1
|
Xu Y, Yin H, Li L, Wang X, Hou Q. Covert cerebrospinal fluid dynamics dysfunction: evolution from conventional to innovative therapies. Front Neurol 2025; 16:1554813. [PMID: 40144621 PMCID: PMC11936825 DOI: 10.3389/fneur.2025.1554813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cerebrospinal fluid (CSF) dynamics disorders are intricately linked to diverse neurological pathologies, though they usually are mild and covert. Contemporary insights into glymphatic system function, particularly the CSF transport, drainage, and its role in clearing metabolic waste and toxic substances in both normal and pathological states, and the pivotal role of aquaporin-4 (AQP4) in CSF-interstitial fluid (ISF) exchange, have established novel theoretical frameworks of subclinical CSF dynamics dysfunction, and have promoted the development of non-surgical therapeutic approaches for them simultaneously. This review comprehensively analyzes the advancement of non-surgical interventions for CSF dynamics disorders, emphasizing the transition from established methodologies to innovative approaches. Current non-surgical treatment strategies primarily encompass three directions: pharmacological therapy, physical therapy, and biological regulation therapy. In terms of pharmacological interventions, developments from traditional diuretics to novel small-molecule drugs show promising therapeutic potential. In physical therapy, innovative techniques such as lower body negative pressure, transcranial magnetic stimulation, and vagus nerve stimulation have provided new options for clinical practice. Meanwhile, biological regulation therapy, exemplified by recombinant VEGF-C administration, has established novel therapeutic paradigms. These therapeutic strategies have demonstrated potential in improving CSF dynamics and enhancing CSF waste elimination. Future research should focus on developing individualized treatment protocols, elucidating of therapeutic mechanisms, and assessing longitudinal outcomes. This will facilitate the development of more precise therapeutic strategies and exploration of optimized multimodal treatment combinations in handling the so-called convert CSF dynamics dysfunction.
Collapse
Affiliation(s)
- Yi Xu
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hua Yin
- Class 6, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Lingge Li
- Class 2, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Xiaodi Wang
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Bai X, Wang H, Li J, Xu J, Cai P. Correlation of risk factors for ischemic stroke with uric acid/creatinine ratio and cerebral vascular hemodynamic index (CVHI) in physical examination population. Pak J Med Sci 2025; 41:804-809. [PMID: 40103892 PMCID: PMC11911759 DOI: 10.12669/pjms.41.3.9912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 03/20/2025] Open
Abstract
Objective To investigate the risk of ischemic stroke, uric acid/creatinine ratio, cerebral vascular hemodynamic index (CVHI) and risk factors of stroke in physical examination population. Methods This was a retrospective study. Four hundred cases undergoing physical examination at physical examination center in Baoding No.1 Central Hospital from January 2023 to December 2023 were selected as subjects, and their general data were collected. They were divided into low ratio group, medium ratio group and high ratio group depending on the uric acid/creatinine ratio, and were classified as high-risk group, medium-risk group and low-risk group as per CVHI, the general data of all subjects were compared and analyzed. Results Multifactorial Logistic regression analysis was performed after assignment of stroke risk factors as dependent variables yielding that advanced age, smoking, alcohol abuse, hypertension, diabetes mellitus, BMI, hyperlipidemia, and hyperuricemia were risk factors for ischemic stroke(P<0.05). Those with high uric acid/creatinine ratio were markedly higher than those with medium and low ratio in the proportion of alcohol abuse, hypertension, diabetes mellitus, and hyperlipidemia, with statistically significant differences (P<0.05). Obesity, advanced age, smoking, hypertension, diabetes mellitus, and hyperlipidemia were obviously higher in the high-risk group for stroke than in the medium- and low-risk groups, with statistically significant differences (P<0.05). Conclusion Risk factors for ischemic stroke predispose to older age groups, and are linked to underlying medical conditions, especially in those with high uric acid/creatinine ratios and those at high risk of stroke. The SUA/Cr ratio is negatively correlated with the CVHI score.
