionals with care planning. This systematic review was undertaken to identify clinical predictors of dysphagia recovery post-stroke. Online databases (EMBASE, Scopus, Web of Science, PubMed, CINAHL, and Cochrane) were searched for studies reporting longitudinal swallowing recovery in adults post-stroke. Dysphagia recovery was defined as improvement measured on a clinical swallowing scale or upgrade in oral and/or enteral feeding status by the end of the follow-up period. The search strategy returned 6598 studies from which 87 studies went through full-text screening, and 19 studies were included that met the eligibility criteria. Age, airway compromise identified on instrumental assessment, dysphagia severity, bilateral lesions, and stroke severity were identified as predictors of persistent dysphagia and negative recovery in multiple logistic regression analysis. The available literature was predominated by retrospective data, and comparison of outcomes was limited by methodological differences across the studies in terms of the choice of assessment, measure of recovery, and period of follow-up. Future prospective research is warranted with increased representation of haemorrhagic strokes and uniform use of standardized scales of swallowing function.
Collapse
Affiliation(s)
- Pamela D'Netto
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Centre for Functioning and Health Research, Metro South Health, Brisbane, Australia.
- Speech Pathology Department, Ipswich Hospital, West Moreton Health, Ipswich, Australia.
| | - Anna Rumbach
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Katrina Dunn
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Speech Pathology Department, Ipswich Hospital, West Moreton Health, Ipswich, Australia
| | - Emma Finch
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Centre for Functioning and Health Research, Metro South Health, Brisbane, Australia
- Speech Pathology Department, Princess Alexandra Hospital, Metro South Health, Brisbane, Australia
| |
Collapse
|
27
|
Li Y, Xu J, Yu T, Zhu J, Xuan A, Liu X, Wang P, Li D, Zhu D. A labeling strategy for the three-dimensional recognition and analysis of microvascular obstruction in ischemic stroke. Theranostics 2023; 13:403-416. [PMID: 36593967 PMCID: PMC9800741 DOI: 10.7150/thno.76879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Large vessel recanalization in ischemic stroke does not always go along with tissue reperfusion, a phenomenon called "no-reflow". However, knowledge of the mechanism of no-reflow is limited because identifying microvascular obstruction across the cortex and subcortex both in clinical and experimental models is challenging. In this study, we developed a smart three-dimensional recognition pipeline for microvascular obstruction during post-ischemia reperfusion to examine the underlying mechanism of no-reflow. Methods: Transient (60 min) occlusion of the middle cerebral artery (tMCAo) in mice was induced using a filament. Two different fluorophore-conjugated tomato lectins were injected into mice via the tail vein before and after ischemia/reperfusion (I/R), respectively, one to label all blood vessels and the other to label functional blood vessels. Post-I/R microvascular obstruction was visualized using combined iDISCO+-based tissue clearing and optical imaging. Arterioles and capillaries were distinguished using whole-mount immunolabeling with an anti-αSMA antibody. Circulating neutrophils were depleted utilizing an anti-Ly6G antibody. Brain slices were immunostained with the anti-Ly6G antibody to identify co-localized blockage points and neutrophils. MATLAB software was used to quantify the capillary diameters in the ipsilateral brain from the normal and tMCAo mice. Results: Microcirculatory reperfusion deficit worsened over time after I/R. Microvascular obstruction occurred not only in arterioles but also in capillaries, with capillary obstruction associated with local capillary lumen narrowing. In addition, the depletion of circulating neutrophils mitigated reperfusion deficit to a large extent after I/R. The co-localization of blockage points and neutrophils revealed that some neutrophils plugged capillaries with coexisting capillary lumen narrowing and that no neutrophil was trapped in heaps of blockage points. Quantification of the capillary diameter showed that capillary lumen shrunk after I/R but returned to typical measurements when intravascular neutrophils were depleted. Conclusions: According to our findings, both vascular lumen narrowing and neutrophil trapping in cerebral microcirculation are the key causes of microvascular obstruction after I/R. Also, the primary contribution by neutrophils to microvascular obstruction does not occur through microemboli plugging but rather via the exacerbation of capillary lumen narrowing. Our proposed method will help monitor microcirculatory reperfusion deficit, explore the mechanism of no-reflow, and evaluate the curative effect of drugs targeting no-reflow.
