1
|
Lathouwers E, Maricot A, Tassignon B, Geers S, Flynn L, Verstraten T, De Pauw K. User accommodation to an active microprocessor-controlled knee in individuals with unilateral transfemoral amputation: a 5-week non-randomized trial. J Neuroeng Rehabil 2025; 22:105. [PMID: 40329316 PMCID: PMC12057274 DOI: 10.1186/s12984-025-01637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Evaluation studies on active microprocessor-controlled knees (AMPK) in individuals with unilateral transfemoral amputation (TFA) are lacking in the literature. Furthermore, research on user accommodation to AMPK remains to be investigated. Hence, this study aims to conduct a comparison between an AMPK and individual's current prosthesis and assess the accommodation to using an AMPK during daily activities over a 5-week period on functional performance tests. METHODS Participants with TFA completed a protocol comprising L-test, slope walking, level walking (2MWT) and dual-task level walking (dual-2MWT) once a week with their current prosthesis and the AMPK. The outcomes of interest were the distance covered during the 2MWT and dual-2MWT, time required to perform the L-test, accuracy of the serial subtractions during the dual-2MWT, heart rate (HR), rating of perceived exertion, fatigue, comfort and perceived workload. Generalised least-squared models were built to investigate differences in prosthetic conditions over time. Pearson correlations were calculated to determine associations between the performance and subjective outcomes. The level of significance was set at 0.05. RESULTS Seven participants (age = 53 years ± 14 years) completed the study. Over time, the AMPK participants took longer to complete the L-test than their current prosthesis (p < 0.001). They reported higher fatigue (p = 0.033), lower comfort (p = 0.010), and higher perceived exertion with the AMPK (p = 0.048). Slope walking showed no significant walking speed or HR differences except higher HR with the AMPK in session 3 (p = 0.032). Dual-task level walking demonstrated lower walking speed with the AMPK (p = 0.035) and more responses to serial subtractions in sessions two (p = 0.043) and four (p = 0.023). No other differences between conditions were found on one of the functional tests. Weak associations (|r|= 0-0.5) were observed between performance and subjective measures. CONCLUSION Using the AMPK highlights initial challenges in task completion times and subjective comfort and fatigue levels. Our findings indicate that five one-hour sessions are insufficient for achieving user accommodation, and underscore the need for further research with a larger sample, continued prosthetic use and user accommodation to enhance prosthetic functioning and user experiences. TRIAL REGISTRATION NCT05407545.
Collapse
Affiliation(s)
- Elke Lathouwers
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Alexandre Maricot
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Bruno Tassignon
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Sybille Geers
- Unit of Physical and Rehabilitation Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Louis Flynn
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Robotics & Multibody Mechanics Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Tom Verstraten
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Robotics & Multibody Mechanics Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
2
|
Cyr KM, Neptune RR, Klute GK. Influence of prosthetic foot selection on walking performance during various load carriage conditions. Clin Biomech (Bristol, Avon) 2025; 122:106440. [PMID: 39862612 DOI: 10.1016/j.clinbiomech.2025.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Ambulatory individuals with lower limb amputations often face challenges with body support, body propulsion, and balance control. Carrying an infant, toddler, backpack, or other load can exacerbate these challenges and highlights the importance of prescribing the most suitable prosthetic foot. The aim of this study was to examine the influence of five different prosthetic feet on walking performance during various load carriage conditions. METHODS Biomechanical data were collected from twelve participants wearing five different prosthetic feet (four passive, one powered) while walking with no added load and carrying a load of 13.6 kg in four different positions: posterior, anterior, prosthetic side, and intact side. FINDINGS Based on our study population, a powered-ankle-foot offers additional body support when a load is carried posteriorly. If additional forward propulsion is needed while carrying a load anteriorly, a heel wedge is better than a stiffer foot. For individuals who may need additional sagittal plane balance control, no study foot was advantageous regardless of how the load was carried. For those who need additional frontal plane balance control during posterior load carriage, a heel wedge is better than a stiffer or powered foot. Lastly, the standard-of-care, heel wedge, and dual keel feet provided more frontal plane balance control than a powered foot when a load was carried anteriorly. INTERPRETATION For individuals with lower limb amputation who carry loads, consideration of their preferred load carrying method may help select an appropriate prosthetic foot for body support, propulsion, and balance control.
Collapse
Affiliation(s)
- Krista M Cyr
- Department of Veterans Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Glenn K Klute
- Department of Veterans Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Riveras M, Oldfield M, Catalfamo-Formento P. Angular Kinematics at Minimum Toe Clearance in People With Transtibial Amputation Using Articulated and Nonarticulated Prosthesis. J Biomech Eng 2025; 147:011009. [PMID: 39436783 DOI: 10.1115/1.4066958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Subjects with unilateral transtibial amputation exhibit altered minimum toe clearance (MTC) depending on the ankle prosthesis used. It has been suggested that a limited prosthetic ankle angle could be the cause of the change. The aim of this study was to investigate the alterations in kinematics in the joints responsible for the changes in MTC when using an articulating hydraulic ankle (AHA) prosthesis compared to a nonarticulating ankle (NAA) prosthesis. Twelve participants with unilateral transtibial amputation walked at their self-selected speed on a 10 m pathway. They used both the same AHA and NAA prosthetic models and the prosthetic characteristics were unchanged except for the ankle mechanisms and, consequently, its mass. Data from MTC and hip, knee, and ankle angles in the sagittal, frontal, and transversal plane at the time of MTC were statistically analyzed with a paired sample t-test. The AHA prosthesis showed significantly higher MTC mean (AHA=24.7 ± 9.6 mm versus NAA=17.4 ± 5.2 mm, P<0.01) and variability (13.4 ± 9.6 mm versus 6.7 ± 4.2 mm, P=0.03) on the prosthetic limb than the NAA. A higher mean MTC could be explained by an increase in ankle angle dorsiflexion (AHA=-1.2 ± 2.6 deg versus NAA=-2.9 ± 1.5 deg, P=0.01), while the variability of the prosthetic MTC appears to be influenced by changes in prosthetic mass. The results of this study suggest that ankle dorsiflexion during swing and the mass of the prosthesis have a direct influence in mean MTC and its variability, respectively.