Collapse
Affiliation(s)
- Xue Bai
- Xue Bai Department of Physical Examination, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Hui Wang
- Hui Wang Department of Urological, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Jiangzhe Li
- Jiangzhe Li Western Medicine Pharmacy Static Dispensing Center, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Jinjin Xu
- Jinjin Xu Department of Geriatric, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Pan Cai
- Pan Cai Department of Rheumatology and Immunology, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| |
Collapse
|
3
|
Chen Y, Guo H, Sun X, Wang S, Zhao M, Gong J, He A, Li J, Liu Y, Wang Z. Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood-Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms. CNS Neurosci Ther 2025; 31:e70289. [PMID: 39981743 PMCID: PMC11843476 DOI: 10.1111/cns.70289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a life-threatening cerebrovascular disorder with no specific pharmacological treatment. ICH causes significant behavioral deficits and cognitive impairments. Recent research suggests that circadian rhythm regulation could be a promising therapeutic strategy for ICH. Melatonin has been shown to alleviate glymphatic system (GS) dysfunction by regulating circadian rhythms, thereby improving depressive-like behaviors and postoperative sleep disorders in mice. However, its application in ICH treatment and specific mechanisms are not well understood. METHODS ICH models were created in 8-to-10-week-old mice using collagenase injection. Circadian rhythm modulation was tested with melatonin and luzindole. Behavioral and cognitive impairments were assessed with the modified neurological severity score, corner test, and novel object recognition test. Brain water content was measured by the dry/wet weight method, and cerebral perfusion was assessed by cerebral blood flow measurements. GS function was evaluated using RITC-dextran and Evans blue assays. Immunofluorescence and western blotting were used to analyze GS function and BBB permeability. RESULTS Melatonin restored GS transport after ICH, promoting hematoma and edema absorption, reducing BBB damage, and improving cognitive and behavioral outcomes. However, luzindole partially blocked these benefits and reversed the neuroprotective effects. CONCLUSION Melatonin and luzindole treatment affect GS function, BBB permeability, and cognitive-behavioral outcomes in mice with ICH. The underlying mechanism may involve the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Yunzhao Chen
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryInner Mongolia Autonomous Region People's HospitalHohhotChina
| | - Hexi Guo
- Department of NeurosurgeryOrdos Central HospitalOrdosChina
| | - Xinguo Sun
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryBinzhou People's HospitalBinzhouChina
| | - Shanjun Wang
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryYidu Central Hospital of WeifangQingzhouChina
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Anqi He
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Jing Li
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
4
|
Kim D, Tithof J. Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull. Fluids Barriers CNS 2024; 21:104. [PMID: 39702363 DOI: 10.1186/s12987-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders. METHODS We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent in vivo experimental measurements. RESULTS Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed in vivo. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure. CONCLUSIONS This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Chen Y, Liu X, Yuan J, Dong S, Nie M, Jiang W, Wu D, Liu M, Liu T, Wu C, Gao C, Zhang J, Jiang R. Vitamin D accelerates the subdural hematoma clearance through improving the meningeal lymphatic vessel function. Mol Cell Biochem 2024; 479:3129-3140. [PMID: 38294731 DOI: 10.1007/s11010-023-04918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Subdural hematoma (SDH) drains into the extracranial lymphatic system through the meningeal lymphatic vessels (mLVs) but the formation of SDH impairs mLVs. Because vitamin D (Vit D) can protect the endothelial cells, we hypothesized that Vit D may enhance the SDH clearance. SDH was induced in Sprague-Dawley rats and treated with Vit D or vehicle. Hematoma volume in each group was measured by H&E staining and hemoglobin quantification. Evans blue (EB) quantification and red blood cells injection were used to evaluated the drainage of mLVs. Western blot analysis and immunofluorescence were conducted to assess the expression of lymphatic protein markers. We also examined the inflammatory factors levels in subdural space by ELISA. Vit D treatment significantly reduced SDH volume and improved the drainage of SDH to cervical lymph nodes. The structure of mLVs in SDH rats were protected by Vit D, and the expressions of LYVE1, PROX1, FOXC2, and VE-cadherin were increased after Vit D treatment. The TNF-α, IL-6, and IL-8 levels were reduced in Vit D group. In vitro, Vit D also increased the VE-cadherin expression levels under inflammation. Vit D protects the structure of mLVs and enhances the absorption of SDH, partly by the anti-inflammatory effect of Vit D.