Collapse
Affiliation(s)
- Yusha Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Ang Xuan
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Pingfu Wang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
28
|
Betterton RD, Williams EI, Nilles KL, Davis TP, Ronaldson PT. Methods to Study Drug Uptake at the Blood-Brain Barrier Following Experimental Ischemic Stroke: In Vitro and In Vivo Approaches. Methods Mol Biol 2023; 2616:403-418. [PMID: 36715949 PMCID: PMC10804953 DOI: 10.1007/978-1-0716-2926-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Drug permeability across the blood-brain barrier (BBB) is an important concept in the development of therapeutic strategies to treat neurological diseases such as ischemic stroke. These mechanisms can be evaluated in detail using cultured brain microvascular endothelial cells or intact animals subjected to experimental stroke. Here, we describe state-of-the-art approaches to study BBB transport of therapeutics using our in vitro and in vivo approaches. These methodologies allow for precise determination of transporter kinetic properties for currently marketed therapeutics or for new chemical entities that are under development as stroke drugs.
Collapse
Affiliation(s)
- Robert D Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Erica I Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kelsy L Nilles
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
29
|
He Q, Ma Y, Fang C, Deng Z, Wang F, Qu Y, Yin M, Zhao R, Zhang D, Guo F, Yang Y, Chang J, Guo ZN. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res 2023; 187:106641. [PMID: 36587812 DOI: 10.1016/j.phrs.2022.106641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Treatment of acute ischemic stroke with the recombinant tissue plasminogen activator (rtPA) is associated with increased blood-brain barrier (BBB) disruption and hemorrhagic transformation. Remote ischemic conditioning (RIC) has demonstrated neuroprotective effects against acute ischemic stroke. However, whether and how RIC regulates rtPA-associated BBB disruption remains unclear. Here, a rodent model of thromboembolic stroke followed by rtPA thrombolysis at different time points was performed with or without RIC. Brain infarction, neurological outcomes, BBB permeability, and intracerebral hemorrhage were assessed. The platelet-derived growth factor CC (PDGF-CC)/PDGFRα pathway in the brain tissue, PDGF-CC levels in the skeletal muscle and peripheral blood were also measured. Furthermore, impact of RIC on serum PDGF-CC levels were measured in healthy subjects and AIS patients. Our results showed that RIC substantially reduced BBB injury, intracerebral hemorrhage, cerebral infarction, and neurological deficits after stroke, even when rtPA was administrated in a delayed therapeutic time window. Mechanistically, RIC significantly decreased PDGFRα activation in ischemic brain tissue and reduced blood PDGF-CC levels, which partially resulted from PDGF-CC reduction in the skeletal muscle of RIC-applied hindlimbs and platelets. Intravenous or intraventricular recombinant PDGF-CC supplementation abolished RIC protective effects on BBB integrity. Moreover, similar changes of PDGF-CC in serum by RIC were also observed in healthy humans and acute ischemic stroke patients. Together, our study demonstrates that RIC can attenuate rtPA-aggravated BBB disruption after ischemic stroke via reducing the PDGF-CC/PDGFRα pathway and thus supports RIC as a potential approach for BBB disruption prevention or treatment following thrombolysis.
Collapse
Affiliation(s)
- Qianyan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zijun Deng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Dianhui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
30
|
Li S, Fisher M. Improving Large Animal Ischemic Stroke Models for Translational Studies in the Era of Recanalization. Stroke 2023; 54:e16-e19. [PMID: 36503265 DOI: 10.1161/strokeaha.122.041354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recanalization therapy with endovascular procedures has led to significant advances in the treatment of acute ischemic stroke. Animal models have been the basis for enhancing the development of novel treatments and therapeutic modalities. However, previous translational failures led to an increasing consensus that large animals should be included to bridge the gap between rodent and human studies. In the era of large vessel recanalization, large animal ischemic stroke models should be optimized for preclinical and translational stroke studies. Here we highlight recent progress of reproducing ischemic and reperfusion mechanisms in large animal models of stroke through surgical and endovascular methods. The importance of optimizing large animal stroke modeling is suggested by evaluating new findings from clinical trials and preclinical experiments using large animals, such as adopting advanced imaging analysis and long-term functional evaluation. Furthermore, we also acknowledge the importance of adhering to the Stroke Treatment and Academic Roundtable recommendations and the "3 R" principles to improve the quality and validity of large animal experiments. Large animal models offer many translational benefits; however, more work is still needed to enhance studies using large animal model on acute ischemic stroke in the era of recanalization.
Collapse
Affiliation(s)
- Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, China and Beijing Institute of Brain Disorders, Capital Medical University, China (S.L.)