Collapse
Affiliation(s)
- Mauricio Riveras
- Human Movement Research Laboratory, IBB-UNER, Oro Verde, Entre Ríos E3100XAD, Argentina
| | - Matthew Oldfield
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | |
Collapse
|
4
|
Sharma S, Anderson KM, Pacha MS, Falbo KJ, Severe C, Hansen AH, Hendershot BD, Wilken JM. The effect of carbon fiber custom dynamic orthosis use and design on center of pressure progression and perceived smoothness in individuals with lower limb trauma. Clin Biomech (Bristol, Avon) 2024; 117:106284. [PMID: 38870878 DOI: 10.1016/j.clinbiomech.2024.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Carbon-fiber custom dynamic orthoses are used to improve gait and limb function following lower limb trauma in specialty centers. However, the effects of commercially available orthoses on center of pressure progression and patient perception of orthosis smoothness during walking are poorly understood. METHODS In total, 16 participants with a unilateral lower extremity traumatic injury underwent gait analysis when walking without an orthosis, and while wearing monolithic and modular devices, in a randomized order. Device alignment, stiffness, participant rating of perceived device smoothness, center of pressure velocity, and ankle zero moment crossing were assessed. FINDINGS The modular device was approximately twice as stiff as the monolithic device. Alignment, smoothness ratings, peak magnitude of center of pressure velocity, and zero moment crossing were not different between study devices. The time to peak center of pressure velocity occurred significantly later for the modular device compared to the monolithic and no orthosis conditions, with large effect sizes observed. INTERPRETATION Commercially available orthoses commonly used to treat limb trauma affect the timing of center of pressure progression relative to walking without an orthosis. Despite multiple design differences, monolithic and modular orthoses included in this study did not differ with respect to other measures of center of pressure progression. Perceived smoothness ratings were approximately 40% greater with the study orthoses as compared to previous studies in specialty centers, which may be due to a more gradual center of pressure progression, as indicted by lower peak magnitude of center of pressure velocity with both study orthoses.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - Kirsten M Anderson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Molly S Pacha
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kierra J Falbo
- Rehabilitation and Engineering Center for Optimizing Veteran Engagement and Reintegration (RECOVER), Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Clare Severe
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Andrew H Hansen
- Rehabilitation and Engineering Center for Optimizing Veteran Engagement and Reintegration (RECOVER), Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Brad D Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
| | - Jason M Wilken
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Klute GK, Mulcahy CW. Sagittal and transverse ankle angle coupling can influence prosthetic socket transverse plane moments. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1354144. [PMID: 38638287 PMCID: PMC11024427 DOI: 10.3389/fresc.2024.1354144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Introduction The intact foot and ankle comprise a complex set of joints that allow rotation in multiple planes of motion. Some of these motions are coupled, meaning rotation in one plane induces motion in another. One such coupling is between the sagittal and transverse planes. For every step, plantar- and dorsi-flexion motion is coupled with external and internal rotation of the shank relative to the foot, respectively. There is no prosthetic foot available for prescription that mimics this natural coupling. The purpose of this study was to determine if a sagittal:transverse ankle angle coupling ratio exists that minimizes the peak transverse plane moment during prosthetic limb stance. Methods A novel, torsionally active prosthesis (TAP) was used to couple sagittal and transverse plane motions using a 60-watt motor. An embedded controller generated transverse plane rotation trajectories proportional to sagittal plane ankle angles corresponding to sagittal:transverse coupling ratios of 1:0 (rigid coupling analogous to the standard-of-care), 6:1, 4:1, 3:1, and 2:1. Individuals with unilateral transtibial amputation were block randomized to walk in a straight line and in both directions around a 2 m circle at their self-selected speed with the TAP set at randomized coupling ratios. The primary outcome was the peak transverse plane moment, normalized to body mass, during prosthetic limb stance. Secondary outcomes included gait biomechanic metrics and a measure of satisfaction. Results Eleven individuals with unilateral transtibial amputations participated in the study. The 6:1 coupling ratio resulted in reduced peak transverse plane moments in pairwise comparisons with 3:1 and 2:1 coupling ratios while walking in a straight line and with the prosthesis on the outside of the circle (p < .05). Coupling ratio had no effect on gait biomechanic metrics or satisfaction. Discussion The general pattern of results suggests a quadratic relationship between the peak transverse plane moment and coupling ratio with a minimum at the 6:1 coupling ratio. The coupling ratio did not appear to adversely affect propulsion or body support. Subjects indicated they found all coupling ratios to be comfortable. While a mechatronic prosthesis like the TAP may have limited commercial potential, our future work includes testing a robust, passive prosthetic foot with a fixed coupling ratio.
Collapse
Affiliation(s)
- Glenn K. Klute
- US Department of Veterans Affairs, Centerfor Limb Loss and MoBility, Seattle, WA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Connor W. Mulcahy
- US Department of Veterans Affairs, Centerfor Limb Loss and MoBility, Seattle, WA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Knight AD, Jayaraman C, Elrod JM, Schnall BL, McGuire MS, Sleeman TJ, Hoppe-Ludwig S, Dearth CL, Hendershot BD, Jayaraman A. Functional Performance Outcomes of a Powered Knee-Ankle Prosthesis in Service Members With Unilateral Transfemoral Limb Loss. Mil Med 2023; 188:3432-3438. [PMID: 35895305 DOI: 10.1093/milmed/usac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Clinical knowledge surrounding functional outcomes of a powered knee-ankle (PKA) device is limited, particularly among younger and active populations with limb loss. Here, three service members (SM) with unilateral transfemoral limb loss received an optimally tuned PKA prosthesis and device-specific training. MATERIALS AND METHODS Once proficiency with the PKA device was demonstrated on benchmark activities, and outcomes with the PKA and standard-of-care (SoC) prostheses were obtained via a modified graded treadmill test, 6-minute walk test, and overground gait assessment. RESULTS All SM demonstrated proficiency with the PKA prosthesis within the minimum three training sessions. With the PKA versus SoC prosthesis, cost of transport during the modified graded treadmill test was 4.0% ± 5.2% lower at slower speeds (i.e., 0.6-1.2 m/s), but 7.0% ± 5.1% greater at the faster walking speeds (i.e., ≥1.4 m/s). For the 6-minute walk test, SM walked 83.9 ± 13.2 m shorter with the PKA versus SoC prosthesis. From the overground gait assessment, SM walked with 20.6% ± 10.5% greater trunk lateral flexion and 31.8% ± 12.8% greater trunk axial rotation ranges of motion, with the PKA versus SoC prosthesis. CONCLUSIONS Compared to prior work with the PKA in a civilian cohort, although SM demonstrated faster device proficiency (3 versus 12 sessions), SM walked with greater compensatory motions compared to their SoC prostheses (contrary to the civilian cohort). As such, it is important to understand patient-specific factors among various populations with limb loss for optimizing device-specific training and setting functional goals for occupational and/or community reintegration, as well as reducing the risk for secondary complications over the long term.
Collapse
Affiliation(s)
- Ashley D Knight
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Chandrasekaran Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan M Elrod
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Barri L Schnall
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Matt S McGuire
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Todd J Sleeman
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Shenan Hoppe-Ludwig
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Christopher L Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Surgery, Walter Reed National Military Medical Center-Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Brad D Hendershot
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Hunt GR, Hood S, Gabert L, Lenzi T. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations? J Neuroeng Rehabil 2023; 20:58. [PMID: 37131231 PMCID: PMC10155411 DOI: 10.1186/s12984-023-01177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND After above-knee amputation, the missing biological knee and ankle are replaced with passive prosthetic devices. Passive prostheses are able to dissipate limited amounts of energy using resistive damper systems during "negative energy" tasks like sit-down. However, passive prosthetic knees are not able to provide high levels of resistance at the end of the sit-down movement when the knee is flexed, and users need the most support. Consequently, users are forced to over-compensate with their upper body, residual hip, and intact leg, and/or sit down with a ballistic and uncontrolled movement. Powered prostheses have the potential to solve this problem. Powered prosthetic joints are controlled by motors, which can produce higher levels of resistance at a larger range of joint positions than passive damper systems. Therefore, powered prostheses have the potential to make sitting down more controlled and less difficult for above-knee amputees, improving their functional mobility. METHODS Ten individuals with above-knee amputations sat down using their prescribed passive prosthesis and a research powered knee-ankle prosthesis. Subjects performed three sit-downs with each prosthesis while we recorded joint angles, forces, and muscle activity from the intact quadricep muscle. Our main outcome measures were weight-bearing symmetry and muscle effort of the intact quadricep muscle. We performed paired t-tests on these outcome measures to test for significant differences between passive and powered prostheses. RESULTS We found that the average weight-bearing symmetry improved by 42.1% when subjects sat down with the powered prosthesis compared to their passive prostheses. This difference was significant (p = 0.0012), and every subject's weight-bearing symmetry improved when using the powered prosthesis. Although the intact quadricep muscle contraction differed in shape, neither the integral nor the peak of the signal was significantly different between conditions (integral p > 0.01, peak p > 0.01). CONCLUSIONS In this study, we found that a powered knee-ankle prosthesis significantly improved weight-bearing symmetry during sit-down compared to passive prostheses. However, we did not observe a corresponding decrease in intact-limb muscle effort. These results indicate that powered prosthetic devices have the potential to improve balance during sit-down for individuals with above-knee amputation and provide insight for future development of powered prosthetics.
