1
|
Chen M, Wang Y, Li Z. Disrupted white matter structural networks in patients with acute ischemic stroke in the right basal ganglia. Neuroscience 2025; 568:68-75. [PMID: 39341271 DOI: 10.1016/j.neuroscience.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 08/03/2024] [Indexed: 09/30/2024]
Abstract
Widespread structural changes have been observed in patients with stroke in previous diffusion tensor imaging studies. However, the topological organization of white matter structural networks after acute ischemic stroke (AIS) in the right basal ganglia (BG) remains unknown. The aim of our study is to investigate whether the topological structure of the white matter structural network is altered in patients with AIS in the right BG, and its relationship with cognition. Graph theoretical analysis was employed to investigate the topological architecture of whole-brain white matter structural networks in 40 AIS patients in the right BG and 40 healthy controls (HC), and network-based statistics (NBS) were applied to examine structural connectivity alterations. Compared to HC, AIS patients exhibited altered global network properties characterized by increased small-worldness, normalized clustering coefficient, and shortest path length, as well as decreased clustering coefficient, local efficiency, and global efficiency. The nodes with significantly decreased nodal properties in AIS patients were primarily located in the default mode network, limbic system, sensorimotor system, salience network, and central executive network. Reduced structural connectivity detected by NBS in AIS patients were primarily located in the lesional hemisphere. Furthermore, altered nodal properties were correlated with cognitive scores. Documenting the alterations in the topological patterns of white matter structural networks will help to promote the understanding of the neural mechanisms of cognitive impairment after AIS in the right BG.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Bergamino M, McElvogue MM, Stokes AM. Distinguishing Early from Late Mild Cognitive Impairment Using Magnetic Resonance Free-Water Diffusion Tensor Imaging. NEUROSCI 2025; 6:8. [PMID: 39846567 PMCID: PMC11755477 DOI: 10.3390/neurosci6010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and Alzheimer's disease. Differentiating early MCI (EMCI) from late MCI (LMCI) is crucial for early diagnosis and intervention. This study used free-water diffusion tensor imaging (fw-DTI) to investigate white matter differences and voxel-based correlations with Mini-Mental State Examination (MMSE) scores. Data from the Alzheimer's Disease Neuroimaging Initiative included 476 healthy controls (CN), 137 EMCI participants, and 62 LMCI participants. Significant MMSE differences were found between the CN and MCI groups, but not between EMCI and LMCI. However, distinct white matter changes were observed: LMCI showed a higher f-index and lower fw-fractional anisotropy (fw-FA) compared to EMCI in several white matter regions. These findings indicate specific white matter tracts involved in MCI progression. Voxel-based correlations between fw-DTI metrics and MMSE scores further supported these results. In conclusion, this study provides crucial insights into white matter changes associated with EMCI and LMCI, offering significant implications for future research and clinical practice.
Collapse
Affiliation(s)
| | | | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (M.B.); (M.M.M.)
| | | |
Collapse
|
3
|
Nägele FL, Petersen M, Mayer C, Bönstrup M, Schulz R, Gerloff C, Thomalla G, Cheng B. Longitudinal microstructural alterations surrounding subcortical ischemic stroke lesions detected by free-water imaging. Hum Brain Mapp 2024; 45:e26722. [PMID: 38780442 PMCID: PMC11114091 DOI: 10.1002/hbm.26722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.
Collapse
Affiliation(s)
- Felix L. Nägele
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marvin Petersen
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carola Mayer
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marlene Bönstrup
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Robert Schulz
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Götz Thomalla
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bastian Cheng
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
4
|
Brownsett SLE, Carey LM, Copland D, Walsh A, Sihvonen AJ. Structural brain networks correlating with poststroke cognition. Hum Brain Mapp 2024; 45:e26665. [PMID: 38520376 PMCID: PMC10960554 DOI: 10.1002/hbm.26665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Cognitive deficits are a common and debilitating consequence of stroke, yet our understanding of the structural neurobiological biomarkers predicting recovery of cognition after stroke remains limited. In this longitudinal observational study, we set out to investigate the effect of both focal lesions and structural connectivity on poststroke cognition. Sixty-two patients with stroke underwent advanced brain imaging and cognitive assessment, utilizing the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE), at 3-month and 12-month poststroke. We first evaluated the relationship between lesions and cognition at 3 months using voxel-based lesion-symptom mapping. Next, a novel correlational tractography approach, using multi-shell diffusion-weighted magnetic resonance imaging (MRI) data collected at both time points, was used to evaluate the relationship between the white matter connectome and cognition cross-sectionally at 3 months, and longitudinally (12 minus 3 months). Lesion-symptom mapping did not yield significant findings. In turn, correlational tractography analyses revealed positive associations between both MoCA and MMSE scores and bilateral cingulum and the corpus callosum, both cross-sectionally at the 3-month stage, and longitudinally. These results demonstrate that rather than focal neural structures, a consistent structural connectome underpins the performance of two frequently used cognitive screening tools, the MoCA and the MMSE, in people after stroke. This finding should encourage clinicians and researchers to not only suspect cognitive decline when lesions affect these tracts, but also to refine their investigation of novel approaches to differentially diagnosing pathology associated with cognitive decline, regardless of the aetiology.