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.F.)
| |
Collapse
|
31
|
Ma Y, Chen Z, He Q, Guo ZN, Yang Y, Liu F, Li F, Luo Q, Chang J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol Res 2022; 185:106482. [DOI: 10.1016/j.phrs.2022.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
32
|
Amado B, Melo L, Pinto R, Lobo A, Barros P, Gomes JR. Ischemic Stroke, Lessons from the Past towards Effective Preclinical Models. Biomedicines 2022; 10:2561. [PMID: 36289822 PMCID: PMC9599148 DOI: 10.3390/biomedicines10102561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide, mainly in western countries. So far, approved therapies rely on reperfusion of the affected brain area, by intravenous thrombolysis or mechanical thrombectomy. The last approach constitutes a breakthrough in the field, by extending the therapeutic window to 16-24 h after stroke onset and reducing stroke mortality. The combination of pharmacological brain-protective strategies with reperfusion is the future of stroke therapy, aiming to reduce brain cell death and decrease patients' disabilities. Recently, a brain-protective drug-nerinetide-reduced brain infarct and stroke mortality, and improved patients' functional outcomes in clinical trials. The success of new therapies relies on bringing preclinical studies and clinical practice close together, by including a functional outcome assessment similar to clinical reality. In this review, we focused on recent upgrades of in vitro and in vivo stroke models for more accurate and effective evaluation of therapeutic strategies: from spheroids to organoids, in vitro models that include all brain cell types and allow high throughput drug screening, to advancements in in vivo preclinical mouse stroke models to mimic the clinical reality in surgical procedures, postsurgical care, and functional assessment.
Collapse
Affiliation(s)
- Beatriz Amado
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Raquel Pinto
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | | | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | - João R. Gomes
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
33
|
Zeng Y, Wen F, Mi L, Ji Y, Zhang X. Changes in macrophage-like cells characterized by en face optical coherence tomography after retinal stroke. Front Immunol 2022; 13:987836. [PMID: 36177000 PMCID: PMC9514656 DOI: 10.3389/fimmu.2022.987836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose The retina could serve as a window of neuroinflammation, but the in vivo changes in macrophage-like cell (MLC), such as microglia, in acute ischemic retinal stroke remain unclear. Thus, the current study aimed to investigate the in vivo changes in MLC characterized by en face optical coherence tomography (OCT) after acute ischemic retinal stroke. Methods Twenty patients with unilateral acute nonarteritic reperfused central retinal artery occlusion (CRAO) were participated in this study, and their contralateral eyes served as control group. A 3 μm en face OCT slab on the inner limiting membrane of the optic nerve head (ONH) region or macular region was used to visualize and binarize the MLCs. The MLCs were binarized and quantified using a semiautomated method. OCT angiography was used to evaluate the reperfusion status and obtain the structural data of the inner retina in the ONH and macula. The thickness of the ganglion cell complex in the macular region was measured. The optical intensity and optical intensity ratio of the inner retina were calculated to evaluate the ischemia severity. Results In the ONH region, decreased vessel densities of radial peripapillary capillaries accompanied by increased thickness of the retinal nerve fiber layer were found in the CRAO eyes in comparison to the unaffected eyes (p=0.001, p=0.009, respectively). In the macular region, significantly lower vessel densities in both the superficial and deep capillary plexus and increased thickness of the ganglion cell complex were also found in the CRAO eyes (all p ≤ 0.001). The ONH and macular MLC quantities and densities in CRAO eyes were significantly higher than those in the unaffected eyes (both p<0.001). Larger and plumper MLCs were observed in the CRAO eyes compared with their unaffected eyes. ONH and macular MLC densities were positively associated with the disease duration in the acute phase and the optical intensity ratio of inner retina. Conclusions The increased density and morphological changes of MLCs may indicate the aggregation and activation of MLCs following acute reperfused CRAO. The aggregation of MLCs may be more pronounced in CRAO eyes with longer disease duration and more severe ischemia. MLCs characterized by en face OCT may serve as an in vivo visual tool to investigate neuroinflammation in the ischemic-reperfusion process of stroke.