Collapse
Affiliation(s)
- Grace R Hunt
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Sarah Hood
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lukas Gabert
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Rocky Mountain Center for Occupational and Environmental Health, Salt Lake City, UT, USA
| | - Tommaso Lenzi
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Rocky Mountain Center for Occupational and Environmental Health, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Lathouwers E, Baeyens JP, Tassignon B, Gomez F, Cherelle P, Meeusen R, Vanderborght B, De Pauw K. Continuous relative phases of walking with an articulated passive ankle-foot prosthesis in individuals with a unilateral transfemoral and transtibial amputation: an explorative case-control study. Biomed Eng Online 2023; 22:14. [PMID: 36793091 PMCID: PMC9933324 DOI: 10.1186/s12938-023-01074-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A mechanical ankle-foot prosthesis (Talaris Demonstrator) was developed to improve prosthetic gait in people with a lower-limb amputation. This study aims to evaluate the Talaris Demonstrator (TD) during level walking by mapping coordination patterns based on the sagittal continuous relative phase (CRP). METHODS Individuals with a unilateral transtibial amputation, transfemoral amputation and able-bodied individuals completed 6 minutes of treadmill walking in consecutive blocks of 2 minutes at self-selected (SS) speed, 75% SS speed and 125% SS speed. Lower extremity kinematics were captured and hip-knee and knee-ankle CRPs were calculated. Statistical non-parametric mapping was applied and statistical significance was set at 0.05. RESULTS The hip-knee CRP at 75% SS walking speed with the TD was larger in the amputated limb of participants with a transfemoral amputation compared to able-bodied individuals at the beginning and end of the gait cycle (p = 0.009). In people with a transtibial amputation, the knee-ankle CRP at SS and 125% SS walking speeds with the TD were smaller in the amputated limb at the beginning of the gait cycle compared to able-bodied individuals (p = 0.014 and p = 0.014, respectively). Additionally, no significant differences were found between both prostheses. However, visual interpretation indicates a potential advantage of the TD over the individual's current prosthesis. CONCLUSION This study provides lower-limb coordination patterns in people with a lower-limb amputation and reveals a possible beneficial effect of the TD over the individuals' current prosthesis. Future research should include a well-sampled investigation of the adaptation process combined with the prolonged effects of the TD.
Collapse
Affiliation(s)
- Elke Lathouwers
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jean-Pierre Baeyens
- grid.8767.e0000 0001 2290 8069Experimental Anatomy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium ,THIM, Internationale Hochschule Fur Physiotherapîe, Landquart, Switzerland ,grid.5284.b0000 0001 0790 3681Faculty of Applied Engineering Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - Bruno Tassignon
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | | | | | - Romain Meeusen
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bram Vanderborght
- grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Robotics Research Group, Vrije Universiteit Brussel and IMEC, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium. .,Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Lathouwers E, Díaz MA, Maricot A, Tassignon B, Cherelle C, Cherelle P, Meeusen R, De Pauw K. Therapeutic benefits of lower limb prostheses: a systematic review. J Neuroeng Rehabil 2023; 20:4. [PMID: 36639655 PMCID: PMC9840272 DOI: 10.1186/s12984-023-01128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Enhancing the quality of life of people with a lower limb amputation is critical in prosthetic development and rehabilitation. Yet, no overview is available concerning the impact of passive, quasi-passive and active ankle-foot prostheses on quality of life. OBJECTIVE To systematically review the therapeutic benefits of performing daily activities with passive, quasi-passive and active ankle-foot prostheses in people with a lower limb amputation. METHODS We searched the Pubmed, Web of Science, Scopus and Pedro databases, and backward citations until November 3, 2021. Only English-written randomised controlled trials, cross-sectional, cross-over and cohort studies were included when the population comprised individuals with a unilateral transfemoral or transtibial amputation, wearing passive, quasi-passive or active ankle-foot prostheses. The intervention and outcome measures had to include any aspect of quality of life assessed while performing daily activities. We synthesised the participants' characteristics, type of prosthesis, intervention, outcome and main results, and conducted risk of bias assessment using the Cochrane risk of bias tool. This study is registered on PROSPERO, number CRD42021290189. RESULTS We identified 4281 records and included 34 studies in total. Results indicate that quasi-passive and active prostheses are favoured over passive prostheses based on biomechanical, physiological, performance and subjective measures in the short-term. All studies had a moderate or high risk of bias. CONCLUSION Compared to passive ankle-foot prostheses, quasi-passive and active prostheses significantly enhance the quality of life. Future research should investigate the long-term therapeutic benefits of prosthetics devices.
Collapse
Affiliation(s)
- Elke Lathouwers
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Alejandra Díaz
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexandre Maricot
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bruno Tassignon
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | | | | | - Romain Meeusen
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium. .,Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
10
|
Finco MG, Moudy SC, Patterson RM. Normalized kinematic walking symmetry data for individuals who use lower-limb prostheses: considerations for clinical practice and future research. JOURNAL OF PROSTHETICS AND ORTHOTICS : JPO 2023; 35:e1-e17. [PMID: 37008386 PMCID: PMC10062529 DOI: 10.1097/jpo.0000000000000435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT
Introduction
Individuals who use unilateral transtibial or transfemoral prostheses have negative secondary health effects associated with decreased kinematic (e.g., spatiotemporal and joint angle) walking symmetry between prosthetic and intact limbs. Research studies have quantified kinematic walking symmetry, but studies can be difficult to compare owing to the inclusion of small sample sizes and differences in participant demographics, biomechanical parameters, and mathematical analysis of symmetry. This review aims to normalize kinematic walking symmetry research data across studies by level of limb loss and prosthetic factors to inform considerations in clinical practice and future research.
Methods
A search was performed on March 18, 2020, in PubMed, Scopus, and Google Scholar to encompass kinematic walking symmetry literature from the year 2000. First, the most common participant demographics, kinematic parameters, and mathematical analysis of symmetry were identified across studies. Then, the most common mathematical analysis of symmetry was used to recalculate symmetry data across studies for the five most common kinematic parameters.
Results
Forty-four studies were included in this review. The most common participant demographics were younger adults with traumatic etiology who used componentry intended for higher activity levels. The most common kinematic parameters were step length, stance time, and sagittal plane ankle, knee, and hip range of motion. The most common mathematical analysis was a particular symmetry index equation.
Conclusions
Normalization of data showed that symmetry tended to decrease as level of limb loss became more proximal and to increase with prosthetic componentry intended for higher activity levels. However, most studies included 10 or fewer individuals who were active younger adults with traumatic etiologies.
