1
|
Ali EN, Lueck CJ, Martin KL, Borbelj A, Maddess T. Photic drive response in people with epilepsy: Exploring the interaction with background alpha rhythm. Vision Res 2025; 228:108548. [PMID: 39874611 DOI: 10.1016/j.visres.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.3 ± 4.6 years; 8 males), and 15 control subjects (mean age 52.7 ± 4.6 years; 9 males) underwent EEG with modified intermittent photic stimulation (IPS). The modification allowed so-called alpha-band gain to be measured. None of the PwE had demonstrated photosensitivity. The modified IPS method alternated eyes-open and eyes-closed conditions with and without IPS. The alpha-band gain appeared as N-fold changes in PDR when IPS (or its harmonics) and the alpha-bands overlapped. An epileptic attack within 1 month of testing significantly increased alpha-band gain by 1.36×. Generalised epilepsy (but not focal epilepsy) significantly decreased alpha-band gain y 0.79×. Each decade of age beyond the mean age significantly increased alpha-band gain by 1.09×. Similar significant interactions were seen between alpha and the second harmonic of IPS driving frequencies that matched alpha frequencies, i.e. for recent attack and, generalized epilepsy. The interactions thus appeared to be occurring between cortical IPS outputs and the alpha generator. These changes were most evident at electrodes O1 and O2. Investigating alpha-band gain using modified IPS offers a way to quantify cortical hyperexcitability in epilepsy and other diseases. It also provides new information about alpha and so too predictive coding, which appears to be at least partly governed by alpha.
Collapse
Affiliation(s)
- Eman N Ali
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia; Department of Neuroscience, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Christian J Lueck
- School of Medicine and Psychology, Australian National University, Acton, ACT, Australia
| | - Kate L Martin
- Department of Neurology, the Canberra Hospital, Canberra, ACT, Australia
| | - Angela Borbelj
- Department of Neurology, the Canberra Hospital, Canberra, ACT, Australia
| | - Ted Maddess
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.
| |
Collapse
|
2
|
Bie B, Ghosn S, Sheikh SR, Araujo MLD, Mehra R, Mays M, Saab CY. Electroencephalographic signatures of migraine in small prospective and large retrospective cohorts. Sci Rep 2024; 14:28673. [PMID: 39562659 PMCID: PMC11577025 DOI: 10.1038/s41598-024-80249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Migraine is one of the most common neurological disorders in the US. Currently, the diagnosis and management of migraine are based primarily on subjective self-reported measures, which compromises the reliability of clinical diagnosis and the ability to robustly discern candidacy for available therapies and track treatment response. In this study, we used a computational pipeline for the automated, rapid, high-throughput, and objective analysis of encephalography (EEG) data at Cleveland Clinic to identify signatures that correlate with migraine. We performed two independent analyses, a prospective analysis (n = 62 subjects) and a retrospective age-matched analysis on a larger cohort (n = 734) obtained from the sleep registry at Cleveland Clinic. In the prospective analysis, no significant difference between migraine and control groups was detected in the mean power spectral density (PSD) of an all-electrodes montage in the frequency range of 1-32 Hz, whereas a significant PSD increase in single occipital electrodes was found at 12 Hz in migraine patients. We then trained machine learning models on the binary classification of migraine versus control using EEG power features, resulting in high accuracies (82-83%) with occipital electrodes' power at 12 Hz ranking highest in the contribution to the model's performance. Further retrospective analysis also showed a consistent increase in power from occipital electrodes at 12 and 13 Hz in migraine patients. These results demonstrate distinct and localized changes in brain activity measured by EEG that can potentially serve as biomarkers in the diagnosis and personalized therapy for individuals with migraine.
Collapse
Affiliation(s)
- Bihua Bie
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Samer Ghosn
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shehryar R Sheikh
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Matheus Lima Diniz Araujo
- Sleep Disorder Center, Cleveland Clinic and Biomedical Engineering, Lerner Research Institute, Cleveland, USA
| | - Reena Mehra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - MaryAnn Mays
- Center for Neurologic Restoration, Neurologic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carl Y Saab
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
van den Hoek TC, van de Ruit M, Terwindt GM, Tolner EA. EEG Changes in Migraine-Can EEG Help to Monitor Attack Susceptibility? Brain Sci 2024; 14:508. [PMID: 38790486 PMCID: PMC11119734 DOI: 10.3390/brainsci14050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Migraine is a highly prevalent brain condition with paroxysmal changes in brain excitability believed to contribute to the initiation of an attack. The attacks and their unpredictability have a major impact on the lives of patients. Clinical management is hampered by a lack of reliable predictors for upcoming attacks, which may help in understanding pathophysiological mechanisms to identify new treatment targets that may be positioned between the acute and preventive possibilities that are currently available. So far, a large range of studies using conventional hospital-based EEG recordings have provided contradictory results, with indications of both cortical hyper- as well as hypo-excitability. These heterogeneous findings may largely be because most studies were cross-sectional in design, providing only a snapshot in time of a patient's brain state without capturing day-to-day fluctuations. The scope of this narrative review is to (i) reflect on current knowledge on EEG changes in the context of migraine, the attack cycle, and underlying pathophysiology; (ii) consider the effects of migraine treatment on EEG features; (iii) outline challenges and opportunities in using EEG for monitoring attack susceptibility; and (iv) discuss future applications of EEG in home-based settings.
Collapse
Affiliation(s)
- Thomas C. van den Hoek
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
| | - Else A. Tolner
- Department of Neurology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands (M.v.d.R.); (G.M.T.)