Collapse
|
34
|
Chen W, Zhang Y, Zhai X, Xie L, Guo Y, Chen C, Li Y, Wang F, Zhu Z, Zheng L, Wan J, Li P. Microglial phagocytosis and regulatory mechanisms after stroke. J Cereb Blood Flow Metab 2022; 42:1579-1596. [PMID: 35491825 PMCID: PMC9441720 DOI: 10.1177/0271678x221098841] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke, including ischemic stroke and hemorrhagic stroke can cause massive neuronal death and disruption of brain structure, which is followed by secondary inflammatory injury initiated by pro-inflammatory molecules and cellular debris. Phagocytic clearance of cellular debris by microglia, the brain's scavenger cells, is pivotal for neuroinflammation resolution and neurorestoration. However, microglia can also exacerbate neuronal loss by phagocytosing stressed-but-viable neurons in the penumbra, thereby expanding the injury area and hindering neurofunctional recovery. Microglia constantly patrol the central nervous system using their processes to scour the cellular environment and start or cease the phagocytosis progress depending on the "eat me" or "don't eat me'' signals on cellular surface. An optimal immune response requires a delicate balance between different phenotypic states to regulate neuro-inflammation and facilitate reconstruction after stroke. Here, we examine the literature and discuss the molecular mechanisms and cellular pathways regulating microglial phagocytosis, their resulting effects in brain injury and neural regeneration, as well as the potential therapeutic targets that might modulate microglial phagocytic activity to improve neurological function after stroke.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fajun Wang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
How can imaging in acute ischemic stroke help us to understand tissue fate in the era of endovascular treatment and cerebroprotection? Neuroradiology 2022; 64:1697-1707. [PMID: 35854136 DOI: 10.1007/s00234-022-03001-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
|
36
|
Targeting organic cation transporters at the blood-brain barrier to treat ischemic stroke in rats. Exp Neurol 2022; 357:114181. [PMID: 35905840 DOI: 10.1016/j.expneurol.2022.114181] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Drug discovery and development for stroke is challenging as evidenced by few drugs that have advanced beyond a Phase III clinical trial. Memantine is a N-methyl-d-aspartate (NMDA) receptor antagonist that has been shown to be neuroprotective in various preclinical studies. We have identified an endogenous BBB uptake transport system for memantine: organic cation transporters 1 and 2 (Oct1/Oct2). Our goal was to evaluate Oct1/Oct2 as a required BBB mechanism for memantine neuroprotective effects. Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion. Memantine (5 mg/kg, i.v.) was administered 2 h following intraluminal suture removal. Specificity of Oct-mediated transport was evaluated using cimetidine (15 mg/kg, i.v.), a competitive Oct1/Oct2 inhibitor. At 2 h post-MCAO, [3H]memantine uptake was increased in ischemic brain tissue. Cimetidine inhibited blood-to-brain uptake of [3H]memantine, which confirmed involvement of an Oct-mediated transport mechanism. Memantine reduced post-MCAO infarction and brain edema progression as well as improved neurological outcomes during post-stroke recovery. All positive effects of memantine were attenuated by co-administration of cimetidine, which demonstrates that Oct1/Oct2 transport is required for memantine to exert neuroprotective effects in ischemic stroke. Furthermore, Oct1/Oct2-mediated transport was shown to be the dominant mechanism for memantine brain uptake in the MCAO model despite a concurrent increase in paracellular "leak." These novel and translational findings provide mechanistic evidence for the critical role of BBB transporters in CNS delivery of stroke therapeutics, information that can help such drugs advance in clinical trials.
Collapse
|
37
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
38
|
Chen H, Cao Z, Gu Y, Hermann DM. Editorial: Blood-Brain Barrier Dysregulation and Recovery Following Brain Ischemia: Cellular Constituents, Molecular Mechanisms, and Therapeutic Strategies Enabling Successful Brain Remodeling. Front Cell Neurosci 2022; 16:968425. [PMID: 35875354 PMCID: PMC9297729 DOI: 10.3389/fncel.2022.968425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hansen Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hansen Chen
| | - Zhijuan Cao
- Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
- Zhijuan Cao
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Yong Gu
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
- Dirk M. Hermann
| |
Collapse
|
39
|
Betterton RD, Abdullahi W, Williams EI, Lochhead JJ, Brzica H, Stanton J, Reddell E, Ogbonnaya C, Davis TP, Ronaldson PT. Regulation of Blood-Brain Barrier Transporters by Transforming Growth Factor- β/Activin Receptor-Like Kinase 1 Signaling: Relevance to the Brain Disposition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors (i.e., Statins). Drug Metab Dispos 2022; 50:942-956. [PMID: 35504656 PMCID: PMC11022862 DOI: 10.1124/dmd.121.000781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Our laboratory has shown that activation of transforming growth factor- β (TGF- β )/activin receptor-like kinase 1 (ALK1) signaling can increase protein expression and transport activity of organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB). These results are relevant to treatment of ischemic stroke because Oatp transport substrates such as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins) improve functional neurologic outcomes in patients. Advancement of our work requires determination if TGF- β /ALK1 signaling alters Oatp1a4 functional expression differently across brain regions and if such disparities affect central nervous system (CNS) statin disposition. Therefore, we studied regulation