Collapse
Affiliation(s)
- Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China.
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education, Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, 154 Anshan Road, Helping District, Tianjin, 300052, China.
| |
Collapse
|
6
|
Dong S, Zhao H, Nie M, Sha Z, Feng J, Liu M, Lv C, Chen Y, Jiang W, Yuan J, Qian Y, Wan H, Gao C, Jiang R. Cannabidiol Alleviates Neurological Deficits After Traumatic Brain Injury by Improving Intracranial Lymphatic Drainage. J Neurotrauma 2024; 41:e2009-e2025. [PMID: 38553903 DOI: 10.1089/neu.2023.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-β. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.
Collapse
Affiliation(s)
- Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Hongwei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Yu Qian
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Honggang Wan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Zhang RG, Zheng BW, Zhang J, Hao MY, Diao YH, Hu XJ, Liu YF, Liu XH, Zhu T, Zhao ZL, Rong HT. Spinal Lymphatic Dysfunction Aggravates the Recovery Process After Spinal Cord Injury. Neuroscience 2024; 549:84-91. [PMID: 38460904 DOI: 10.1016/j.neuroscience.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
We aimed to evaluate the role of the spinal lymphatic system in spinal cord injury and whether it has an impact on recovery after spinal cord injury. Flow cytometry was used to evaluate the changes in the number of microvesicles after spinal cord injury. Evans blue extravasation was used to evaluate the function of the lymphatic system. Evans blue extravasation and immunofluorescence were used to evaluate the permeability of blood spinal cord barrier. The spinal cord edema was evaluated by dry and wet weight.Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was used to evaluate apoptosis after spinal cord injury. Nuclear factor-kappa B pathway was detected by Western blot. Behavioral tests were used to evaluate limb function. Microvesicles released after spinal cord injury can enter the thoracic duct and then enter the blood through the lymph around the spine. After ligation of the thoracic duct, it can aggravate the neuropathological manifestations and limb function after spinal cord injury. The potential mechanism may involve nuclear factor-kappa B pathway.
Collapse
Affiliation(s)
- Rui-Guang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo-Wen Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming-Yu Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Hang Diao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Jun Hu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya-Fan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan-Hui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zi-Long Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hong-Tao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Wu CH, Kuo Y, Ling YH, Wang YF, Fuh JL, Lirng JF, Wu HM, Wang SJ, Chen SP. Dynamic changes in glymphatic function in reversible cerebral vasoconstriction syndrome. J Headache Pain 2024; 25:17. [PMID: 38317074 PMCID: PMC10840154 DOI: 10.1186/s10194-024-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The pathophysiology of the reversible cerebral vasoconstriction syndrome (RCVS) remains enigmatic and the role of glymphatics in RCVS pathophysiology has not been evaluated. We aimed to investigate RCVS glymphatic dynamics and its clinical correlates. METHODS We prospectively evaluated the glymphatic function in RCVS patients, with RCVS subjects and healthy controls (HCs) recruited between August 2020 and November 2023, by calculating diffusion-tensor imaging along the perivascular space (DTI-ALPS) index under a 3-T MRI. Clinical and vascular (transcranial color-coded duplex sonography) investigations were conducted in RCVS subjects. RCVS participants were separated into acute (≤ 30 days) and remission (≥ 90 days) groups by disease onset to MRI interval. The time-trend, acute stage and longitudinal analyses of the DTI-ALPS index were conducted. Correlations between DTI-ALPS index and vascular and clinical parameters were performed. Bonferroni correction was applied to vascular investigations (q = 0.05/11). RESULTS A total of 138 RCVS patients (mean age, 46.8 years ± 11.8; 128 women) and 42 HCs (mean age, 46.0 years ± 4.5; 35 women) were evaluated. Acute RCVS demonstrated lower DTI-ALPS index than HCs (p < 0.001) and remission RCVS (p < 0.001). A continuously increasing DTI-ALPS trend after disease onset was demonstrated. The DTI-ALPS was lower when the internal carotid arteries resistance index and six-item Headache Impact test scores were higher. In contrast, during 50-100 days after disease onset, the DTI-ALPS index was higher when the middle cerebral artery flow velocity was higher. CONCLUSIONS Glymphatic function in patients with RCVS exhibited a unique dynamic evolution that was temporally coupled to different vascular indices and headache-related disabilities along the disease course. These findings may provide novel insights into the complex interactions between glymphatic transport, vasomotor control and pain modulation.