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| |
Collapse
|
4
|
van den Hoek TC, Perenboom MJL, Terwindt GM, Tolner EA, van de Ruit M. Bi-sinusoidal light stimulation reveals an enhanced response power and reduced phase coherence at the visual cortex in migraine. Front Neurol 2024; 14:1274059. [PMID: 38348113 PMCID: PMC10860712 DOI: 10.3389/fneur.2023.1274059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Migraine is associated with enhanced visual sensitivity during and outside attacks. Processing of visual information is a highly non-linear process involving complex interactions across (sub)cortical networks. In this exploratory study, we combined electroencephalography with bi-sinusoidal light stimulation to assess non-linear features of visual processing in participants with migraine. Methods Twenty participants with migraine (10 with aura, 10 without aura) and ten non-headache controls were measured (outside attacks). Participants received bi-sinusoidal 13 + 23 Hz red light visual stimulation. Electroencephalography spectral power and multi-spectral phase coherence were compared between groups at the driving stimulation frequencies together with multiples and combinations of these frequencies (harmonic and intermodulation frequencies) caused by non-linearities. Results Only at the driving frequency of 13 Hz higher spectral power was found in migraine with aura participants compared with those with migraine without aura and controls. Differences in phase coherence were present for 2nd, 4th, and 5th-order non-linearities in those with migraine (migraine with and without aura) compared with controls. Bi-sinusoidal light stimulation revealed evident non-linearities in the brain's electroencephalography response up to the 5th order with reduced phase coherence for higher order interactions in interictal participants with migraine. Discussion Insight into interictal non-linear visual processing may help understand brain dynamics underlying migraine attack susceptibility. Future research is needed to determine the clinical value of the results.
Collapse
Affiliation(s)
| | | | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Else A. Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Wang Z, Lin Q, Peng YB. Multi-region local field potential signatures and brain coherence alternations in response to nitroglycerin-induced migraine attacks. Headache 2023; 63:523-538. [PMID: 37036141 DOI: 10.1111/head.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE To decipher the underlying mechanisms of nitroglycerin (NTG)-induced migraine electrophysiologically. BACKGROUND Migraine is a recurrent primary headache disorder with moderate to severe disability; however, the pathophysiology is not fully understood. Consequently, safe and effective therapies to alleviate migraine headaches are limited. Local field potential (LFP) recording, as a neurophysiological tool, has been widely utilized to investigate combined neuronal activity. METHODS We recorded LFP changes simultaneously from the anterior cingulate cortex, posterior nucleus of the thalamus, trigeminal ganglion, and primary visual cortex after NTG injection in both anesthetized and freely moving rats. Additionally, brain coherence was processed, and light-aversive behavior measurements were implemented. RESULTS Significant elevations of LFP powers with various response patterns for the delta, theta, alpha, beta, and gamma bands following NTG injection were detected in both anesthetized and freely moving rats; however, a surge of coherence alternations was exclusively observed in freely moving rats after NTG injection. CONCLUSION The multi-region LFP signatures and brain coherence alternations in response to NTG-induced migraine attacks were determined. Furthermore, the results of behavior measurements in the freely moving group indicated that NTG induced the phenomenon of photophobia in our study. All these findings offer novel insights into the interpretation of migraine mechanisms and related treatments.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Yuan B Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
6
|
Zhang N, Pan Y, Chen Q, Zhai Q, Liu N, Huang Y, Sun T, Lin Y, He L, Hou Y, Yu Q, Li H, Chen S. Application of EEG in migraine. Front Hum Neurosci 2023; 17:1082317. [PMID: 36875229 PMCID: PMC9982126 DOI: 10.3389/fnhum.2023.1082317] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Migraine is a common disease of the nervous system that seriously affects the quality of life of patients and constitutes a growing global health crisis. However, many limitations and challenges exist in migraine research, including the unclear etiology and the lack of specific biomarkers for diagnosis and treatment. Electroencephalography (EEG) is a neurophysiological technique for measuring brain activity. With the updating of data processing and analysis methods in recent years, EEG offers the possibility to explore altered brain functional patterns and brain network characteristics of migraines in depth. In this paper, we provide an overview of the methodology that can be applied to EEG data processing and analysis and a narrative review of EEG-based migraine-related research. To better understand the neural changes of migraine or to provide a new idea for the clinical diagnosis and treatment of migraine in the future, we discussed the study of EEG and evoked potential in migraine, compared the relevant research methods, and put forwards suggestions for future migraine EEG studies.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qihui Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingling Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ni Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanan Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tingting Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yake Lin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Linyuan He
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Hou
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qijun Yu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyan Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shijiao Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Lei X, Wei M, Qi Y, Wang L, Liu C, Guo Y, Xu Y, Cao X, Liu R, Luo G. The patent foramen ovale may alter migraine brain activity: A pilot study of electroencephalography spectrum and functional connectivity analysis. Front Mol Neurosci 2023; 16:1133303. [PMID: 36959871 PMCID: PMC10029922 DOI: 10.3389/fnmol.2023.1133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Background A link has been shown between patent foramen ovale (PFO) and migraine, particularly migraine with aura. However, it is unknown if PFO might cause migraine by altering cortical excitability and neural network, which may lower the threshold of cortical spreading depression (CSD). This study aims to compare the spectrum power and functional connectivity of the alpha and beta bands of electroencephalography (EEG) across migraine patients with and without PFO. Methods Thirty-five migraine patients with PFO (PFO +), 35 migraine patients without PFO (PFO -) and 20 PFO patients without migraine (control) were enrolled in this cross-sectional analysis. 19-channel EEG was recorded for all patients under resting state and intermittent photic stimulation. Power spectrum density (PSD) and phase lag index (PLI) of alpha and beta bands were then calculated and compared between the three groups. Results During photic stimulation, the beta band PSD at the occipital area was substantially higher in PFO + migraine patients compared to PFO-migraine patients (p < 0.05, Bonferroni corrected). Subgroup analysis showed that both migraine with and without aura patients with PFO had increased PSD in the alpha and beta bands at the occipital region during photic stimulation (p < 0.05, Bonferroni corrected). Meanwhile, the beta band PLI during photic stimulation was significantly elevated (adjusted p = 0.008, utilizing the network-based statistic technique) in PFO + group compared to PFO-group. Furthermore, although failed to pass the correction, the beta band power in the occipital area during photic stimulation at 20 Hz on O1 (R = 0.392, p = 0.024) and O2 channel (R = 0.348, p = 0.047) was prone to positively correlated with MIDAS score, and during photic stimulation at 12 Hz on O2 channel (R = 0.396, p = 0.022) and 20 Hz (R = 0.365, p = 0.037) on O1 channel was prone to positively correlated to HIT-6 score in PFO+ migraineurs, whereas no similar correlation was found in the PFO-group patients. Conclusion The outcomes of this investigation suggested that PFO may change the cortical excitability in the occipital lobe of both migraineurs with and without aura. Meanwhile, the beta band PSD on the occipital area during photic stimulation might be an objective measure of severity in migraineurs with PFO.