Clinical Relevance
Data summarized in this review could be used as reference values for rehabilitation and payer justification. Specifically, these data can help guide expectations for magnitudes of walking symmetry throughout rehabilitation or to justify advanced prosthetic componentry for active younger adults under 65 years of age with traumatic etiologies to payers.
Collapse
Affiliation(s)
- M G Finco
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Sarah C Moudy
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Rita M Patterson
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| |
Collapse
|
11
|
Rakbangboon T, Guerra G, Kla-arsa S, Padungjaroen U, Tangpornprasert P, Virulsri C, Sasaki K. High-Level Mobility of Trans-Tibial Prosthesis Users Wearing Commercial and sPace Energy-Storing Prosthetic Feet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12606. [PMID: 36231917 PMCID: PMC9566704 DOI: 10.3390/ijerph191912606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Outcomes of users provided with a commercial ESR Vari-Flex foot (Össur, Reykjavik, Iceland) and a locally designed sPace foot were investigated. Step activity with users' own prosthetic foot compared to the sPace foot was explored. METHODS Eleven individuals with unilateral trans-tibial amputation participated and were provided with an sPace and Vari-Flex foot. Ten- and twenty-meter walk tests (10/20MWT) at comfortable and fast walking speeds (CWS/FWS), the two-minute walk test (2-MWT) and Comprehensive High-Level Activity Mobility Predictor (CHAMP) were administered. A subgroup was provided a pedometer to record their steps over a 7-day period in their own foot and later the sPace. RESULTS The sPace foot performed well in a battery of high-level mobility outcome measures. On CHAMP, participants scored 16.94 ± 5.41 and 16.72 ± 6.09 with the sPace and Vari-Flex feet, respectively. Subgroup testing of step activity showed 4490 ± 3444 steps in users' own feet and 3115 ± 1967 in the sPace foot, p = 0.176. CONCLUSIONS Participants using the sPace foot were capable of performing walking, high-level mobility and activity outcome measures.
Collapse
Affiliation(s)
- Thanyaporn Rakbangboon
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Gary Guerra
- Department of Exercise and Sport Science, St. Mary’s University, San Antonio, TX 78228, USA
| | - Saloottra Kla-arsa
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Uthumporn Padungjaroen
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pairat Tangpornprasert
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanyaphan Virulsri
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kazuhiko Sasaki
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
12
|
Mahon CE, Hendershot BD. Biomechanical accommodation to walking with an ankle-foot prosthesis: An exploratory analysis of novice users with transtibial limb loss within the first year of ambulation. Prosthet Orthot Int 2022; 46:452-458. [PMID: 35333820 DOI: 10.1097/pxr.0000000000000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The way in which a person with limb loss interacts with a prosthesis changes over time; however, there remains a lack of guidance for defining accommodation to walking with a prosthesis, limiting consistency and generalizability of research. OBJECTIVE To evaluate accommodations to walking with dynamic elastic response prosthetic ankle-foot devices among novice users with unilateral transtibial limb loss during the first year of ambulation. STUDY DESIGN This is a retrospective cohort study. METHODS Prosthetic and intact ankle-foot mechanical power profiles and mechanical work during step-to-step transitions were calculated using the Unified Deformable model for 22 male individuals with limb loss at five time points within the first year of independent ambulation (0, 2, 4, 6, and 12 months). Subjects walked at a self-selected walking velocity and controlled walking velocity (CWV). Subjective measures included the Prosthetic Evaluation Questionnaire and the 36-Item Short-Form Health Survey. RESULTS Self-selected walking velocity ranged from 1.24 ± 0.06 m/s at 0 month to 1.38 ± 0.04 m/s at 12 months, whereas CWV was 1.20 ± 0.02 m/s. At both velocities, positive work/peak power during prosthetic push-off trended upward until the 4-month time point. In addition, negative peak power during intact foot-strike seemed to qualitatively become less negative until 4 months. Positive work during intact push-off trended downward until 4 months at CWV, whereas positive peak power during intact push-off qualitatively became more positive at self-selected walking velocity. CONCLUSIONS These trends may partially indicate (biomechanical) accommodation to walking by appearance of a "plateau" at 4 months after initial ambulation with a prosthesis.
Collapse
Affiliation(s)
- Caitlin E Mahon
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Brad D Hendershot
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
13
|
Evaluation of an articulated passive ankle-foot prosthesis. Biomed Eng Online 2022; 21:28. [PMID: 35477464 PMCID: PMC9047309 DOI: 10.1186/s12938-022-00997-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Current ankle prostheses for people with unilateral transtibial amputation (TTA) or transfemoral amputation (TFA) are unable to mimic able-bodied performance during daily activities. A new mechanical ankle–foot prosthesis was developed to further optimise the gait of people with a lower-limb amputation. This study aimed to evaluate the Talaris Demonstrator (TD) during daily activities by means of performance-related, physiological and subjective outcome measures. Materials and methods Forty-two participants completed a protocol assessing performance and functional mobility with their current prosthesis and the TD. The protocol comprised the L-test, 2 min of stair climbing, 2 min of inclined treadmill walking, 6 min of treadmill walking at 3 different speeds in consecutive blocks of 2 min, and a 3-m Backward Walk test (3mBWT). Heart rate was measured during each task, and oxygen uptake was collected during all tasks except for the L-test and 3mBWT. Time of execution was recorded on the L-test and 3mBWT, and the rate of perceived exertion (score = 6–20), fatigue and comfort (score = 0–100) were assessed after each task. Paired sample t-tests and Wilcoxon Signed-rank tests were performed to compare outcomes between prosthetic devices. Benjamini–Hochberg corrections were applied to control for multiple comparisons with a level of significance set at α = 0.05. Results Subjects with a TTA (N = 28) were faster with their current prosthesis compared to the TD on the L-test and 3mBWT (p = 0.005). In participants with a TFA (N = 14), we observed a tendency towards a higher heart rate during the L-test and towards increased comfort during inclined walking, with the TD compared to the participants’ current prosthetic device (0.05 < p < 0.10). Further, no significant results were observed. Conclusion The Talaris Demonstrator is a novel state-of-the-art passive ankle–foot prosthesis for both people with a TTA and TFA. Subjective measures indicate the added value of this device, while overall task performance and intensity of effort do not differ between the Talaris Demonstrator and the current prosthesis. Further investigations unravelling both acute and more prolonged adaptations will be conducted to evaluate the TD more thoroughly.
Collapse
|
14
|
Biomechanical evaluation over level ground walking of user-specific prosthetic feet designed using the lower leg trajectory error framework. Sci Rep 2022; 12:5306. [PMID: 35351910 PMCID: PMC8964743 DOI: 10.1038/s41598-022-09114-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The walking pattern and comfort of a person with lower limb amputation are determined by the prosthetic foot’s diverse set of mechanical characteristics. However, most design methodologies are iterative and focus on individual parameters, preventing a holistic design of prosthetic feet for a user’s body size and walking preferences. Here we refined and evaluated the lower leg trajectory error (LLTE) framework, a novel quantitative and predictive design methodology that optimizes the mechanical function of a user’s prosthesis to encourage gait dynamics that match their body size and desired walking pattern. Five people with unilateral below-knee amputation walked over-ground at self-selected speeds using an LLTE-optimized foot made of Nylon 6/6, their daily-use foot, and a standardized commercial energy storage and return (ESR) foot. Using the LLTE feet, target able-bodied kinematics and kinetics were replicated to within 5.2% and 13.9%, respectively, 13.5% closer than with the commercial ESR foot. Additionally, energy return and center of mass propulsion work were 46% and 34% greater compared to the other two prostheses, which could lead to reduced walking effort. Similarly, peak limb loading and flexion moment on the intact leg were reduced by an average of 13.1%, lowering risk of long-term injuries. LLTE-feet were preferred over the commercial ESR foot across all users and preferred over the daily-use feet by two participants. These results suggest that the LLTE framework could be used to design customized, high performance ESR prostheses using low-cost Nylon 6/6 material. More studies with large sample size are warranted for further verification.