Collapse
Grants
- V112C-113 & V112E-004-1 (to SJW); V110C-102, VGH-111-C-158, V112C-053 & V112D67-001-MY3-1 (to SPC); V112B-007, V111B-032, V109B-009 (to CHW) Taipei Veterans General Hospital
- V112C-113 & V112E-004-1 (to SJW); V110C-102, VGH-111-C-158, V112C-053 & V112D67-001-MY3-1 (to SPC); V112B-007, V111B-032, V109B-009 (to CHW) Taipei Veterans General Hospital
- V112C-113 & V112E-004-1 (to SJW); V110C-102, VGH-111-C-158, V112C-053 & V112D67-001-MY3-1 (to SPC); V112B-007, V111B-032, V109B-009 (to CHW) Taipei Veterans General Hospital
- CI-112-2, CI-111-2, CI-109-3 (to CHW) Yen Tjing Ling Medical Foundation
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49 -037 -MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075 -086-MY3 & 112-2321-B-075-007 (to SJW); 111-2314-B-075 -025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49 -037 -MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075 -086-MY3 & 112-2321-B-075-007 (to SJW); 111-2314-B-075 -025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49 -037 -MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075 -086-MY3 & 112-2321-B-075-007 (to SJW); 111-2314-B-075 -025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- MOHW107-TDU-B-211-123001, MOHW 108-TDU-B-211-133001 and MOHW112-TDU-B-211-144001 (to SJW) Ministry of Health and Welfare
- VGHUST-112-G1-2-1 (to SJW) Veterans General Hospitals and University System of Taiwan Joint Research Program
- Professor Tsuen CHANG’s Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
- Vivian W. Yen Neurological Foundation
- Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
| | - Yu Kuo
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
| | - Yu-Hsiang Ling
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
| | - Jong-Ling Fuh
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan.
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan.
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Taipei, Taiwan.
| |
Collapse
|
10
|
Jukkola J, Kaakinen M, Singh A, Moradi S, Ferdinando H, Myllylä T, Kiviniemi V, Eklund L. Blood pressure lowering enhances cerebrospinal fluid efflux to the systemic circulation primarily via the lymphatic vasculature. Fluids Barriers CNS 2024; 21:12. [PMID: 38279178 PMCID: PMC10821255 DOI: 10.1186/s12987-024-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid flow.
Collapse
Affiliation(s)
- Jari Jukkola
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sadegh Moradi
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Hany Ferdinando
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Teemu Myllylä
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
11
|
Al Masri M, Corell A, Michaëlsson I, Jakola AS, Skoglund T. The glymphatic system for neurosurgeons: a scoping review. Neurosurg Rev 2024; 47:61. [PMID: 38253938 PMCID: PMC10803566 DOI: 10.1007/s10143-024-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic system's role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included. Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension (IIH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies highlighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aquaporin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for glymphatic function and exploring the long-term effects of glymphatic dysfunction.