Collapse
|
8
|
Abbas Abdulhussein M, Alyasseri ZAA, Mohammed HJ, An X. Lack of Habituation in Migraine Patients Based on High-Density EEG Analysis Using the Steady State of Visual Evoked Potential. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1688. [PMID: 36421543 PMCID: PMC9689466 DOI: 10.3390/e24111688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Migraine is a periodic disorder in which a patient experiences changes in the morphological and functional brain, leading to the abnormal processing of repeated external stimuli in the inter-ictal phase, known as the habituation deficit. This is a significant feature clinically of migraine in both two types with aura or without aura and plays an essential role in studying pathophysiological differences between these two groups. Several studies indicated that the reason for migraine aura is cortical spreading depression (CSD) but did not clarify its impact on migraine without aura and lack of habituation. In this study, 22 migraine patients (MWA, N = 13), (MWoA, N = 9), and healthy controls (HC, N = 19) were the participants. Participants were exposed to the steady state of visual evoked potentials also known as (SSVEP), which are the signals for a natural response to the visual motivation at four Hz or six Hz for 2 s followed by the inter-stimulus interval that varies between 1 and 1.5 s. The order of the temporal frequencies was randomized, and each temporal frequency was shown 100 times. We recorded from 128 customized electrode locations using high-density electroencephalography (HD-EEG) and measured amplitude and habituation for the N1-P1 and P1-N2 from the first to the sixth blocks of 100 sweep features in patients and healthy controls. Using the entropy, a decrease in amplitude and SSVEP N1-P1 habituation between the first and the sixth block appeared in both MWA and MWoA (p = 0.0001, Slope = -0.4643), (p = 0.065, Slope = 0.1483), respectively, compared to HC. For SSVEP P1-N2 between the first and sixth block, it is varied in both MWA (p = 0.0029, Slope = -0.3597) and MWoA (p = 0.027, Slope = 0.2010) compared to HC. Therefore, migraine patients appear amplitude decrease and habituation deficit but with different rates between MWA, and MWoA compared to HCs. Our findings suggest this disparity between MWoA and MWA in the lack of habituation and amplitude decrease in the inter-ictal phase has a close relationship with CSD. In light of the fact that CSD manifests during the inter-ictal phase of migraine with aura, which is when migraine seizures are most likely to occur, multiple researchers have lately reached this conclusion. This investigation led us to the conclusion that CSD during the inter-ictal phase and migraine without aura are associated. In other words, even if previous research has not demonstrated it, CSD is the main contributor to both types of migraine (those with and without aura).
Collapse
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, University of Kufa, Najaf 54001, Iraq
| | - Zaid Abdi Alkareem Alyasseri
- ECE Department, Faculty of Engineering, University of Kufa, Najaf 54001, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala 63514, Iraq
- Information Technology Research and Development Centre, University of Kufa, Najaf 54001, Iraq
| | - Husam Jasim Mohammed
- Department of Business Administration, College of Administration and Financial Sciences, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Zolezzi DM, Alonso-Valerdi LM, Ibarra-Zarate DI. Chronic neuropathic pain is more than a perception: Systems and methods for an integral characterization. Neurosci Biobehav Rev 2022; 136:104599. [PMID: 35271915 DOI: 10.1016/j.neubiorev.2022.104599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
The management of chronic neuropathic pain remains a challenge, because pain is subjective, and measuring it objectively is usually out of question. However, neuropathic pain is also a signal provided by maladaptive neuronal activity. Thus, the integral management of chronic neuropathic pain should not only rely on the subjective perception of the patient, but also on objective data that measures the evolution of neuronal activity. We will discuss different objective and subjective methods for the characterization of neuropathic pain. Additionally, the gaps and proposals for an integral management of chronic neuropathic pain will also be discussed. The current management that relies mostly on subjective measures has not been sufficient, therefore, this has hindered advances in pain management and clinical trials. If an integral characterization is achieved, clinical management and stratification for clinical trials could be based on both questionnaires and neuronal activity. Appropriate characterization may lead to an increased effectiveness for new therapies, and a better quality of life for neuropathic pain sufferers.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, México; Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | | | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Puebla 72453, Puebla, México
| |
Collapse
|
11
|
Villar-Martinez MD, Goadsby PJ. Dim the Lights: A Narrative Review of Photophobia in Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A preference for darkness is one of the main associated features in people with migraine, the cause remaining a mystery until some decades ago. In this article, we describe the epidemiology of photophobia in migraine and explain the pathophysiological mechanisms following an anatomical structure. In addition, we review the current management of migraine and photophobia. Ongoing characterization of patients with photophobia and its different manifestations continues to increase our understanding of the intricate pathophysiology of migraine and vice versa. Detailed phenotyping of the patient with photophobia is encouraged.