Collapse
|
15
|
De Marchis C, Ranaldi S, Varrecchia T, Serrao M, Castiglia SF, Tatarelli A, Ranavolo A, Draicchio F, Lacquaniti F, Conforto S. Characterizing the Gait of People With Different Types of Amputation and Prosthetic Components Through Multimodal Measurements: A Methodological Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:804746. [PMID: 36189078 PMCID: PMC9397865 DOI: 10.3389/fresc.2022.804746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022]
Abstract
Prosthetic gait implies the use of compensatory motor strategies, including alterations in gait biomechanics and adaptations in the neural control mechanisms adopted by the central nervous system. Despite the constant technological advancements in prostheses design that led to a reduction in compensatory movements and an increased acceptance by the users, a deep comprehension of the numerous factors that influence prosthetic gait is still needed. The quantitative prosthetic gait analysis is an essential step in the development of new and ergonomic devices and to optimize the rehabilitation therapies. Nevertheless, the assessment of prosthetic gait is still carried out by a heterogeneous variety of methodologies, and this limits the comparison of results from different studies, complicating the definition of shared and well-accepted guidelines among clinicians, therapists, physicians, and engineers. This perspective article starts from the results of a project funded by the Italian Worker's Compensation Authority (INAIL) that led to the generation of an extended dataset of measurements involving kinematic, kinetic, and electrophysiological recordings in subjects with different types of amputation and prosthetic components. By encompassing different studies published along the project activities, we discuss the specific information that can be extracted by different kinds of measurements, and we here provide a methodological perspective related to multimodal prosthetic gait assessment, highlighting how, for designing improved prostheses and more effective therapies for patients, it is of critical importance to analyze movement neural control and its mechanical actuation as a whole, without limiting the focus to one specific aspect.
Collapse
Affiliation(s)
- Cristiano De Marchis
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
- Department of Engineering, University of Messina, Messina, Italy
- *Correspondence: Cristiano De Marchis
| | - Simone Ranaldi
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
| | - Tiwana Varrecchia
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Mariano Serrao
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Stefano Filippo Castiglia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Antonella Tatarelli
- Department of Human Neurosciences, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Alberto Ranavolo
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Francesco Draicchio
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Conforto
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
| |
Collapse
|
16
|
Huang H(H, Si J, Brandt A, Li M. Taking Both Sides: Seeking Symbiosis Between Intelligent Prostheses and Human Motor Control during Locomotion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100314. [PMID: 34458654 PMCID: PMC8388605 DOI: 10.1016/j.cobme.2021.100314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Robotic lower-limb prostheses aim to replicate the power-generating capability of biological joints during locomotion to empower individuals with lower-limb loss. However, recent clinical trials have not demonstrated clear advantages of these devices over traditional passive devices. We believe this is partly because the current designs of robotic prothesis controllers and clinical methods for fitting and training individuals to use them do not ensure good coordination between the prosthesis and user. Accordingly, we advocate for new holistic approaches in which human motor control and intelligent prosthesis control function as one system (defined as human-prosthesis symbiosis). We hope engineers and clinicians will work closely to achieve this symbiosis, thereby improving the functionality and acceptance of robotic prostheses and users' quality of life.
Collapse
Affiliation(s)
- He (Helen) Huang
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| | - Jennie Si
- Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona, USA, 85281
| | - Andrea Brandt
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| | - Minhan Li
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| |
Collapse
|
17
|
Knight AD, Dearth CL, Hendershot BD. Deleterious Musculoskeletal Conditions Secondary to Lower Limb Loss: Considerations for Prosthesis-Related Factors. Adv Wound Care (New Rochelle) 2021; 10:671-684. [PMID: 32320367 PMCID: PMC8568798 DOI: 10.1089/wound.2019.1079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/23/2020] [Indexed: 11/13/2022] Open
Abstract
Significance: The intent of this work was to summarize the existing evidence of, and highlight knowledge gaps specific to, prosthetic devices/componentry and training regimes, particularly in the context of the human-device interaction and deleterious musculoskeletal conditions secondary to lower limb loss. Recent Advances: With the recent and evolving technological advancements in prostheses, there are numerous devices available to individuals with lower limb loss. Current literature demonstrates the importance of expanding the knowledge of all prosthetic device-specific factors and the significance of proper prescription, fit, and alignment, along with adequate device-/activity-specific training, to enhance human-device interaction, reduce gait abnormalities and compensatory motions, and as a result, mitigate risk for secondary musculoskeletal conditions. Critical Issues: Inadequate device prescription, fit, alignment, and training are evident owing to the lack of knowledge or awareness of the many device-specific properties and factors, leading to suboptimal use, as well as, biomechanical compensations, which collectively and adversely affect the function, activity level, and overall health of the prosthesis user. Future Directions: To maximize optimal outcomes after lower limb loss, it is essential to better appreciate the factors that affect both prosthesis use and satisfaction, particularly any modifiable factors that might be targeted in rehabilitation interventions such as device prescription, fit/alignment, and training regimes. A better understanding of such device-specific factors will help enhance the human-device interaction and resulting functional performance, thereby reducing secondary musculoskeletal conditions, allowing for the readiness of the fighting force (return-to-duty/redeployment) and/or improved reintegration into civilian society/work, and overall enhancing quality of life after lower limb loss.
Collapse
Affiliation(s)
- Ashley D. Knight
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Christopher L. Dearth
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brad D. Hendershot
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Kim J, Wensman J, Colabianchi N, Gates DH. The influence of powered prostheses on user perspectives, metabolics, and activity: a randomized crossover trial. J Neuroeng Rehabil 2021; 18:49. [PMID: 33726802 PMCID: PMC7962267 DOI: 10.1186/s12984-021-00842-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Powered prosthetic ankles provide battery-powered mechanical push-off, with the aim of reducing the metabolic demands of walking for people with transtibial amputations. The efficacy of powered ankles has been shown in active, high functioning individuals with transtibial amputation, but is less clear in other populations. Additionally, it is unclear how use of a powered prosthesis influences everyday physical activity and mobility. METHODS Individuals with unilateral transtibial amputations participated in a randomized clinical trial comparing their prescribed, unpowered prosthesis and the BiOM powered prosthesis. Participants' metabolic costs and self-selected walking speeds were measured in the laboratory and daily step count, daily steps away from home, and walking speed were measured over two weeks of at-home prosthesis use. Participants also rated their perception of mobility and quality of life and provided free-form feedback. Dependent measures were compared between prostheses and the relationships between metabolic cost, perception of mobility, and characteristics of walking in daily life were explored using Pearson's correlations. RESULTS Twelve people were randomly allocated to the powered prosthesis first (n = 7) or unpowered prosthesis first (n = 5) and ten completed the full study. There were no differences in metabolic costs (p = 0.585), daily step count (p = 0.995), walking speed in-lab (p = 0.145) and in daily life (p = 0.226), or perception of mobility between prostheses (p ≥ 0.058). Changes varied across participants, however. There were several medium-sized effects for device comparisons. With the powered prosthesis, participants had increased self-reported ambulation (g = 0.682) and decreased frustration (g = 0.506). CONCLUSIONS There were no universal benefits of the powered prosthesis on function in the lab or home environment. However, the effects were subject-specific, with some reporting preference for power and improved mobility, and some increasing their activity and decreasing their metabolic effort. Additionally, self-reported preferences did not often correlate with objective measures of function. This highlights the need for future clinical research to include both perception and objective measures to better inform prosthetic prescription. TRIAL REGISTRATION https://clinicaltrials.gov , #NCT02828982. Registered 12 July 2016, https://clinicaltrials.gov/ct2/show/NCT02828982.
