1
|
A network-based approach to identify key genes between follicular thyroid cancer and follicular thyroid adenoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Kim H, Son S, Ko Y, Shin I. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 2021; 40:2667-2681. [PMID: 33692467 DOI: 10.1038/s41388-021-01731-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Connective tissue growth factor (CTGF), also known as CCN2, is a member of the CCN protein family of secreted proteins with roles in diverse biological processes. CTGF regulates biological functions such as cell proliferation, migration, adhesion, wound healing, and angiogenesis. In this study, we demonstrate a mechanistic link between CTGF and enhanced aerobic glycolysis in triple-negative breast cancer (TNBC). We found that CTGF is overexpressed in TNBC and high CTGF expression is correlated with a poor prognosis. Also, CTGF was required for in vivo tumorigenesis and in vitro proliferation, migration, invasion, and adhesion of TNBC cells. Our results indicate that extracellular CTGF binds directly to integrin αvβ3, activating the FAK/Src/NF-κB p65 signaling axis, which results in transcriptional upregulation of Glut3. Neutralization of CTGF decreased cell proliferation, migration, and invasion through downregulation of Glut3-mediated glycolytic phenotypes. Overall, our work suggests a novel function for CTGF as a modulator of cancer metabolism, indicating that CTGF is a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea. .,Natural Science Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
4
|
Forkhead box K1 facilitates growth of papillary thyroid carcinoma cells by regulating connective tissue growth factor expression. Hum Cell 2020; 34:457-467. [PMID: 33098545 DOI: 10.1007/s13577-020-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Forkhead box (FOX) proteins have been identified as key transcription factors in diverse biological processes involved in tumor progression. A large number of FOX proteins are implicated in tumorigenesis of papillary thyroid carcinoma (PTC). Here we investigated the role of Forkhead box K1 (FOXK1) in PTC progression. First, we found that FOXK1 was elevated in both PTC tissues (N = 68) and cell lines. Moreover, up-regulated FOXK1 was associated with shorter overall survival of PTC patients. Second, in vitro functional assays showed that FOXK1 promoted progression of PTC. Mechanistically, FOXK1 could bind to the promoter of cysteine-rich angiogenic inducer 61 (CYR61) and regulate connective tissue growth factor (CTGF) expression through CYR61. Notably, over-expression of CTGF weakened suppression of PTC progression induced by FOXK1 knockdown. Finally, in vivo xenotransplant tumor model indicated that knockdown of FOXK1 suppressed PTC growth. In conclusion, our results indicate that FOXK1 exerts oncogenic roles in PTC via CYR61/CTGF axis, which suggests FOXK1 might act as a potential therapeutic target.
Collapse
|
5
|
Li XT, Li JY, Zeng GC, Lu L, Jarrett MJ, Zhao Y, Yao QZ, Chen X, Yu KJ. Overexpression of connective tissue growth factor is associated with tumor progression and unfavorable prognosis in endometrial cancer. Cancer Biomark 2020; 25:295-302. [PMID: 31306107 DOI: 10.3233/cbm-190099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study was to explore the prognostic value of connective tissue growth factor (CTGF) expression in endometrial cancer (EC). METHODS We compared CTGF expression in 198 samples from patients with endometrial cancer and 50 samples from patients with healthy endometrial tissues as determined by immunohistochemistry. RESULTS Expression of CTGF was significantly higher in endometrial cancers as compared to normal endometrial tissues. Positive CTGF expression displayed a strong association with CA125 level, histological grade, depth of myometrial invasion and the International Federation of Gynecology and Obstetrics (FIGO) stage. Our findings revealed histological grade, depth of myometrial invasion, FIGO stage, vascular/lymphatic invasion, and the CTGF expression are related to 5-year survival in patients with endometrial cancer. Positive CTGF expression, lymph node status, as well as vascular/lymphatic invasion, were identified as independent prognostic factors in endometrial cancer. CONCLUTIONS Over-expression of CTGF is an independent prognostic factor that will allow the successful differentiation of high-risk population from the group of patients with stage III-IV endometrial cancer. The up-regulation of CTGF may contribute to the progression of endometrial cancer and serve as a new prognostic biomarker in patients with endometrial cancer survival.
Collapse
Affiliation(s)
- Xue-Ting Li
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jia-Yu Li
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guang-Chun Zeng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Li Lu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Michael J Jarrett
- Department of Cardiothoracic Surgery, University of Colorado Denver, Denver, CO 80045, USA
| | - Ye Zhao
- Department of Pathology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, 519020, China
| | - Qing-Zhou Yao
- Department of Cardiothoracic Surgery, University of Colorado Denver, Denver, CO 80045, USA
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kai-Jiang Yu
- Department of Intensive Care Unit, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
6
|
Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR, Ulisse S, Baldini E, Giannini R, Miccoli P, Antonelli A, Basolo F. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg 2018; 7:S19-S29. [PMID: 30175060 DOI: 10.21037/gs.2017.11.07] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Different genetic mutations and other molecular alterations in papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) can be detected in fine-needle aspiration (FNA) of thyroid nodules, and can be used successfully to ameliorate cancer diagnosis and management of patients with thyroid nodules. The greatest experience has been obtained with the diagnostic use of BRAF mutation that is strongly specific for malignancy when detected using well-validated techniques. The strongest diagnostic result can be obtained testing FNA samples for a panel of mutations that typically involve TERT, BRAF, PAX8/PPARγ, RAS, and RET/PTC. Finding any of these mutations in a thyroid nodule provides strong indication for malignancy and helps to refine clinical management for a significant proportion of patients with indeterminate cytology. The use of molecular markers, as TERT, BRAF, PAX8/PPARγ, RAS, and RET/PTC, may be considered for patients with indeterminate FNA cytology (FNAC) to help guide management. In patients with indeterminate TIR3 FNA, the combination of precise molecular marker expression analysis with molecular mutations evaluations could ameliorate significantly the accuracy of cancer diagnosis. However other prospective studies are needed to identify more accurate molecular markers. Finally, the knowledge of these molecular pathways has permitted the development of new targeted therapies for aggressive TC.