Collapse
|
12
|
Bell T, Khaira A, Stokoe M, Webb M, Noel M, Amoozegar F, Harris AD. Age-related differences in resting state functional connectivity in pediatric migraine. J Headache Pain 2021; 22:65. [PMID: 34229614 PMCID: PMC8259418 DOI: 10.1186/s10194-021-01274-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine affects roughly 10% of youth aged 5-15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. METHODS Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7-15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. RESULTS We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. CONCLUSIONS We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - Akashroop Khaira
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Megan Webb
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Farnaz Amoozegar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Birk D, Noachtar S, Kaufmann E. Kopfschmerz bei Parietal- und Okzipitallappenepilepsien. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2021; 34:86-92. [DOI: 10.1007/s10309-020-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 08/30/2023]
Abstract
ZusammenfassungEpilepsiepatienten leiden überdurchschnittlich häufig unter Kopfschmerzen. Dies gilt insbesondere für Patienten mit idiopathisch generalisierten und parietookzipitalen Epilepsien. Die Häufigkeit des gemeinsamen Auftretens von Kopfschmerzen und Epilepsie überschreitet dabei die rechnerische Koinzidenz, sodass von einer Komorbidität beider Syndrome auszugehen ist. Bestärkt wird diese Hypothese durch überlappende genetische Veränderungen sowie gemeinsame pathophysiologische Mechanismen. Bis zu 62 % der Patienten mit z. B. Parietal- und Okzipitallappenepilepsie (POLE) geben Kopfschmerzen an. Diese treten v. a. nach dem Anfall (postiktal) auf und manifestieren sich am häufigsten als Migräne-ähnlicher Kopfschmerz oder Spannungskopfschmerz. Seltener kommt es zu Kopfschmerzen vor (periiktal), während (iktal) oder zwischen (interiktal) epileptischen Anfällen. Bei transienten neurologischen Ausfallsymptomen mit begleitenden Kopfschmerzen ist differenzialdiagnostisch neben der Migräne an vaskuläre Ereignisse wie Synkopen oder eine transiente ischämische Attacke zu denken.
Collapse
|
14
|
Could cathodal transcranial direct current stimulation modulate the power spectral density of alpha-band in migrainous occipital lobe? Neurosci Lett 2020; 742:135539. [PMID: 33278504 DOI: 10.1016/j.neulet.2020.135539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify the correlation between cathodal transcranial direct current stimulation (tDCS) and the power spectral density (PSD) of alpha-band on the occipital lobe of migraineurs. METHODS Firstly, a cross-sectional study was performed to compare the PSD of alpha-band in the occipital cortex of 25 migraineurs versus 10 healthy volunteers in resting state and during repetitive light stimuli (RLS). Secondly, the patients participated in 12 sessions of cathodal (n = 11) or sham tDCS (n = 10) over the primary visual cortex (V1) to investigate the alpha-band PSD. RESULTS The alpha-band PSD on the occipital cortex was higher in migraineurs than healthy subjects in resting state and lower during the first train of RLS. Cathodal tDCS over the V1 reduced the alpha-band occipital activity in resting state but did not interfere with the functional responses to RLS when light stimulation was turned on. CONCLUSIONS Our findings suggest that the occipital cortex of migraineurs is hypoactive in the baseline condition, but becomes hyperactive when stimulated by light. Cathodal tDCS over the V1 decreases baseline alpha PSD in patients, possibly modulating the involved neuronal circuitries, but it cannot interfere once photic stimulation starts.
Collapse
|
15
|
Perenboom MJL, Schenke M, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM, Tolner EA. Responsivity to light in familial hemiplegic migraine type 1 mutant mice reveals frequency-dependent enhancement of visual network excitability. Eur J Neurosci 2020; 53:1672-1686. [PMID: 33170971 PMCID: PMC8048865 DOI: 10.1111/ejn.15041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 12/01/2022]
Abstract
Migraine patients often report (inter)ictal hypersensitivity to light, but the underlying mechanisms remain an enigma. Both hypo- and hyperresponsivity of the visual network have been reported, which may reflect either intra-individual dynamics of the network or large inter-individual variation in the measurement of human visual evoked potential data. Therefore, we studied visual system responsivity in freely behaving mice using combined epidural electroencephalography and intracortical multi-unit activity to reduce variation in recordings and gain insight into visual cortex dynamics. For better clinical translation, we investigated transgenic mice that carry the human pathogenic R192Q missense mutation in the α1A subunit of voltage-gated CaV 2.1 Ca2+ channels leading to enhanced neurotransmission and familial hemiplegic migraine type 1 in patients. Visual evoked potentials were studied in response to visual stimulation paradigms with flashes of light. Following intensity-dependent visual stimulation, FHM1 mutant mice displayed faster visual evoked potential responses, with lower initial amplitude, followed by less pronounced neuronal suppression compared to wild-type mice. Similar to what was reported for migraine patients, frequency-dependent stimulation in mutant mice revealed enhanced photic drive in the EEG beta-gamma band. The frequency-dependent increases in visual network responses in mutant mice may reflect the context-dependent enhancement of visual cortex excitability, which could contribute to our understanding of sensory hypersensitivity in migraine.