of Oatp1a4 by the TGF- β /ALK1 pathway, in vivo, in rat brain microvessels isolated from cerebral cortex, hippocampus, and cerebellum using the ALK1 agonist bone morphogenetic protein-9 (BMP-9) and the ALK1 inhibitor 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride 193189. We showed that Oatp1a4 protein expression and brain distribution of three currently marketed statin drugs (i.e., atorvastatin, pravastatin, and rosuvastatin) were increased in cortex relative to hippocampus and cerebellum. Additionally, BMP-9 treatment enhanced Oatp-mediated statin transport in cortical tissue but not in hippocampus or cerebellum. Although brain drug delivery is also dependent upon efflux transporters, such as P-glycoprotein and/or Breast Cancer Resistance Protein, our data showed that administration of BMP-9 did not alter the relative contribution of these transporters to CNS disposition of statins. Overall, this study provides evidence for differential regulation of Oatp1a4 by TGF- β /ALK1 signaling across brain regions, knowledge that is critical for development of therapeutic strategies to target Oatps at the BBB for CNS drug delivery. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (Oatps) represent transporter targets for brain drug delivery. We have shown that Oatp1a4 statin uptake is higher in cortex versus hippocampus and cerebellum. Additionally, we report that the transforming growth factor- β /activin receptor-like kinase 1 agonist bone morphogenetic protein-9 increases Oatp1a4 functional expression, but not efflux transporters P-glycoprotein and Breast Cancer Resistance Protein, in cortical brain microvessels. Overall, this study provides critical data that will advance treatment for neurological diseases where drug development has been challenging.
Collapse
Affiliation(s)
- Robert D Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Erica I Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Jeffrey J Lochhead
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Joshua Stanton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Elizabeth Reddell
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Chidinma Ogbonnaya
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
40
|
A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc 2022; 17:2054-2084. [PMID: 35760857 DOI: 10.1038/s41596-022-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Over decades of research into the treatment of stroke, nearly all attempts to translate experimental treatments from discovery in cells and rodents to use in humans have failed. The prevailing belief is that it might be necessary to pretest pharmacological neuroprotection in higher-order brains, especially those of nonhuman primates (NHPs). Over the past few years, chemical thrombolysis and mechanical thrombectomy have been established as the standard of care for ischemic stroke in patients. The spotlight is now shifting towards emphasizing both focal ischemia and subsequent reperfusion in developing a clinically relevant stroke model in NHPs. This protocol describes an embolic model of middle cerebral artery occlusion in adult rhesus monkeys. An autologous clot is combined with a microcatheter or microwire through endovascular procedures, and reperfusion is achieved through local intra-artery thrombolysis with tissue plasminogen activator. These NHP models formed relatively stable infarct sizes, delivered predictable reperfusion and survival outcomes, and recapitulated key characteristics of patients with ischemic stroke as observed on MRI images and behavioral assays. Importantly, treated animals could survive 30 d after the surgery for post-stroke neurologic deficit analyses. Thus far, this model has been used in several translational studies. Here we describe in detail the teamwork necessary for developing stroke models of NHPs, including the preoperation preparations, endovascular surgery, postoperation management and histopathological analysis. The model can be established by the following procedures over a 45-d period, including preparation steps (14 d), endovascular operation (1 d) and evaluation steps (30 d).
Collapse
|
41
|
Huang Z, Qian K, Chen J, Qi Y, E Y, Liang J, Zhao L. A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS. Acta Biomater 2022; 144:142-156. [PMID: 35296444 DOI: 10.1016/j.actbio.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood-brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. STATEMENT OF SIGNIFICANCE: Cerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.
Collapse
Affiliation(s)
- Zhixuan Huang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Kun Qian
- Department of Chemistry, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jin Chen
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Yao Qi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Yifeng E
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
42
|
Abstract
Stroke remains a significant unmet clinical need with few treatment options that have a very narrow therapeutic window, thereby causing massive mortality and morbidity in the United States and around the world. Accordingly, finding safe and effective novel treatments with a wider therapeutic window stands as an urgent need in stroke. The progressive inflammation that occurs centrally and peripherally after stroke serves as a unique therapeutic target to retard and even halt the secondary cell death. Stem cell therapy represents a potent approach that can diminish inflammation in both the stroke brain and periphery (eg, spleen), advancing a paradigm shift from a traditionally brain-focused therapy to treating stroke as a neurological disorder with a significant peripheral pathology. The purpose of this review article is to highlight the inflammation-mediated secondary cell death that plagues both brain and spleen in stroke and to evaluate the therapeutic potential of stem cell therapy in dampening these inflammatory responses.