Collapse
Affiliation(s)
- Mohammad Al Masri
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Isak Michaëlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
12
|
Yuan J, Liu X, Nie M, Chen Y, Liu M, Huang J, Jiang W, Gao C, Quan W, Gong Z, Xiang T, Zhang X, Sha Z, Wu C, Wang D, Li S, Zhang J, Jiang R. Inactivation of ERK1/2 signaling mediates dysfunction of basal meningeal lymphatic vessels in experimental subdural hematoma. Theranostics 2024; 14:304-323. [PMID: 38164141 PMCID: PMC10750213 DOI: 10.7150/thno.87633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: Meningeal lymphatic vessels (MLVs) are essential for the clearance of subdural hematoma (SDH). However, SDH impairs their drainage function, and the pathogenesis remains unclear. Herein, we aimed to understand the pathological mechanisms of MLV dysfunction following SDH and to test whether atorvastatin, an effective drug for SDH clearance, improves meningeal lymphatic drainage (MLD). Methods: We induced SDH models in rats by injecting autologous blood into the subdural space and evaluated MLD using Gadopentetate D, Evans blue, and CFSE-labeled erythrocytes. Whole-mount immunofluorescence and transmission electron microscopy were utilized to detect the morphology of MLVs. Phosphoproteomics, western blot, flow cytometry, and in vitro experiments were performed to investigate the molecular mechanisms underlying dysfunctional MLVs. Results: The basal MLVs were detected to have abundant valves and play an important role in draining subdural substances. Following SDH, these basal MLVs exhibited disrupted endothelial junctions and dilated lumen, leading to impaired MLD. Subsequent proteomics analysis of the meninges detected numerous dephosphorylated proteins, primarily enriched in the adherens junction, including significant dephosphorylation of ERK1/2 within the meningeal lymphatic endothelial cells (LECs). Subdural injection of the ERK1/2 kinase inhibitor PD98059 resulted in dilated basal MLVs and impaired MLD, resembling the dysfunctional MLVs observed in SDH. Moreover, inhibiting ERK1/2 signaling severely disrupted intercellular junctions between cultured LECs. Finally, atorvastatin was revealed to protect the structure of basal MLVs and accelerate MLD following SDH. However, these beneficial effects of atorvastatin were abolished when combined with PD98059. Conclusion: Our findings demonstrate that SDH induces ERK1/2 dephosphorylation in meningeal LECs, leading to disrupted basal MLVs and impaired MLD. Additionally, we reveal a beneficial effect of atorvastatin in improving MLD.
Collapse
Affiliation(s)
- Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Zhitao Gong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
13
|
Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, Reddy A, Sung CC, Barbet G, Hong YK, Tischfield MA. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. J Clin Invest 2023; 134:e171468. [PMID: 37917195 PMCID: PMC10866656 DOI: 10.1172/jci171468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Skull development coincides with the onset of cerebrospinal fluid (CSF) circulation, brain-CSF perfusion, and meningeal lymphangiogenesis, processes essential for brain waste clearance. How these processes are affected by craniofacial disorders such as craniosynostosis are poorly understood. We report that raised intracranial pressure and diminished CSF flow in craniosynostosis mouse models associate with pathological changes to meningeal lymphatic vessels that affect their sprouting, expansion, and long-term maintenance. We also show that craniosynostosis affects CSF circulatory pathways and perfusion into the brain. Further, craniosynostosis exacerbates amyloid pathology and plaque buildup in Twist1+/-:5xFAD transgenic Alzheimer's disease models. Treating craniosynostosis mice with Yoda1, a small molecule agonist for Piezo1, reduces intracranial pressure and improves CSF flow, in addition to restoring meningeal lymphangiogenesis, drainage to the deep cervical lymph nodes, and brain-CSF perfusion. Leveraging these findings, we show that Yoda1 treatments in aged mice with reduced CSF flow and turnover improve lymphatic networks, drainage, and brain-CSF perfusion. Our results suggest that CSF provides mechanical force to facilitate meningeal lymphatic growth and maintenance. Additionally, applying Yoda1 agonist in conditions with raised intracranial pressure and/or diminished CSF flow, as seen in craniosynostosis or with ageing, is a possible therapeutic option to help restore meningeal lymphatic networks and brain-CSF perfusion.
Collapse
Affiliation(s)
- Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Aditya Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joshua K. Thackray
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Akash Reddy
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Chi Chang Sung
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pediatrics and
| | - Gaëtan Barbet
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pediatrics and
- Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Jain A, Ang PS, Matrongolo MJ, Tischfield MA. Understanding the development, pathogenesis, and injury response of meningeal lymphatic networks through the use of animal models. Cell Mol Life Sci 2023; 80:332. [PMID: 37872442 PMCID: PMC11072018 DOI: 10.1007/s00018-023-04984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
Meningeal lymphatic vessels (MLVs) help maintain central nervous system (CNS) homeostasis via their ability to facilitate macromolecule waste clearance and neuroimmune trafficking. Although these vessels were overlooked for centuries, they have now been characterized in humans, non-human primates, and rodents. Recent studies in mice have explored the stereotyped growth and expansion of MLVs in dura mater, the various transcriptional, signaling, and environmental factors regulating their development and long-term maintenance, and the pathological changes these vessels undergo in injury, disease, or with aging. Key insights gained from these studies have also been leveraged to develop therapeutic approaches that help augment or restore MLV functions to improve brain health and cognition. Here, we review fundamental processes that control the development of peripheral lymphatic networks and how these might apply to the growth and expansion of MLVs in their unique meningeal environment. We also emphasize key findings in injury and disease models that may reveal additional insights into the plasticity of these vessels throughout the lifespan. Finally, we highlight unanswered questions and future areas of study that can further reveal the exciting therapeutic potential of meningeal lymphatics.