Collapse
Affiliation(s)
| | - Maarten Schenke
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Patterson Gentile C, Aguirre GK. A neural correlate of visual discomfort from flicker. J Vis 2020; 20:11. [PMID: 32667963 PMCID: PMC7424114 DOI: 10.1167/jov.20.7.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The theory of "visual stress" holds that visual discomfort results from overactivation of the visual cortex. Despite general acceptance, there is a paucity of empirical data that confirm this relationship, particularly for discomfort from visual flicker. We examined the association between neural response and visual discomfort using flickering light of different temporal frequencies that separately targeted the LMS, L-M, and S postreceptoral channels. Given prior work that has shown larger cortical responses to flickering light in people with migraine, we examined 10 headache-free people and 10 migraineurs with visual aura. The stimulus was a uniform field, 50 degrees in diameter, that modulated with high-contrast flicker between 1.625 and 30 Hz. We asked subjects to rate their visual discomfort while we recorded steady-state visually evoked potentials (ssVEPs) from early visual cortex. The peak temporal sensitivity ssVEP amplitude varied by postreceptoral channel and was consistent with the known properties of these visual channels. There was a direct, linear relationship between the amplitude of neural response to a stimulus and the degree of visual discomfort it evoked. No substantive differences between the migraine and control groups were found. These data link increased visual cortical activation with the experience of visual discomfort.
Collapse
|
17
|
Perenboom MJ, van de Ruit M, Zielman R, van den Maagdenberg AM, Ferrari MD, Carpay JA, Tolner EA. Enhanced pre-ictal cortical responsivity in migraine patients assessed by visual chirp stimulation. Cephalalgia 2020; 40:913-923. [PMID: 32188264 PMCID: PMC7412874 DOI: 10.1177/0333102420912725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Migraine is associated with altered sensory processing and cortical responsivity that may contribute to susceptibility to attacks by changing brain network excitability dynamics. To gain better insight into cortical responsivity changes in migraine we subjected patients to a short series of light inputs over a broad frequency range (“chirp” stimulation), designed to uncover dynamic features of visual cortex responsivity. Methods EEG responses to visual chirp stimulation (10–40 Hz) were measured in controls (n = 24) and patients with migraine with aura (n = 19) or migraine without aura (n = 20). Average EEG responses were assessed at (i) all EEG frequencies between 5 and 125 Hz, (ii) stimulation frequencies, and (iii) harmonic frequencies. We compared average responses in a low (10–18 Hz), medium (19–26 Hz) and high (27–40 Hz) frequency band. Results Responses to chirp stimulation were similar in controls and migraine subtypes. Eight measurements (n = 3 migraine with aura; n = 5 without aura) were assigned as “pre-ictal”, based on reported headache within 48 hours after investigation. Pre-ictally, an increased harmonic response to 22–32 Hz stimulation (beta band) was observed (p = 0.001), compared to interictal state measurements. Conclusions We found chirp responses to be enhanced in the 48 hours prior to migraine headache onset. Visual chirp stimulation proved a simple and reliable technique with potential to detect changes in cortical responsivity associated with the onset of migraine attacks.
Collapse
Affiliation(s)
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald Zielman
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes A Carpay
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, the Tergooi Hospital, Hilversum, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Mykland MS, Bjørk MH, Stjern M, Omland PM, Uglem M, Sand T. Fluctuations of sensorimotor processing in migraine: a controlled longitudinal study of beta event related desynchronization. J Headache Pain 2019; 20:77. [PMID: 31288756 PMCID: PMC6734210 DOI: 10.1186/s10194-019-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Background The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event related desynchronization (beta-ERD). Methods We recorded electroencephalography (EEG) of 41 migraine patients and 31 healthy controls. Each subject underwent three EEG recordings on three different days with classification of each EEG recording according to the actual migraine phase. During each recording, subjects performed one motor and one sensorimotor task with the flexion-extension movement of the right wrist. Results Migraine patients had significantly increased beta-ERD and higher baseline beta power at the contralateral C3 electrode overlying the primary sensorimotor cortex in the preictal phase compared to the interictal phase. We found no significant differences in beta-ERD or baseline beta power between interictal migraineurs and controls. Conclusion Increased preictal baseline beta activity may reflect a decrease in pre-activation in the sensorimotor cortex. Altered pre-activation may lead to changes in thresholds for inhibitory responses and increased beta-ERD response, possibly reflecting a generally increased preictal cortical responsivity in migraine. Cyclic fluctuations in the activity of second- and third-order afferent somatosensory neurons, and their associated cortical and/or thalamic interneurons, may accordingly also be a central part of the migraine pathophysiology.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Coppola G, Di Lorenzo C, Parisi V, Lisicki M, Serrao M, Pierelli F. Clinical neurophysiology of migraine with aura. J Headache Pain 2019; 20:42. [PMID: 31035929 PMCID: PMC6734510 DOI: 10.1186/s10194-019-0997-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this review is to provide a comprehensive overview of the findings of clinical electrophysiology studies aimed to investigate changes in information processing of migraine with aura patients. MAIN BODY Abnormalities in alpha rhythm power and symmetry, the presence of slowing, and increased information flow in a wide range of frequency bands often characterize the spontaneous EEG activity of MA. Higher grand-average cortical response amplitudes, an increased interhemispheric response asymmetry, and lack of amplitude habituation were less consistently demonstrated in response to any kind of sensory stimulation in MA patients. Studies with single-pulse and repetitive transcranial magnetic stimulation (TMS) have reported abnormal cortical responsivity manifesting as greater motor evoked potential (MEP) amplitude, lower threshold for phosphenes production, and paradoxical effects in response to both depressing or enhancing repetitive TMS methodologies. Studies of the trigeminal system in MA are sparse and the few available showed lack of blink reflex habituation and abnormal findings on SFEMG reflecting subclinical, probably inherited, dysfunctions of neuromuscular transmission. The limited studies that were able to investigate patients during the aura revealed suppression of evoked potentials, desynchronization in extrastriate areas and in the temporal lobe, and large variations in direct current potentials with magnetoelectroencephalography. Contrary to what has been observed in the most common forms of migraine, patients with familial hemiplegic migraine show greater habituation in response to visual and trigeminal stimuli, as well as a higher motor threshold and a lower MEP amplitude than healthy subjects. CONCLUSION Since most of the electrophysiological abnormalities mentioned above were more frequently present and had a greater amplitude in migraine with aura than in migraine without aura, neurophysiological techniques have been shown to be of great help in the search for the pathophysiological basis of migraine aura.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | | | | | - Marco Lisicki