Collapse
Affiliation(s)
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Salvatore Ulisse
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Drzewiecka H, Gałęcki B, Jarmołowska-Jurczyszyn D, Kluk A, Dyszkiewicz W, Jagodziński PP. Decreased expression of connective tissue growth factor in non-small cell lung cancer is associated with clinicopathological variables and can be restored by epigenetic modifiers. J Cancer Res Clin Oncol 2016; 142:1927-46. [PMID: 27393180 PMCID: PMC4978771 DOI: 10.1007/s00432-016-2195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/18/2016] [Indexed: 01/27/2023]
Abstract
Purpose Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. Methods We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2′-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. Results We found significantly decreased levels of CTGF mRNA and protein (both p < 0.0000001) in cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Conclusions Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development. Electronic supplementary material The online version of this article (doi:10.1007/s00432-016-2195-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland.
| | - Bartłomiej Gałęcki
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Szamarzewskiego 62 Street, 60-569, Poznan, Poland
| | - Donata Jarmołowska-Jurczyszyn
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355, Poznan, Poland
| | - Andrzej Kluk
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355, Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Szamarzewskiego 62 Street, 60-569, Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| |
Collapse
|
8
|
Borrelli N, Ugolini C, Giannini R, Antonelli A, Giordano M, Sensi E, Torregrossa L, Fallahi P, Miccoli P, Basolo F. Role of gene expression profiling in defining indeterminate thyroid nodules in addition to BRAF analysis. Cancer Cytopathol 2016; 124:340-9. [PMID: 26749005 DOI: 10.1002/cncy.21681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022]
Abstract
Fine-needle aspiration (FNA) is routinely used in the preoperative evaluation of thyroid nodules. However, 15% to 30% of aspirations yield indeterminate cytologic findings. Because the assessment of BRAF mutations seems to improve the diagnostic accuracy, this study evaluated BRAF mutations with Sanger sequencing and real-time methods in 650 consecutive thyroid aspirates. In addition, the expression of a large number of genes involved in basement membrane remodeling, extracellular matrix proteolysis, and cell adhesion was studied in both benign and malignant nodules to identify new diagnostic tools. In this prospective series, despite the use of a very sensitive BRAF mutational testing method, the frequency of a BRAF alteration being identified in indeterminate FNA samples was 3 of 68. Expression analysis revealed several genes that were differentially expressed between benign and malignant nodules (transforming growth factor, cadherin 1, collagen α1, catenin α1, integrin α3, and fibronectin 1 [FN1]), between follicular adenomas and follicular variant of papillary thyroid carcinoma (FN1, laminin γ1, integrin β2, connective tissue growth factor, catenin δ1, and integrin αV), and between BRAF-wild-type and BRAF-mutated papillary thyroid carcinomas (TIMP metallopeptidase inhibitor 1; catenin α1; secreted phosphoprotein 1; FN1; ADAM metallopeptidase with thrombospondin type 1 motif, 1; and selectin L). These data were partially confirmed with real-time polymerase chain reaction analysis and immunohistochemistry. When the cost/benefit ratio of the procedures was taken into account, BRAF mutational testing failed to increase diagnostic accuracy in cytologically indeterminate nodules. However, the additional analysis of the expression of specific molecular markers could have possible utility as a diagnostic tool, although further evidence based on a large series of samples is needed before definitive conclusions can be drawn. Cancer Cytopathol 2016;124:340-9. © 2015 American Cancer Society.
Collapse
Affiliation(s)
- Nicla Borrelli
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Elisa Sensi
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Section of Cytopathology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Fulvio Basolo
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Kubota S, Maeda-Uematsu A, Nishida T, Takigawa M. New functional aspects of CCN2 revealed by trans-omic approaches. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 2014; 128:181-96. [DOI: 10.1042/cs20140264] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CCN family protein 2 (CCN2), also widely known as connective tissue growth factor (CTGF), is one of the founding members of the CCN family of matricellular proteins. Extensive investigation on CCN2 over decades has revealed the novel molecular action and functional properties of this unique signalling modulator. By its interaction with multiple molecular counterparts, CCN2 yields highly diverse and context-dependent biological outcomes in a variety of microenvironments. Nowadays, CCN2 is recognized to conduct the harmonized development of relevant tissues, such as cartilage and bone, in the skeletal system, by manipulating extracellular signalling molecules involved therein by acting as a hub through a web. However, on the other hand, CCN2 occasionally plays profound roles in major human biological disorders, including fibrosis and malignancies in major organs and tissues, by modulating the actions of key molecules involved in these clinical entities. In this review, the physiological and pathological roles of this unique protein are comprehensively summarized from a molecular network-based viewpoint of CCN2 functionalities.
Collapse
|
11
|
Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines. ScientificWorldJournal 2014; 2014:903602. [PMID: 25032244 PMCID: PMC4083270 DOI: 10.1155/2014/903602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/14/2022] Open
Abstract
We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT) related genes were selected by significance analysis of microarrays (SAM). Orthogonal latent variables (LVs) were then extracted by the partial least squares (PLS) method as the new compressive input variables. Finally, support vector machine (SVM) regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray) values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a) reducing the root mean square error (RMSE) of the radiation sensitivity prediction model from 0.20 to 0.011; and (b) improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.
Collapse
|