Collapse
Affiliation(s)
- Aditya Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL, 60637, USA
| | - Matthew J Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
15
|
Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, Reddy A, Sung CC, Barbet G, Hong YK, Tischfield MA. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559761. [PMID: 37808775 PMCID: PMC10557676 DOI: 10.1101/2023.09.27.559761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Skull development coincides with the onset of cerebrospinal fluid (CSF) circulation, brain-CSF perfusion, and meningeal lymphangiogenesis, processes essential for brain waste clearance. How these processes are affected by craniofacial disorders such as craniosynostosis are poorly understood. We report that raised intracranial pressure and diminished CSF flow in craniosynostosis mouse models associates with pathological changes to meningeal lymphatic vessels that affect their sprouting, expansion, and long-term maintenance. We also show that craniosynostosis affects CSF circulatory pathways and perfusion into the brain. Further, craniosynostosis exacerbates amyloid pathology and plaque buildup in Twist1 +/- :5xFAD transgenic Alzheimer's disease models. Treating craniosynostosis mice with Yoda1, a small molecule agonist for Piezo1, reduces intracranial pressure and improves CSF flow, in addition to restoring meningeal lymphangiogenesis, drainage to the deep cervical lymph nodes, and brain-CSF perfusion. Leveraging these findings, we show Yoda1 treatments in aged mice with reduced CSF flow and turnover improve lymphatic networks, drainage, and brain-CSF perfusion. Our results suggest CSF provides mechanical force to facilitate meningeal lymphatic growth and maintenance. Additionally, applying Yoda1 agonist in conditions with raised intracranial pressure and/or diminished CSF flow, as seen in craniosynostosis or with ageing, is a possible therapeutic option to help restore meningeal lymphatic networks and brain-CSF perfusion.
Collapse
|
16
|
Qin Y, Liu Y, Cao C, Ouyang L, Ding Y, Wang D, Zheng M, Liao Z, Yue S, Liao W. A Novel Nomogram Based on Quantitative MRI and Clinical Features for the Prediction of Neonatal Intracranial Hypertension. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1582. [PMID: 37892245 PMCID: PMC10605298 DOI: 10.3390/children10101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023]
Abstract
Intracranial hypertension (ICH) is a serious threat to the health of neonates. However, early and accurate diagnosis of neonatal intracranial hypertension remains a major challenge in clinical practice. In this study, a predictive model based on quantitative magnetic resonance imaging (MRI) data and clinical parameters was developed to identify neonates with a high risk of ICH. Newborns who were suspected of having intracranial lesions were included in our study. We utilized quantitative MRI to obtain the volumetric data of gray matter, white matter, and cerebrospinal fluid. After the MRI examination, a lumbar puncture was performed. The nomogram was constructed by incorporating the volumetric data and clinical features by multivariable logistic regression. The performance of the nomogram was evaluated by discrimination, calibration curve, and decision curve. Clinical parameters and volumetric quantitative MRI data, including postmenstrual age (p = 0.06), weight (p = 0.02), mode of delivery (p = 0.01), and gray matter volume (p = 0.003), were included in and significantly associated with neonatal intracranial hypertension risk. The nomogram showed satisfactory discrimination, with an area under the curve of 0.761. Our results demonstrated that decision curve analysis had promising clinical utility of the nomogram. The nomogram, incorporating clinical and quantitative MRI features, provided an individualized prediction of neonatal intracranial hypertension risk and facilitated decision making guidance for the early diagnosis and treatment for neonatal ICH. External validation from studies using a larger sample size before implementation in the clinical decision-making process is needed.
Collapse
Affiliation(s)
- Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Yang Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Chuanding Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Lirong Ouyang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Ying Ding
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Mengqiu Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Zhengchang Liao
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China (S.Y.)