- Headache Research Unit, University of Liège, Department of Neurology-Citadelle Hospital, Boulevard du Douzième de Ligne, 1-400 Liège, Belgium
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
- IRCCS – Neuromed, Via Atinense, 18-86077 Pozzilli, (IS) Italy
| |
Collapse
|
20
|
Mehnert J, Bader D, Nolte G, May A. Visual input drives increased occipital responsiveness and harmonized oscillations in multiple cortical areas in migraineurs. NEUROIMAGE-CLINICAL 2019; 23:101815. [PMID: 30974326 PMCID: PMC6458451 DOI: 10.1016/j.nicl.2019.101815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Migraineurs are hypersensitive for most sensory domains like visual, auditory or somatosensory processing even outside of attacks. This behavioral peculiarity is mirrored by findings of cortical hyper-responsivity already in the interictal state. Using repetitive visual stimulation to elicit steady state visually evoked potentials (SSVEP) in 30 interictal episodic migraineurs and 30 controls we show hyper-responsivity of the visual cortex in the migraineurs. Additionally, the occipital regions were remarkably stronger coupled to the temporal, premotor and the anterior cingulate cortex than in headache free controls. These data suggest harmonized oscillations of different cortical areas as a response to visual input which might be driven by the cuneus. Furthermore, the increased coupling is modulated by the current state of the migraine cycle as the coupling was significantly stronger in patients with longer interictal periods. Migraineurs visual cortex compared to controls is hyper-responsiveness in response to repetitive visual stimulation. The hyper-responsiveness is stronger coupled to temporal, premotor and anterior cingulate cortex than in controls. This increased coupling is modulated by the current state of the migraine cycle. Our data suggest that visual input in migraineurs leads to harmonized oscillations of multiple cortical areas.
Collapse
Affiliation(s)
- Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Daniel Bader
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Abstract
Introduction: In the past few years, brain functional analysis has provided scientific evidence supporting the neuronal basis of migraine. The role of electroencephalography (EEG) in detecting subtle dysfunctions in sensory temporal processing has been fully re-evaluated, thanks to advances in methods of quantitative analysis. However, the diagnostic value of EEG in migraine is very low, and migraine diagnosis is completely based on clinical criteria, while the utility of EEG in migraine pathophysiology has only been confirmed in more recent applications. Areas covered: The present review focuses on the few situations in which EEG may provide diagnostic utility, and on the numerous and intriguing applications of novel analysis, based on time-related changes in neuronal network oscillations and functional connectivity. Expert opinion: Although routine EEG is not particularly useful for the clinical assessment of migraine, novel methods of analysis, mostly based on functional connectivity, could improve knowledge of the migraine brain. The application is worthy of promotion and improvement in support of neuroimaging data to shed light on migraine mechanisms and support the rationale for therapeutic approaches.
Collapse
Affiliation(s)
- Marina de Tommaso
- a Applied Neurophysiology and Pain Unit, Basic Medical Neuroscience and Sensory System Department , Bari Aldo Moro University , Bari , Italy
| |
Collapse
|
22
|
Marucco E, Lisicki M, Magis D. Electrophysiological Characteristics of the Migraine Brain: Current Knowledge and Perspectives. Curr Med Chem 2018; 26:6222-6235. [PMID: 29956611 DOI: 10.2174/0929867325666180627130811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite pain being its most prominent feature, migraine is primarily a disorder of sensory processing. Electrophysiology-based research in the field has consistently developed over the last fifty years. OBJECTIVE To summarize the current knowledge on the electrophysiological characteristics of the migraine brain, and discuss perspectives. METHODS We critically reviewed the literature on the topic to present and discuss articles selected on the basis of their significance and/or novelty. RESULTS Physiologic fluctuations within time, between-subject differences, and methodological issues account as major limitations of electrophysiological research in migraine. Nonetheless, several abnormalities revealed through different approaches have been described in the literature. Altogether, these results are compatible with an abnormal state of sensory processing. PERSPECTIVES The greatest contribution of electrophysiological testing in the future will most probably be the characterization of sub-groups of migraine patients sharing specific electrophysiological traits. This should serve as strategy towards personalized migraine treatment. Incorporation of novel methods of analysis would be worthwhile.
Collapse
Affiliation(s)
- Erica Marucco
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Marco Lisicki
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Delphine Magis
- Centre Hospitalier Universitaire de Liege - Headache Research Unit Liege, Liege, Belgium
| |
Collapse
|
23
|
Guy N, Voisin D, Mulliez A, Clavelou P, Dallel R. Medication overuse reinstates conditioned pain modulation in women with migraine. Cephalalgia 2017; 38:1148-1158. [DOI: 10.1177/0333102417727545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study investigated the effects of medication overuse and withdrawal on modulation of pain processing in women with migraine. Temporal summation of laser-evoked thermal pain was used to measure the effects of conditioned pain modulation. Methods 36 female participants (12 healthy volunteers, 12 with episodic migraine and 12 with medication overuse headache) were included in a two session protocol. Medication overuse headache subjects were also tested three weeks after medication overuse headache withdrawal. Mechanical and laser-evoked thermal pain thresholds were measured on the back of the non-dominant hand where, later, temporal summation of laser-evoked thermal pain to repetitive thermal stimuli was elicited for 30 min, at an intensity producing moderate pain. Between the 10th and 20th minutes, the contralateral foot was immersed into a water bath at a not painful (30℃) or painfully cold (8℃; conditioned pain modulation) temperature. Results Episodic migraine, medication overuse headache and medication overuse headache withdrawal were associated with an increase in extracephalic temporal summation of laser-evoked thermal pain as compared to healthy volunteer subjects, while there was no alteration of laser-evoked thermal and mechanical extracephalic pain thresholds in these subjects. Conditioned pain modulation was highly efficient in temporal summation of laser-evoked thermal pain in healthy volunteer subjects, with a solid post-effect (reduction of pain). Conditioned pain modulation was still present, but reduced, in episodic migraine. By contrast, conditioned pain modulation was normal in medication overuse headache and strongly reduced in medication overuse headache withdrawal. Furthermore, in medication overuse headache withdrawal, the post-effect was no longer a decrease, but a facilitation of pain. Conclusions These data show that a decrease in conditioned pain modulation does not underlie medication overuse headache in women. On the contrary, medication overuse reinstated conditioned pain modulation in female migraine patients. They also identify different phenotypes of pain modulation in migraine patients. Registration number N° 2008-A00471-54.