Collapse
Affiliation(s)
- Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Dorothy Cabantan
- Michigan State University College of Osteopathic Medicine, 965 Wilson Rd, East Lansing, MI 48824, USA
| | - Molly Monsour
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
43
|
Sun L, Ji D, Zhi F, Fang Y, Zhu Z, Ni T, Zhu Q, Bao J. MiR-494-3p Upregulation Exacerbates Cerebral Ischemia Injury by Targeting Bhlhe40. Yonsei Med J 2022; 63:389-398. [PMID: 35352891 PMCID: PMC8965425 DOI: 10.3349/ymj.2022.63.4.389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Cerebral ischemia is related to insufficient blood supply and is characterized by abnormal reactive oxygen species (ROS) production and cell apoptosis. Previous studies have revealed a key role for basic helix-loop-helix family member e40 (Bhlhe40) in oxidative stress and cell apoptosis. This study aimed to investigate the roles of miR-494-3p in cerebral ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS A mouse middle cerebral artery occlusion (MCAO/R) model was established to mimic cerebral ischemia in vivo. Brain infarct area was assessed using triphenyl tetrazolium chloride staining. Oxygen-glucose deprivation/reoxygenation (OGD/R) operation was adopted to mimic neuronal injury in vitro. Cell apoptosis was analyzed by flow cytometry. The relationship between miR-494-3p and Bhlhe40 was validated by luciferase reporter and RNA immunoprecipitation assays. RESULTS Bhlhe40 expression was downregulated both in MCAO/R animal models and OGD/R-induced SH-SY5Y cells. Bhlhe40 overexpression inhibited cell apoptosis and reduced ROS production in SH-SY5Y cells after OGD/R treatment. MiR-494-3p was verified to bind to Bhlhe40 and negatively regulate Bhlhe40 expression. Additionally, cell apoptosis and ROS production in OGD/R-treated SH-SY5Y cells were accelerated by miR-494-3p overexpression. Rescue experiments suggested that Bhlhe40 could reverse the effects of miR-494-3p overexpression on ROS production and cell apoptosis. CONCLUSION MiR-494-3p exacerbates brain injury and neuronal injury by regulating Bhlhe40 after I/R.
Collapse
Affiliation(s)
- Lingjiang Sun
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Dandan Ji
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Feng Zhi
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Yu Fang
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Zigang Zhu
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Tong Ni
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Qin Zhu
- Department of Stomatology, Taixing Third People's Hospital, Taizhou, Jiangsu, China.
| | - Jie Bao
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
44
|
Broocks G, Meyer L, Ruppert C, Haupt W, Faizy TD, Van Horn N, Bechstein M, Kniep H, Elsayed S, Kemmling A, Barow E, Fiehler J, Hanning U. Effect of Intravenous Alteplase on Functional Outcome and Secondary Injury Volumes in Stroke Patients with Complete Endovascular Recanalization. J Clin Med 2022; 11:jcm11061565. [PMID: 35329891 PMCID: PMC8949925 DOI: 10.3390/jcm11061565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Intravenous thrombolytic therapy with alteplase (IVT) is a standard of care in ischemic stroke, while recent trials investigating direct endovascular thrombectomy (EVT) approaches showed conflicting results. Yet, the effect of IVT on secondary injury volumes in patients with complete recanalization has not been analyzed. We hypothesized that IVT is associated with worse functional outcome and aggravated secondary injury volumes when administered to patients who subsequently attained complete reperfusion after EVT. Anterior circulation ischemic stroke patients with complete reperfusion after thrombectomy defined as thrombolysis in cerebral infarctions (TICI) scale 3 after thrombectomy admitted between January 2013–January 2021 were analyzed. Primary endpoints were the proportion of patients with functional independence defined as modified Rankin Scale (mRS) score 0–2 at day 90, and secondary injury volumes: Edema volume in follow-up imaging measured using quantitative net water uptake (NWU), and the rate of symptomatic intracerebral hemorrhage (sICH). A total of 219 patients were included and 128 (58%) patients received bridging IVT before thrombectomy. The proportion of patients with functional independence was 28% for patients with bridging IVT, and 34% for patients with direct thrombectomy (p = 0.35). The rate of sICH was significantly higher after bridging IVT (20% versus 7.7%, p = 0.01). Multivariable logistic and linear regression analysis confirmed the independent association of bridging IVT with sICH (aOR: 2.78, 95% CI: 1.02–7.56, p = 0.046), and edema volume (aOR: 8.70, 95% CI: 2.57–14.85, p = 0.006). Bridging IVT was associated with increased edema volume and risk for sICH as secondary injury volumes. The results of this study encourage direct EVT approaches, particularly in patients with higher likelihood of successful EVT.
