1
|
Egge SL, Wurster S, Cho SY, Jiang Y, Axell-House DB, Miller WR, Kontoyiannis DP. Co-Occurrence of Gram-Negative Rods in Patients with Hematologic Malignancy and Sinopulmonary Mucormycosis. J Fungi (Basel) 2024; 10:41. [PMID: 38248950 PMCID: PMC10820027 DOI: 10.3390/jof10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Both Mucorales and Gram-negative rods (GNRs) commonly infect patients with hematological malignancies (HM); however, their co-occurrence is understudied. Therefore, we retrospectively reviewed the records of 63 patients with HM and proven or probable sinopulmonary mucormycosis at MD Anderson Cancer Center (Houston, Texas) from 2000-2020. Seventeen out of sixty-three reviewed patients (27.0%) had sinopulmonary co-occurrence of GNRs (most commonly Pseudomonas aeruginosa and Stenotrophomonas maltophilia) within 30 days of a positive Mucorales culture or histology demonstrating Mucorales species. Eight of seventeen co-isolations of Mucorales and GNRs were found in same-day samples. All 15 patients with GNR co-occurrence and reported antimicrobial data had received anti-Pseudomonal agents within 14 days prior to diagnosis of mucormycosis and 5/15 (33.3%) had received anti-Stenotrophomonal agents. Demographic and clinical characteristics of patients with and without GNR co-occurrence were comparable. Forty-two-day all-cause mortality was high (34.9%) and comparable in patients with (41.2%) and without (32.6%) GNR detection (p = 0.53). In summary, over a quarter of heavily immunosuppressed patients with sinopulmonary mucormycosis harbored GNRs in their respiratory tract. Although no impact on survival outcomes was seen in a background of high mortality in our relatively underpowered study, pathogenesis studies are needed to understand the mutualistic interplay of GNR and Mucorales and their influence on host responses.
Collapse
Affiliation(s)
- Stephanie L. Egge
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung-Yeon Cho
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Internal Medicine, Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dierdre B. Axell-House
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - William R. Miller
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Jiang Z, Ren Y, Zhang C, Yin Y, Li C. Community-Acquired Stenotrophomonas Maltophilia Infection in a Child: A Case Report and Literature Review. Infect Drug Resist 2022; 15:5469-5474. [PMID: 36158231 PMCID: PMC9507441 DOI: 10.2147/idr.s376712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Stenotrophomonas maltophilia (S. maltophilia) is a pathogen causing opportunistic and nosocomial infections that are invasive and fatal, especially in hospitalized and immunocompromised patients. However, community-acquired S. maltophilia is rarely reported in children with normal immunity. S. maltophilia is a multi-drug-resistant bacterium, and the preferred drug is trimethoprim/sulfamethoxazole (TMP/SMX), which has greater side effects in children. Case Presentation Herein, we reported the case of a child with clinical manifestations of fever, high C-reactive protein (CRP) and white blood cells, and severe pneumonia. The blood culture yielded S. maltophilia. The initial treatment regimen was meropenem IV, which was subsequently changed to ceftazidime IV, and finally to oral cefixime, which has less side effects in children. The child recovered completely. At the 1-month follow-up, anteroposterior chest X-ray was normal, and the child was in good general health. Conclusion Although community-acquired S. maltophilia infection in children is rare, it can occur. The doctor encountered such a child in clinical work. This child has a normal immune system, his disease comes from a community infection and has lobar pneumonia located in the lower lung area. At the same time, the child’s white blood cells and CRP values are high, the doctor should be concerned that the child may have S. maltophilia infection. When treating patients, doctors can try to use drugs empirically, such as ceftazidime, instead of using ciprofloxacin, SMZ and other drugs that have relatively large side effects in children. It is worth mentioning that doctors also need to adjust the medication in a timely manner according to the efficacy evaluation and drug sensitivity of the children after the medication, so as to minimize the drug resistance of community-acquired infections. This will prevent the misuse of Meropenem, which has been given in a community patient and that too in a child. Its important to prevent this malpractise.
Collapse
Affiliation(s)
- ZhiHong Jiang
- Department of Paediatrics, ShaoXing KeQiao Women And Children's Hospital, ShaoXing, Zhejiang Province, People's Republic of China
| | - YiFan Ren
- Department of Paediatrics, ShaoXing KeQiao Women And Children's Hospital, ShaoXing, Zhejiang Province, People's Republic of China
| | - ChuanXin Zhang
- Department of Paediatrics, ShaoXing KeQiao Women And Children's Hospital, ShaoXing, Zhejiang Province, People's Republic of China
| | - Yu Yin
- Department of Paediatrics, ShaoXing KeQiao Women And Children's Hospital, ShaoXing, Zhejiang Province, People's Republic of China
| | - ChaoHui Li
- Department of Paediatrics, ShaoXing KeQiao Women And Children's Hospital, ShaoXing, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
5
|
Yue C, Shen W, Hu L, Liu Y, Zheng Y, Ye Y, Zhang Y, Li J. Effects of Tigecycline Combined with Azithromycin Against Biofilms of Multidrug-Resistant Stenotrophomonas maltophilia Isolates from a Patient in China. Infect Drug Resist 2021; 14:775-786. [PMID: 33679134 PMCID: PMC7924117 DOI: 10.2147/idr.s298274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Our aim was to investigate in vitro biofilm formation by S. maltophilia and the effects of antibacterial agents used to prevent biofilm formation. Methods Two trimethoprim/sulfamethoxazole-resistant S. maltophilia strains were isolated from the pleural effusion of a patient with cancer. The minimum inhibitory concentrations (MICs) of amikacin, azithromycin, cefoperazone/sulbactam, and tigecycline were determined. The checkerboard method was used to determine the fractional inhibitory concentration indices (FICIs). A crystal violet biofilm assay and confocal laser scanning microscopy (CLSM) were used to observe biofilm formation. In vitro effects of azithromycin combined with tigecycline on biofilms of S. maltophilia strains were tested. Results The two S. maltophilia isolates were confirmed to produce strong biofilms. Crystal violet biofilm assay and CLSM analysis of S. maltophilia biofilm were in the initial adhesive stage after 2 h incubation. Biofilm was in the exponential phase of growth at 12 h and reached maximal growth at 36–48 h. Compared with tigecycline or azithromycin alone, the combination of tigecycline and azithromycin increased the inhibiting effect S. maltophilia biofilm biomass after incubation for 12 h. Compared with the control group, in almost all strains treated with tigecycline and azithromycin, the biofilm was significantly suppressed significance (P<0.001). We found that 2x MIC azithromycin combined with 1x MIC tigecycline had the best inhibiting effect against the biofilm, the biofilm inhibition rates of three strains were all over 60%, the biofilm thickness was inhibited from 36.00 ± 4.00 μm to 8.00 μm, from 40.00 μm to 6.67± 2.31 μm, and from 32.00 μm to 13.33 ± 2.31 μm in SMA1, SMA2 and ATCC17666, respectively. Conclusion Azithromycin combined with tigecycline inhibited biofilm formation by S. maltophilia. Our study provides an experimental basis for a possible optimal treatment strategy for S. maltophilia biofilm-related infections.
Collapse
Affiliation(s)
- ChengCheng Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - WeiHua Shen
- Department of Special Clinic, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - LiFen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - YanYan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - YaHong Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuhao Zhang
- Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - JiaBin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|