Collapse
Affiliation(s)
- Nathalie Guy
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Daniel Voisin
- Neurocentre Magendie, Inserm U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | | | - Pierre Clavelou
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| |
Collapse
|
24
|
Mykland MS, Bjørk MH, Stjern M, Sand T. Alterations in post-movement beta event related synchronization throughout the migraine cycle: A controlled, longitudinal study. Cephalalgia 2017; 38:718-729. [PMID: 28478712 DOI: 10.1177/0333102417709011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marte Helene Bjørk
- 2 Department of Clinical Medicine, University of Bergen, Bergen, Norway
- 3 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
25
|
Uglem M, Omland PM, Nilsen KB, Tronvik E, Stovner LJ, Hagen K, Linde M, Sand T. Does pain sensitivity change by migraine phase? A blinded longitudinal study. Cephalalgia 2016; 37:1337-1349. [DOI: 10.1177/0333102416679955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective Studies suggest that pain thresholds may be altered before and during migraine headaches, but it is still debated if a central or peripheral dysfunction is responsible for the onset of pain in migraine. The present blinded longitudinal study explores alterations in thermal pain thresholds and suprathreshold heat pain scores before, during, and after headache. Methods We measured pain thresholds to cold and heat, and pain scores to 30 seconds of suprathreshold heat four times in 49 migraineurs and once in 31 controls. Sessions in migraineurs were categorized by migraine diaries as interictal, preictal (≤one day before attack), ictal or postictal (≤one day after attack). Results Trigeminal cold pain thresholds were decreased ( p = 0.014) and pain scores increased ( p = 0.031) in the ictal compared to the interictal phase. Initial pain scores were decreased ( p < 0.029), and the temporal profile showed less adaptation ( p < 0.020) in the preictal compared to the interictal phase. Hand cold pain thresholds were decreased in interictal migraineurs compared to controls ( p < 0.019). Conclusion Preictal heat hypoalgesia and reduced adaptation was followed by ictal trigeminal cold suballodynia and heat hyperalgesia. Our results support that cyclic alterations of pain perception occur late in the prodromal phase before headache. Further longitudinal investigation of how pain physiology changes within the migraine cycle is important to gain a more complete understanding of the pathogenic mechanisms behind the migraine attack.
Collapse
Affiliation(s)
- Martin Uglem
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Kristian Bernhard Nilsen
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Neurology, Section for Clinical Neurophysiology, Oslo University Hospital, Ullevål, Norway
| | - Erling Tronvik
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Lars Jacob Stovner
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Knut Hagen
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Mattias Linde
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
26
|
Wilcox SL, Veggeberg R, Lemme J, Hodkinson DJ, Scrivani S, Burstein R, Becerra L, Borsook D. Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine. Front Hum Neurosci 2016; 10:366. [PMID: 27507939 PMCID: PMC4960233 DOI: 10.3389/fnhum.2016.00366] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification.
Collapse
Affiliation(s)
- Sophie L Wilcox
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA
| | - Rosanna Veggeberg
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| | - Jordan Lemme
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
| | - Duncan J Hodkinson
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA
| | - Steven Scrivani
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston MA, USA
| | - Rami Burstein
- Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA
| | - Lino Becerra
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| | - David Borsook
- Center for Pain and the Brain (PAIN Research Group), Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, BostonMA, USA; Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, BelmontMA, USA
| |
Collapse
|
27
|
Abstract
Context The classification of headache disorders has improved over the years, but further work is needed to develop and improve headache diagnosis within headache subtypes. The present review is a call for action to implement laboratory tests in the classification and management of primary and some secondary headaches. Background In this narrative review we present and discuss published tests that might be useful in phenotyping and/or diagnosis of long-lasting headache disorders such as migraine, tension-type headache, trigeminal autonomic cephalalgias, trigeminal neuralgia and persisting secondary headaches. Aim The palpometer test, quantitative sensory testing, nociceptive blink reflex and autonomic tests may be valuable to phenotype and/or diagnose subforms of migraine, tension-type headache, cluster headache, trigeminal neuralgia and medication-overuse headache. Provocation tests with glyceryl trinitrate (GTN) and calcitonin gene-related peptide (CGRP) may be valuable in subclassification of migraine and cluster headache. Lumbar pressure monitoring and optical coherence tomography may valuable tools to diagnose and follow patients with chronic headache and raised intracranial pressure. Finding A number of laboratory tests in headache research are presently available, but have primarily been performed in single research studies or a few studies that differ in methods and patient groups. At present, there is no evidence-based strategy for implementing diagnostic tests, but this could be achieved if well-reputed tertiary headache centers commence developing and implementing laboratory tests in order to improve the classification and treatment of headache patients.