Collapse
Affiliation(s)
- Gabriel Broocks
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
- Correspondence:
| | - Lukas Meyer
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Celine Ruppert
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Wolfgang Haupt
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Tobias D. Faizy
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Noel Van Horn
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Matthias Bechstein
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Helge Kniep
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Sarah Elsayed
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Andre Kemmling
- Department of Neuroradiology, Philipps-University Marburg, 35037 Marburg, Germany;
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Ewgenia Barow
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| | - Uta Hanning
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.M.); (C.R.); (W.H.); (T.D.F.); (N.V.H.); (M.B.); (H.K.); (S.E.); (J.F.); (U.H.)
| |
Collapse
|
45
|
Jin R, Wang M, Zhong W, Kissinger CR, Villafranca JE, Li G. J147 Reduces tPA-Induced Brain Hemorrhage in Acute Experimental Stroke in Rats. Front Neurol 2022; 13:821082. [PMID: 35309561 PMCID: PMC8925862 DOI: 10.3389/fneur.2022.821082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose J147, a novel neurotrophic compound, was originally developed to treat aging-associated neurological diseases. Based on the broad spectrum of cytoprotective effects exhibited by this compound, we investigated whether J147 has cerebroprotection for acute ischemic stroke and whether it can enhance the effectiveness of thrombolytic therapy with tissue plasminogen activator (tPA). Methods Rats were subjected to transient occlusion of the middle cerebral artery (tMCAO) by insertion of an intraluminal suture or embolic middle cerebral artery occlusion (eMCAO), and treated intravenously with J147 alone or in combination with tPA. Results We found that J147 treatment significantly reduced infarct volume when administered at 2 h after stroke onset in the tMCAO model, but had no effect in eMCAO without tPA. However, combination treatment with J147 plus tPA at 4 h after stroke onset significantly reduced infarct volume and neurological deficits at 72 h after stroke compared with saline or tPA alone groups in the eMCAO model. Importantly, the combination treatment significantly reduced delayed tPA-associated brain hemorrhage and secondary microvascular thrombosis. These protective effects were associated with J147-mediated inhibition of matrix metalloproteinase-9 (MMP9), 15-lipoxygenase-1, and plasminogen activator inhibitor (PAI) expression in the ischemic hemispheres (predominantly in ischemic cerebral endothelium). Moreover, the combination treatment significantly reduced circulating platelet activation and platelet-leukocyte aggregation compared with saline or tPA alone groups at 24 h after stroke, which might also contribute to reduced microvascular thrombosis and neuroinflammation (as demonstrated by reduced neutrophil brain infiltration and microglial activation). Conclusion Our results demonstrate that J147 treatment alone exerts cerebral cytoprotective effects in a suture model of acute ischemic stroke, while in an embolic stroke model co-administration of J147 with tPA reduces delayed tPA-induced intracerebral hemorrhage and confers cerebroprotection. These findings suggest that J147-tPA combination therapy could be a promising approach to improving the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Min Wang
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Wei Zhong
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | | | | | - Guohong Li
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
46
|
Wang R, Wang H, Liu Y, Chen D, Wang Y, Rocha M, Jadhav AP, Smith A, Ye Q, Gao Y, Zhang W. Optimized mouse model of embolic MCAO: From cerebral blood flow to neurological outcomes. J Cereb Blood Flow Metab 2022; 42:495-509. [PMID: 32312170 PMCID: PMC8985433 DOI: 10.1177/0271678x20917625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The embolic middle cerebral artery occlusion (eMCAO) model mimics ischemic stroke due to large vessel occlusion in humans and is amenable to thrombolytic therapy with rtPA. However, two major obstacles, the difficulty of the eMCAO surgery and unpredictable occurrence of clot autolysis, had impeded its application in mice. In this study, we modified catheters to produce suitable fibrin-rich embolus and optimized the eMCAO model using cerebral blood flow (CBF) monitored by both laser Doppler flowmetry (LDF) and 2D laser speckle contrast imaging (LSCI) to confirm occlusion of MCA. The results showed that longer embolus resulted in higher mortality. There was a compensatory increase in MCA territory perfusion after eMCAO associated with decreased infarct volume; however, this was only partly dependent on recanalization as clot autolysis was only observed in ∼30% of mice. Cortical CBF monitoring with LSCI showed that the size of peri-core area at 3 h displayed the best correlation with infarct volume that is attributed to compensatory collateral blood flow. The peri-core area best predicted functional outcome after eMCAO. In summary, we developed a reliable eMCAO mouse model that better mimics embolic ischemic stroke in humans, which will increase the potential for successful translation of stroke neuroprotective therapies.