Collapse
Affiliation(s)
- Jay Kim
- School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey Wensman
- University of Michigan Orthotics and Prosthetics Center, Ann Arbor, MI, USA
| | - Natalie Colabianchi
- School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA. .,Department of Biomedical Engineering, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA.
| |
Collapse
|
19
|
Human-prosthesis coordination: A preliminary study exploring coordination with a powered ankle-foot prosthesis. Clin Biomech (Bristol, Avon) 2020; 80:105171. [PMID: 32932017 PMCID: PMC7749005 DOI: 10.1016/j.clinbiomech.2020.105171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Powered ankle-foot prostheses were developed to replicate the mechanics of the biological ankle by providing positive work during the push-off phase of gait. However, the benefits of powered prostheses on improving overall human gait efficiency (usually quantified by metabolic cost) have not been consistently shown. Here, we have focused on the mechanical work produced at the prosthetic ankle and its interaction with the amputee's movement. METHODS Five unilateral transtibial amputees walked on a treadmill using 1) a powered ankle-foot prosthesis and 2) their daily passive device. We determined the net ankle work and ankle work loops on the prosthesis-side to quantify the efficiency of the human-prosthesis physical interaction. We further studied peak propulsion timing and the posture of the amputee's lower limb and prosthesis as indicators of the human-prosthesis coordination. Comparisons were made between the passive and powered prosthesis conditions for each participant. FINDINGS The powered prosthesis did not consistently increase net ankle work compared to each participant's passive device. For participants that lacked efficiency in interacting with the powered prosthesis, we observed 1) early prosthesis-side peak propulsion timing (≥ 4% earlier) and 2) a more vertical residual shank at the time of peak propulsion (> 2° more vertical) indicating that the human's limb movement and the prosthesis control during push-off were not well coordinated. INTERPRETATION Results from this preliminary study highlight the need for future work to systematically quantify the coordination between the human and powered prosthesis and understand how such coordination at the joint level influences overall gait efficiency.
Collapse
|
20
|
Miyata Y, Sasaki K, Guerra G, Rattanakoch J. Sustainable, affordable and functional: reimagining prosthetic liners in resource limited environments. Disabil Rehabil 2020; 44:2941-2947. [PMID: 33167733 DOI: 10.1080/09638288.2020.1844316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study was to evaluate function and performance of unilateral trans-tibial prosthesis users wearing an affordable liner in three types of socket designs. METHODS Five unilateral trans-tibial amputees participated, were provided an Affordable Ethyl-Vinyl-Acetate Roll-On liner (AERO) roll-on liner with patella tendon bearing (PTB) prosthesis, PE-Lite liner with PTB prosthesis, and an (AERO) liner with total-surface bearing (TSB) prosthesis. A battery of outcome measures; step-counts, socket comfort score (SCS), orthotics prosthetics user survey (OPUS) and socket pressure measurement during walking were administered. RESULTS Comparisons of step-counts indicated that PTB-AERO (3604 ± 815) was not significantly different than PTB-PE-Lite (3386 ± 942). Mean SCS was 9.2 ± .83 and 7.2 ± 2.1 for PTB-AERO and PTB-PE-Lite. A 6.6% decrease in mean peak pressure was observed between PTB-PE-Lite and TSB-AERO, and 3.2% difference between PTB-PE-Lite and PTB-AERO. CONCLUSION An affordable ($20 USD) and sustainably fabricated prosthesis liner was created and evaluated in trans-tibial prosthesis users. These initial results garner preliminary support for use of the AERO prosthetic liner and continued research.Implications for rehabilitationLower limb prosthetics in less-resourced settings can leverage locally sourced and affordable materials to fabricate roll-on liners for use in modern prosthetic sockets.The cost of the AERO liner is markedly lower than current standard of care gel liners, yet still facilitates use of current prosthetic sockets.
Collapse
Affiliation(s)
- Yusuke Miyata
- Faculty of Medicine, Sirindhorn School of Prosthetics and Orthotics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kazuhiko Sasaki
- Faculty of Medicine, Sirindhorn School of Prosthetics and Orthotics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gary Guerra
- Faculty of Medicine, Sirindhorn School of Prosthetics and Orthotics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jutima Rattanakoch
- Faculty of Medicine, Sirindhorn School of Prosthetics and Orthotics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Minimum toe clearance and tripping probability in people with unilateral transtibial amputation walking on ramps with different prosthetic designs. Gait Posture 2020; 81:41-48. [PMID: 32663775 DOI: 10.1016/j.gaitpost.2020.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Minimum Toe Clearance (MTC) is defined as the minimum vertical distance between the lowest point under the front part of the foot and the ground, during mid-swing. Low values of MTC and walking on inclines are both related to higher probability of tripping and falling in lower limb amputees. New prosthetic designs aim at improving MTC, especially on ramps, however the real effect on MTC still needs investigation. The objective of this study was then to evaluate the effect of different prosthetic designs on MTC in inclined walking. METHODS Thirteen transtibial amputees walked on a ramp using three different prostheses: non articulating ankle (NAA), articulating hydraulic ankle (AHA), and articulating hydraulic ankle with microprocessor (AHA-MP). Median MTC, coefficient of variation (CV), and tripping probability (TP) for obstacles of 10 and 15 mm were compared across ankle type in ascent and descent. FINDINGS When using AHA-MP, larger MTC median values for ascending (P ≤ 0.001, W = 0.58) and descending the ramp (P = 0.003, W = 0.47) were found in the prosthetic limb. Also significantly lower CV was found on the prosthetic limb for both types of AHA feet when compared to NAA for descending the ramp (P = 0.014, W = 0.45). AHA-MP showed the lowest TP for the prosthetic leg in three conditions evaluated. On the sound limb results showed the median MTC was significantly larger (P = 0.009, W = 0.43) and CV significantly lower (P = 0.005, W = 0.41) when using an AHA in ascent. INTERPRETATION Both AHA prosthetic designs help reduce the risk of tripping of the prosthetic limb by increasing the median MTC, lowering its variability and reducing TP for both legs when ascending and descending the ramp. For most of the conditions, AHA-MP showed the lowest TP values. Findings suggest that AHA prostheses, especially AHA-MP could reduce the risk of tripping on ramps in amputees.