Collapse
Affiliation(s)
- Sonia L. E. Brownsett
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneVictoriaAustralia
- Queensland Aphasia Research CentreSurgical, Treatment and Rehabilitation Service, University of QueenslandBrisbaneQueenslandAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health Human Services and SportLa Trobe UniversityMelbourneVictoriaAustralia
- Neurorehabilitation and Recovery GroupThe FloreyMelbourneVictoriaAustralia
| | - David Copland
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneVictoriaAustralia
- Queensland Aphasia Research CentreSurgical, Treatment and Rehabilitation Service, University of QueenslandBrisbaneQueenslandAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Alistair Walsh
- Occupational Therapy, School of Allied Health Human Services and SportLa Trobe UniversityMelbourneVictoriaAustralia
- Neurorehabilitation and Recovery GroupThe FloreyMelbourneVictoriaAustralia
| | - Aleksi J. Sihvonen
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneVictoriaAustralia
- Queensland Aphasia Research CentreSurgical, Treatment and Rehabilitation Service, University of QueenslandBrisbaneQueenslandAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre of Excellence in Music, Mind, Body and Brain, Cognitive Brain Research Unit (CBRU)University of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Namgung E, Lee EJ, Kim YH, Kang DW. White Matter Structural Connectivity Associated With Visual Field Recovery After Stroke. J Stroke 2024; 26:116-120. [PMID: 38246721 PMCID: PMC10850453 DOI: 10.5853/jos.2023.02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Dong-Wha Kang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Nunaps Inc., Seoul, Korea
| |
Collapse
|
6
|
Qin Y, Li X, Qiao Y, Zou H, Qian Y, Li X, Zhu Y, Huo W, Wang L, Zhang M. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front Neurosci 2023; 17:1132393. [PMID: 37065921 PMCID: PMC10102345 DOI: 10.3389/fnins.2023.1132393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeBrain glymphatic dysfunction is involved in the pathologic process of acute ischemic stroke (IS). The relationship between brain glymphatic activity and dysfunction in subacute IS has not been fully elucidated. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was used in this study to explore whether glymphatic activity was related to motor dysfunction in subacute IS patients.MethodsTwenty-six subacute IS patients with a single lesion in the left subcortical region and 32 healthy controls (HCs) were recruited in this study. The DTI-ALPS index and DTI metrics (fractional anisotropy, FA, and mean diffusivity, MD) were compared within and between groups. Spearman's and Pearson's partial correlation analyses were performed to analyze the relationships of the DTI-ALPS index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST) integrity in the IS group, respectively.ResultsSix IS patients and two HCs were excluded. The left DTI-ALPS index of the IS group was significantly lower than that of the HC group (t = −3.02, p = 0.004). In the IS group, a positive correlation between the left DTI-ALPS index and the simple Fugl-Meyer motor function score (ρ = 0.52, p = 0.019) and a significant negative correlation between the left DTI-ALPS index and the FA (R = −0.55, p = 0.023) and MD (R = −0.48, p = 0.032) values of the right CST were found.ConclusionsGlymphatic dysfunction is involved in subacute IS. DTI-ALPS could be a potential magnetic resonance (MR) biomarker of motor dysfunction in subacute IS patients. These findings contribute to a better understanding of the pathophysiological mechanisms of IS and provide a new target for alternative treatments for IS.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xin Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yanqiang Qiao
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Huili Zou
- Department of Rehabilitation Medicine, Xi'an Daxing Hospital, Xi'an, China
| | - Yifan Qian
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xiaoshi Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yinhu Zhu
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Wenli Huo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
- Lei Wang
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Ming Zhang
| |
Collapse
|
7
|
Wang H, Xiong X, Zhang K, Wang X, Sun C, Zhu B, Xu Y, Fan M, Tong S, Guo X, Sun L. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther 2022; 29:619-632. [PMID: 36575865 PMCID: PMC9873524 DOI: 10.1111/cns.14065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motor imagery training (MIT) has been widely used to improve hemiplegic upper limb function in stroke rehabilitation. The effectiveness of MIT is associated with the functional neuroplasticity of the motor network. Currently, brain activation and connectivity changes related to the motor recovery process after MIT are not well understood. AIM We aimed to investigate the neural mechanisms of MIT in stroke rehabilitation through a longitudinal intervention study design with task-based functional magnetic resonance imaging (fMRI) analysis. METHODS We recruited 39 stroke patients with moderate to severe upper limb motor impairment and randomly assigned them to either the MIT or control groups. Patients in the MIT group received 4 weeks of MIT therapy plus conventional rehabilitation, while the control group only received conventional rehabilitation. The assessment of Fugl-Meyer Upper Limb Scale (FM-UL) and Barthel Index (BI), and fMRI scanning using a passive hand movement task were conducted on all patients before and after treatment. The changes in brain activation and functional connectivity (FC) were analyzed. Pearson's correlation analysis was conducted to evaluate the association between neural functional changes and motor improvement. RESULTS The MIT group achieved higher improvements in FM-UL and BI relative to the control group after the treatment. Passive movement of the affected hand evoked an abnormal bilateral activation pattern in both groups before intervention. A significant Group × Time interaction was found in the contralesional S1 and ipsilesional M1, showing a decrease of activation after intervention specifically in the MIT group, which was negatively correlated with the FM-UL improvement. FC analysis of the ipsilesional M1 displayed the motor network reorganization within the ipsilesional hemisphere, which correlated with the motor score changes. CONCLUSIONS MIT could help decrease the compensatory activation at both hemispheres and reshape the FC within the ipsilesional hemisphere along with functional recovery in stroke patients.
Collapse
Affiliation(s)
- Hewei Wang
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Xin Xiong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Kexu Zhang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xu Wang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Changhui Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Bing Zhu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Yiming Xu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Limin Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|