Collapse
Affiliation(s)
- Rongrong Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailian Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaan Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yangfan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Marcelo Rocha
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashutosh P Jadhav
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
48
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
49
|
Wang L, Wu L, Duan Y, Xu S, Yang Y, Yin J, Lang Y, Gao Z, Wu C, Lv Z, Shi J, Wu D, Ji X. Phenotype Shifting in Astrocytes Account for Benefits of Intra-Arterial Selective Cooling Infusion in Hypertensive Rats of Ischemic Stroke. Neurotherapeutics 2022; 19:386-398. [PMID: 35044645 PMCID: PMC9130426 DOI: 10.1007/s13311-022-01186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
The translational failure of neuroprotective therapies in stroke may be influenced by the mismatch of existing comorbidities between animal models and patients. Previous studies found that single-target neuroprotective agents reduced infarction in Sprague-Dawley but not in spontaneously hypertensive rats. It is of great interest to explore whether multi-target neuroprotectants and stroke models with comorbidities should be used in further translational researches. Ischemic stroke was induced in normotensive or hypertensive rats by 90- or 120-min middle cerebral artery occlusion (MCAO) and reperfusion. Intra-Arterial Selective Cooling Infusion (IA-SCI) was started at the onset of reperfusion for 30 minutes. Acute neurological deficits, infarct volumes, gene expression and markers of A1-like and A2-like astrocytes were evaluated. In further analysis, TNFα and IL-1α were administrated intracerebroventricularly, phenotype shifting of astrocytes and infarct volumes were assessed. Normobaric oxygen treatment, as a negative control, was also assessed in hypertensive rats. IA-SCI led to similar benefits in normotensive rats with 120-min MCAO and hypertensive rats with both 90-min and 120-min MCAO, including mitigated functional deficit and reduced infarct volumes. IA-SCI shifted astrocyte phenotypes partly by downregulating A1-like astrocytes and upregulating A2-like astrocytes in both RNA and protein levels. Upregulated A1-type astrocyte markers levels, induced by intracerebroventricular injection of TNFα and IL-1α, were closely related to increased infarct volumes in hypertensive rats, despite receiving IA-SCI treatment. In addition, infarct volumes and A1/A2-like genes were not affected by normobaric oxygen treatment. IA-SCI reduced infarction in both normotensive and hypertensive rats. Our results demonstrated the neuroprotective effects of IA-SCI in hypertensive rats may be related with phenotype shifting of astrocytes.
Collapse
Affiliation(s)
- Luling Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuyao Yang
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jidong Yin
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ye Lang
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Zongen Gao
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zaigang Lv
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| |
Collapse
|
50
|
Wu D, Chen J, Zhang X, Ilagan R, Ding Y, Ji X. Selective therapeutic cooling: To maximize benefits and minimize side effects related to hypothermia. J Cereb Blood Flow Metab 2022; 42:213-215. [PMID: 34670442 PMCID: PMC8721772 DOI: 10.1177/0271678x211055959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selective therapeutic cooling is a promising technique for reducing final infarct volume and improving outcomes in ischemic stroke, especially as research regarding brain reperfusion continues to be explored. A recent study provided promising results on the safety and feasibility of selective therapeutic hypothermia via a closed-loop cooling catheter system for intra-carotid blood cooling in an ovine stroke model, but they failed to find efficacy of this method in this model. It is a major step forward from bench to bed side, but enhancing benefits of selective therapeutic cooling may need to take into account a more targeted induction of brain hypothermia and should mitigate potential side effects related to inducing hypothermia.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xuxiang Zhang
- Department of Ophthalmology, Capital Medical University, Beijing, China
| | - Roxanne Ilagan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|