Collapse
|
22
|
Schnall BL, Dearth CL, Elrod JM, Golyski PR, Koehler-McNicholas SR, Ray SF, Hansen AH, Hendershot BD. A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss. J Biomech 2020; 98:109395. [PMID: 31668413 DOI: 10.1016/j.jbiomech.2019.109395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022]
Abstract
Selecting an optimal prosthetic foot is particularly challenging for highly active individuals with limb loss, such as military personnel, who need to seamlessly perform a variety of demanding activities/tasks (often with and without external loads) while minimizing risk of musculoskeletal injuries over the longer term. Here, we expand on prior work by comparing biomechanical and functional outcomes in two prosthetic feet with the largest differences in mechanical response to added load (i.e., consistently "Compliant" and "Stiff" forefoot properties). In each foot, fourteen male Servicemembers with unilateral transtibial limb loss (from trauma) completed instrumented gait analyses in all combinations of two loading conditions (with and without 22 kg weighted vest) and two walking speeds (1.34 and 1.52 m/s), as well as the Prosthesis Evaluation Questionnaire. With the Stiff foot, sound limb peak loading was 2% smaller (p = 0.043) in the loaded versus unloaded condition, but similar between loading conditions in the Compliant foot (note, the Stiff foot was associated with larger loads, overall). Independent of load or walking speed, the Compliant (versus Stiff) foot provided 67.9% larger (p < 0.001) prosthetic push-off, 17.7% larger (p = 0.01) roll-over shape radii, and was subjectively favored by 10 participants. A more Compliant versus Stiff prosthetic foot therefore appears to better accommodate walking with and without added load, and reinforce the notion that mechanical properties of prosthetic feet should be considered for near-term performance and longer-term (joint) health.
Collapse
Affiliation(s)
- Barri L Schnall
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jonathan M Elrod
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Pawel R Golyski
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Sara R Koehler-McNicholas
- Minneapolis Department of Veterans Affairs Health Care System, Minneapolis, MN, USA; Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel F Ray
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Andrew H Hansen
- Minneapolis Department of Veterans Affairs Health Care System, Minneapolis, MN, USA; Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brad D Hendershot
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA; Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
23
|
Lechler K, Frossard B, Whelan L, Langlois D, Müller R, Kristjansson K. Motorized Biomechatronic Upper and Lower Limb Prostheses-Clinically Relevant Outcomes. PM R 2019; 10:S207-S219. [PMID: 30269806 DOI: 10.1016/j.pmrj.2018.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
People with major limb amputations are severely impaired when it comes to activity, body structure and function, as well as participation. Demographic statistics predict a dramatic increase of this population and additional challenges with their increasing age and higher levels of amputation. Prosthetic use has been shown to have a positive impact on mobility and depression, thereby affecting the quality of life. Biomechatronic prostheses are at the forefront of prosthetic development. Actively powered designs are now regularly used for upper limb prosthetic fittings, whereas for lower limbs the clinical use of actively powered prostheses has been limited to a very low number of applications. Actively powered prostheses enhance restoration of the lost physical functions of an amputee but are yet to allow intuitive user control. This paper provides a review of the status of biomechatronic developments in upper and lower limb prostheses in the context of the various challenges of amputation and the clinically relevant outcomes. Whereas most of the evidence regarding lower limb prostheses addresses biomechanical issues, the evidence for upper limb prostheses relates to activities of daily living (ADL) and instrumental ADL through diverse outcome measures and tools.
Collapse
Affiliation(s)
- Knut Lechler
- Össur hf, R&D, Medical Office, Reykjavik, Iceland(∗).
| | | | - Lynsay Whelan
- Össur hf, Sales & Marketing, Remote Training Programs-OT Americas Prosthetics, Hilliard, OH(‡)
| | | | - Roy Müller
- Department of Orthopedic Surgery, Klinikum Bayreuth GmbH, Bayreuth, Germany(¶)
| | | |
Collapse
|
24
|
Changes in Trunk and Pelvis Motion Among Persons With Unilateral Lower Limb Loss During the First Year of Ambulation. Arch Phys Med Rehabil 2019; 101:426-433. [PMID: 31542398 DOI: 10.1016/j.apmr.2019.08.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To retrospectively investigate trunk-pelvis kinematic outcomes among persons with unilateral transtibial and transfemoral limb loss with time from initial independent ambulation with a prosthesis, while secondarily describing self-reported presence and intensity of low back pain. Over time, increasing trunk-pelvis range of motion and decreasing trunk-pelvis coordination with increasing presence and/or intensity of low back pain were hypothesized. Additionally, less trunk-pelvis range of motion and more trunk-pelvis coordination for persons with more distal limb loss was hypothesized. DESIGN Inception cohort with up to 5 repeated evaluations, including both biomechanical and subjective outcomes, during a 1-year period (0, 2, 4, 6, 12 months) after initial ambulation with a prosthesis. SETTING Biomechanics laboratory within military treatment facility. PARTICIPANTS Twenty-two men with unilateral transtibial limb loss and 10 men with unilateral transfemoral limb loss (N=32). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Triplanar trunk-pelvis range of motion and intersegmental coordination (continuous relative phase) obtained at self-selected (∼1.30m/s) and controlled (∼1.20m/s) walking velocities. Self-reported presence and intensity of low back pain. RESULTS An interaction effect between time and group existed for sagittal (P=.039) and transverse (P=.009) continuous relative phase at self-selected walking velocity and transverse trunk range of motion (P=.013) and sagittal continuous relative phase (P=.005) at controlled walking velocity. Trunk range of motion generally decreased, and trunk-pelvis coordination generally increased with increasing time after initial ambulation. Sagittal trunk and pelvis range of motion were always less and frontal trunk-pelvis coordination was always greater for persons with more distal limb loss. Low back pain increased for persons with transtibial limb loss and decreased for persons with transfemoral limb loss following the 4-month time point. CONCLUSIONS Temporal changes (or lack thereof) in features of trunk-pelvis motions within the first year of ambulation help elucidate relationships between (biomechanical) risk factors for low back pain after limb loss.
Collapse
|
25
|
Evaluation of Gait Variable Change over Time as Transtibial Amputees Adapt to a New Prosthesis Foot. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9252368. [PMID: 31236415 PMCID: PMC6545810 DOI: 10.1155/2019/9252368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 11/18/2022]
Abstract
A variety of prescribed accommodation periods have been used in published prosthesis intervention studies that have examined biomechanical outcomes. Few investigators included repeated measurements in their study design, leaving questions as to how measured outcomes change as amputees acclimate to a new prosthesis. This paper is the product of our investigation as to whether measured gait variables were affected by the duration of accommodation period, and to assess the relationship between measured outcomes and the subjective perception of the participants. A sample of transtibial amputees were recruited for this study. Gait data was collected by wearable sensor repeatedly, starting immediately after fitting the interventional foot and extending over a subsequent four days. Participants indicated their perceived accommodation quality on a visual analog scale (VAS). A total of twelve commonly used spatiotemporal gait parameters were analyzed. Friedman tests were used to determine overall differences across time points in both early (one hour) and late (day two through five) accommodation phases, for each gait variable. Statistically significant changes across the early phase were found for variables gait speed χ2(2)=8.000, p=0.018, cadence χ2(2)=7.185, p=0.028, and double support time on the sound side χ2(2)=8.615, p=0.013. Across days two through five, no gait variable significantly changed. VAS scores correlated strongly with step count (r=1.000, p<0.001) and cadence (r=0.857, p=0.014). Longer accommodation periods resulted in less deviations of gait variables for the clinical assessment in the process of prosthetic rehabilitation. Trying out prosthetic interventions for less than one hour has yielded unreliable outcomes.