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| |
Collapse
|
17
|
Wang HY, Hu Z, Han J, Wang D, Wu Q. Remote cerebellar hemorrhage following repeated lumbar punctures. BMC Neurol 2023; 23:220. [PMID: 37291540 DOI: 10.1186/s12883-023-03276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/04/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Remote cerebellar hemorrhage (RCH) is a rare complication in neurosurgery. No case of RCH secondary to repeated lumbar punctures (LPs) has been previously reported. CASE PRESENTATION A 49-year-old man presented with impaired consciousness following persistent fever. Cerebrospinal fluid examination showed high opening pressure, elevated white blood cells, increased protein level, and decreased glucose level, resulting in a diagnosis of bacterial meningoencephalitis. Treatment with repeated LPs and intrathecal injection of ceftriaxone resulted in an improvement in neurological symptoms. However, on day 31 of treatment, brain magnetic resonance image (MRI) showed streaky bleeding in bilateral cerebellum (zebra sign), leading to a diagnosis of RCH. Close observation and repeated brain MRI imaging without specific treatments led to the absorption of bilateral cerebellar hemorrhage, and the patient was discharged with improved neurological symptoms. Repeated brain MRI scans one month after discharge showed that bilateral cerebellar hemorrhage had improved, and had disappeared one year after discharge. CONCLUSION We reported a rare occurrence of LPs-induced RCH presenting as isolated bilateral inferior cerebellar hemorrhage. Clinicians should be vigilant of the risk factors for RCH, closely monitoring patients' clinical symptoms and neuroimaging findings to determine the need for specialized treatment. Furthermore, this case highlights the importance of ensuring the safety of LPs and managing any potential complications appropriately.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining No.1 People's Hospital, Jining, 272000, Shandong Province, China
| | - Zerui Hu
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, 272000, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, Shandong Province, 272067, China
| | - Qingjian Wu
- Department of Emergency, Jining No.1 People's Hospital, No. 6, Jiankang Road, Jining, 272011, Shandong Province, China.
| |
Collapse
|
18
|
Liu Y, Liu X, Sun P, Li J, Nie M, Gong J, He A, Zhao M, Yang C, Wang Z. rTMS treatment for abrogating intracerebral hemorrhage-induced brain parenchymal metabolite clearance dysfunction in male mice by regulating intracranial lymphatic drainage. Brain Behav 2023:e3062. [PMID: 37161559 DOI: 10.1002/brb3.3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The discovery of the glymphatic system and meningeal lymphatic vessels challenged the traditional view regarding the lack of a lymphatic system in the central nervous system. It is now known that the intracranial lymphatic system plays an important role in fluid transport, macromolecule uptake, and immune cell trafficking. Studies have also shown that the function of the intracranial lymphatic system is significantly associated with neurological diseases; for example, an impaired intracranial lymphatic system can lead to Tau deposition and an increased lymphocyte count in the brain tissue of mice with subarachnoid hemorrhage. METHODS In this study, we assessed the changes in the intracranial lymphatic system after intracerebral hemorrhage and the regulatory effects of repeated transcranial magnetic stimulation on the glymphatic system and meningeal lymphatic vessels in an intracerebral hemorrhage (ICH) model of male mice. Experimental mice were divided into three groups: Sham, ICH, and ICH + repeated transcranial magnetic stimulation (rTMS). Three days after ICH, mice in the ICH+rTMS group were subjected to rTMS daily for 7 days. Thereafter, the function of the intracranial lymphatic system, clearance of RITC-dextran and FITC-dextran, and neurological functions were evaluated. RESULTS Compared with the Sham group, the ICH group had an impaired glymphatic system. Importantly, rTMS treatment could improve intracranial lymphatic system function as well as behavioral functions and enhance the clearance of parenchymal RITC-dextran and FITC-dextran after ICH. CONCLUSION Our results indicate that rTMS can abrogate ICH-induced brain parenchymal metabolite clearance dysfunction by regulating intracranial lymphatic drainage.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Pengju Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Fuyang People's Hospital, Fuyang, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
20
|
Liu M, Huang J, Liu T, Yuan J, Lv C, Sha Z, Wu C, Jiang W, Liu X, Nie M, Chen Y, Dong S, Qian Y, Gao C, Fan Y, Wu D, Jiang R. Exogenous interleukin 33 enhances the brain's lymphatic drainage and toxic protein clearance in acute traumatic brain injury mice. Acta Neuropathol Commun 2023; 11:61. [PMID: 37024941 PMCID: PMC10080777 DOI: 10.1186/s40478-023-01555-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
The persistent dysregulation and accumulation of poisonous proteins from destructive neural tissues and cells activate pathological mechanisms after traumatic brain injury (TBI). The lymphatic drainage system of the brain, composed of the glymphatic system and meningeal lymphatic vessels (MLVs), plays an essential role in the clearance of toxic waste after brain injury. The neuroprotective effect of interleukin 33 (IL-33) in TBI mice has been demonstrated; however, its impact on brain lymphatic drainage is unclear. Here, we established a fluid percussion injury model to examine the IL-33 administration effects on neurological function and lymphatic drainage in the acute brain of TBI mice. We verified that exogenous IL-33 could improve the motor and memory skills of TBI mice and demonstrated that in the acute phase, it increased the exchange of cerebrospinal and interstitial fluid, reversed the dysregulation and depolarization of aquaporin-4 in the cortex and hippocampus, improved the drainage of MLVs to deep cervical lymph nodes, and reduced tau accumulation and glial activation. We speculate that the protective effect of exogenous IL-33 on TBI mice's motor and cognitive functions is related to the enhancement of brain lymphatic drainage and toxic metabolite clearance from the cortex and hippocampus in the acute stage. These data further support the notion that IL-33 therapy may be an effective treatment strategy for alleviating acute brain injury after TBI.
Collapse
Affiliation(s)
- Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yibing Fan
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
21
|
Lun T, Wang D, Li L, Zhou J, Zhao Y, Chen Y, Yin X, Ou S, Yu J, Song R. Low-dissipation optimization of the prefrontal cortex in the -12° head-down tilt position: A functional near-infrared spectroscopy study. Front Psychol 2022; 13:1051256. [PMID: 36619014 PMCID: PMC9815614 DOI: 10.3389/fpsyg.2022.1051256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Our present study set out to investigate the instant state of the prefrontal cortex (PFC) in healthy subjects before and after placement in the -12°head-down tilt (HDT) position in order to explore the mechanism behind the low-dissipation optimization state of the PFC. Methods 40 young, right-handed healthy subjects (male: female = 20: 20) were enrolled in this study. Three resting state positions, 0°initial position, -12°HDT position, and 0°rest position were sequentially tested, each for 10 minutes. A continuous-wave functional near-infrared spectroscopy (fNIRS) instrument was used to assess the resting state hemodynamic data of the PFC. After preprocessing the hemodynamics data, we evaluated changes in resting-state functional connectivity (rsFC) level and beta values of PFC. The subjective visual analogue scale (VAS) was applied before and after the experiment. The presence of sleep changes or adverse reactions were also recorded. Results Pairwise comparisons of the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and hemoglobin (HbT) revealed significant differences in the aforementioned positions. Specifically, the average rsFC of PFC showed a gradual increase throughout the whole process. In addition, based on graph theory, the topological properties of brain network, such as small-world network and nodal degree centrality were analyzed. The results show that global efficiency and small-world sigma (σ) value were differences between 0°initial and 0°rest. Discussion In this study, placement in the -12°HDT had a significant effect on PFC function, mainly manifested as self-inhibition, decreased concentration of HbO in the PFC, and improved rsFC, which may provide ideas to the understanding and explanation of neurological diseases.
Collapse
Affiliation(s)
- Tingting Lun
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dexin Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- College of TCM health care, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Junliang Zhou
- Department of Traditional Chinese Medicine, Nanhai District Maternal and Child Health Hospital, Foshan, China
| | - Yunxuan Zhao
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuecai Chen
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou women and children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanxing Ou
- Department of Radiology, Southern Theater Command Hospital of PLA, Guangzhou, China
| | - Jin Yu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Jin Yu, Rong Song
| | - Rong Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China,*Correspondence: Jin Yu, Rong Song
| |
Collapse
|