Collapse
|
26
|
Russell Esposito E, Schmidtbauer KA, Wilken JM. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction. J Neuroeng Rehabil 2018; 15:111. [PMID: 30463576 PMCID: PMC6249722 DOI: 10.1186/s12984-018-0455-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/01/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Ankle-foot orthoses (AFO) are commonly prescribed to provide functional assistance for patients with lower limb injuries or weakness. Their passive mechanical elements can provide some energy return to improve walking ability, but cannot restore plantar flexor push-off. Powered AFOs provide an assistive torque about the ankle to address the limitations of passive devices, but current designs have yet to be implemented on a large scale clinically. PURPOSE To compare passive AFOs to a new untethered, powered AFO design in a clinical population with lower limb reconstruction. METHODS A crossover study design, conducted on three individuals with lower limb reconstruction, compared gait mechanics at a standardized speed (based on leg length) in 4 AFO conditions: 1. None (shoes only), 2. Blue Rocker (BR, Allard, USA), 3. Intrepid Dynamic Exoskeletal Orthosis (IDEO), and 4. PowerFoot Orthosis (PFO BionX Medical Technologies, Inc.). The PFO was a custom, battery-powered device whose damping and power were capable to being tuned to meet patient needs. Subjects performed biomechanical gait analysis and metabolic testing at slow, moderate and fast speeds. Dependent variables included total limb power (calculated using a unified deformable segment model), mechanical work, mechanical efficiency, ankle motion, net metabolic cost across three speeds, and performance measures were calculated. Effect sizes (d) were calculated and d > 0.80 denoted a large effect. RESULTS Net positive work (d > 1.17) and efficiency (d > 1.43) were greatest in the PFO. There were large effects for between limb differences in positive work for all conditions except the PFO (d = 0.75). The PFO normalized efficiency between the affected and unaffected limbs (d = 0.50), whereas efficiency was less on the affected limb for all other conditions (d > 1.69). Metabolic rate was not consistently lowest in any one AFO condition across speeds. Despite some positive results of the PFO, patient preferred their daily use AFO (2 IDEO, 1 BR). All participants indicated that mass and size were concerns with using the PFO. CONCLUSIONS A novel PFO resulted in more biomimetic mechanical work and efficiency than commercially-available and custom passive AFO models. Although the powered AFO provided some biomechanical benefits, further improvements are warranted to improve patient satisfaction.
Collapse
Affiliation(s)
- Elizabeth Russell Esposito
- Center for the Intrepid, Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Ft, Sam Houston, TX, USA.,Extremity Trauma and Amputation Center of Excellence, JBSA Ft, Sam Houston, TX, USA.,Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Kelly A Schmidtbauer
- Center for the Intrepid, Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Ft, Sam Houston, TX, USA. .,Extremity Trauma and Amputation Center of Excellence, JBSA Ft, Sam Houston, TX, USA. .,Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA.
| | - Jason M Wilken
- Center for the Intrepid, Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Ft, Sam Houston, TX, USA.,Extremity Trauma and Amputation Center of Excellence, JBSA Ft, Sam Houston, TX, USA.,University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Bai X, Ewins D, Crocombe AD, Xu W. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. PLoS One 2018; 13:e0205093. [PMID: 30289921 PMCID: PMC6173401 DOI: 10.1371/journal.pone.0205093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Slope ambulation is a challenge for trans-femoral amputees due to a relative lack of knee function. The assessment of prosthetic ankles on slopes is required for supporting the design, optimisation, and selection of prostheses. This study assessed two hydraulic ankle-foot devices (one of the hydraulic ankles is controlled by a micro-processor that allows real-time adjustment in ankle resistance and range of motion) used by trans-femoral amputees in ascending and descending a 5-degree slope walking, against a rigid ankle-foot device. Five experienced and active unilateral trans-femoral amputees performed ascending and descending slope tests with their usual prosthetic knee and socket fitted with a rigid ankle-foot, a hydraulic ankle-foot without a micro-processor, and a hydraulic ankle-foot with a micro-processor optimised for ascending and descending slopes. Peak values in hip, knee and ankle joint angles and moments were collected and the normalcy Trend Symmetry Index of the prosthetic ankle moments (as an indication of bio-mimicry) were calculated and assessment. Particular benefits of the hydraulic ankle-foot devices were better bio-mimicry of ankle resistance moment, greater range of motion, and improved passive prosthetic knee stability according to the greater mid-stance external knee extensor moment (especially in descending slope) compared to the rigid design. The micro-processor controlled device demonstrated optimised ankle angle and moment patterns for ascending and descending slope respectively, and was found to potentially further improve the ankle moment bio-minicry and prosthetic knee stability compared to the hydraulic device without a micro-processor. However the difference between the micro-processor controlled device and the one without a micro-processor does not reach a statistically significant level.
Collapse
Affiliation(s)
- Xuefei Bai
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Beijing, China
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing, China
| | - David Ewins
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
- Gait Laboratory, Queen Mary’s Hospital, Roehampton, London, United Kingdom
| | - Andrew David Crocombe
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Wei Xu
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Abstract
BACKGROUND Shock-attenuating pylons are commonly fitted to prostheses in order to compensate for the anatomical and biomechanical shock-absorbing features of the lower limb removed upon amputation. However, studies concerning their shock-attenuating capacity are highly variable and, to date, have not yet been reviewed, making them difficult to interpret and apply in clinical practice. OBJECTIVES To synthesise and appraise the available literature examining the effectiveness of shock-attenuating pylons in attenuating shock upon limb loading compared to rigid pylons among lower limb amputees. STUDY DESIGN Systematic review. METHODS A comprehensive search of seven databases was conducted using search terms concerning amputation level, shock-attenuating and rigid pylons as well as measures of shock attenuation. All studies yielded were screened against established inclusion and exclusion criteria before eligible articles were appraised using the Quality Assessment Standard for Crossover Studies adapted from the Cochrane handbook. RESULTS Nine articles were eligible for inclusion. While there was a trend among studies to indicate only a limited positive effect of shock-attenuating pylons in attenuating transient impact forces, limitations to the study designs, namely, in sampling, poor reporting of methodological details and heterogeneity of outcomes made conclusive interpretation of results difficult. CONCLUSION While the current body of literature does not reconcile with claims made by manufacturers of shock-attenuating pylons, it is insufficient to conclusively determine how effective shock-attenuating pylons are, in comparison with conventional rigid pylons, in attenuating transient impact forces among lower limb amputees. Higher quality research is required to better guide decisions regarding prescription of shock-attenuating componentry in clinical practice. Clinical relevance When delivered well, research can provide clinicians with objective and reliable data that can be applied in their practice to guide prescription of componentry. However, methodological limitations to research may compromise the reliability of findings, thereby producing potentially misleading outcomes. These limitations must be recognised and appreciated such that findings may be interpreted accurately and applied appropriately.
Collapse
Affiliation(s)
| | - Emma Thomas
- 2 The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Gardinier ES, Kelly BM, Wensman J, Gates DH. A controlled clinical trial of a clinically-tuned powered ankle prosthesis in people with transtibial amputation. Clin Rehabil 2017; 32:319-329. [DOI: 10.1177/0269215517723054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Brian M Kelly
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
- Orthotics and Prosthetics Center, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey Wensman
- Orthotics and Prosthetics Center, University of Michigan, Ann Arbor, MI, USA
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|