Collapse
Affiliation(s)
- Henrik Winther Schytz
- University of Copenhagen, Danish Headache Centre, Department of Neurology at Glostrup Hospital, Denmark
| | - Jes Olesen
- University of Copenhagen, Danish Headache Centre, Department of Neurology at Glostrup Hospital, Denmark
| |
Collapse
|
28
|
Maggioni E, Zucca C, Reni G, Cerutti S, Triulzi FM, Bianchi AM, Arrigoni F. Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: An EEG-fMRI study. Hum Brain Mapp 2016; 37:2247-62. [PMID: 26987932 DOI: 10.1002/hbm.23170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023] Open
Abstract
Although the occurrence of concomitant positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to visual stimuli is increasingly investigated in neuroscience, it still lacks a definite explanation. Multimodal imaging represents a powerful tool to study the determinants of negative BOLD responses: the integration of functional Magnetic Resonance Imaging (fMRI) and electroencephalographic (EEG) recordings is especially useful, since it can give information on the neurovascular coupling underlying this complex phenomenon. In the present study, the brain response to intermittent photic stimulation (IPS) was investigated in a group of healthy subjects using simultaneous EEG-fMRI, with the main objective to study the electrophysiological mechanisms associated with the intense NBRs elicited by IPS in extra-striate visual cortex. The EEG analysis showed that IPS induced a desynchronization of the basal rhythm, followed by the instauration of a novel rhythm driven by the visual stimulation. The most interesting results emerged from the EEG-informed fMRI analysis, which suggested a relationship between the neuronal rhythms at 10 and 12 Hz and the BOLD dynamics in extra-striate visual cortex. These findings support the hypothesis that NBRs to visual stimuli may be neuronal in origin rather than reflecting pure vascular phenomena. Hum Brain Mapp 37:2247-2262, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Claudio Zucca
- Clinical Neurophysiology Unit, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| | - Gianluigi Reni
- Bioengineering Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Cerutti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Fabio M Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna M Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Filippo Arrigoni
- Neuroradiology Unit, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
29
|
Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS One 2016; 11:e0149085. [PMID: 26914356 PMCID: PMC4767709 DOI: 10.1371/journal.pone.0149085] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/27/2016] [Indexed: 01/08/2023] Open
Abstract
The main objective of this study is to review and summarize recent findings on electroencephalographic patterns in individuals with chronic pain. We also discuss recent advances in the use of quantitative Electroencephalography (qEEG) for the assessment of pathophysiology and biopsychosocial factors involved in its maintenance over time. Data collection took place from February 2014 to July 2015 in PubMed, SciELO and PEDro databases. Data from cross-sectional studies and longitudinal studies, as well as clinical trials involving chronic pain participants were incorporated into the final analysis. Our primary findings related to chronic pain were an increase of theta and alpha EEG power at rest, and a decrease in the amplitude of evoked potentials after sensory stimulation and cognitive tasks. This review suggests that qEEG could be considered as a simple and objective tool for the study of brain mechanisms involved in chronic pain, as well as for identifying the specific characteristics of chronic pain condition. In addition, results show that qEEG probably is a relevant outcome measure for assessing changes in therapeutic studies.
Collapse
|
30
|
Demarquay G, Mauguière F. Central Nervous System Underpinnings of Sensory Hypersensitivity in Migraine: Insights from Neuroimaging and Electrophysiological Studies. Headache 2015; 56:1418-1438. [PMID: 26350583 DOI: 10.1111/head.12651] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/03/2023]
Abstract
Whereas considerable data have been generated about the pathophysiology of pain processing during migraine attacks, relatively little is known about the neural basis of sensory hypersensitivity. In migraine, the term "hypersensitivity" encompasses different and probably distinct pathophysiological aspects of sensory sensitivity. During attacks, many patients have enhanced sensitivity to visual, auditory and/or olfactory stimuli, which can enhance headache while interictally, migraineurs often report abnormal sensitivity to environmental stimuli that can cause nonpainful discomfort. In addition, sensorial stimuli can influence and trigger the onset of migraine attacks. The pathophysiological mechanisms and the origin of such sensitivity (individual predisposition to develop migraine disease or consequence of repeated migraine attacks) are ill understood. Functional neuroimaging and electrophysiological studies allow for noninvasive measures of neuronal responses to external stimuli and have contributed to our understanding of mechanisms underlying sensory hypersensitivity in migraine. The purpose of this review is to present pivotal neuroimaging and neurophysiological studies that explored the basal state of brain responsiveness to sensory stimuli in migraineurs, the alterations in habituation and attention to sensory inputs, the fluctuations of responsiveness to sensory stimuli before and during migraine attacks, and the relations between sensory hypersensitivity and clinical sensory complaints.
Collapse
Affiliation(s)
- Geneviève Demarquay
- Department of Neurology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France and Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France.
| | - François Mauguière
- Neurological Hospital Pierre Wertheimer: Functional Neurology and Epilepsy Department, Hospices Civils de Lyon and Claude Bernard Lyon1 University, Lyon, France, and Lyon Neuroscience Research Center (CRNL), Neuropain team, INSERM U1028, CNRS UMR5292, Lyon, France
| |
Collapse
|
31
|
Analysis and clinical correlates of 20 Hz photic driving on routine EEG in migraine. Acta Neurol Belg 2015; 115:39-45. [PMID: 24858629 DOI: 10.1007/s13760-014-0309-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Enhanced photic driving (PD) during high-frequency flicker stimulation, the so-called H response, is a classical feature of migraine patients between attacks, but is thought to be of poor clinical utility. Visual inspection of the EEG for its detection may not be reliable, however, data on its possible correlations with clinical features and migraine pathophysiology are scarce. We have compared visual inspection and EEG spectral analysis to detect abnormal PD in 280 consecutive migraine patients of our headache clinic (episodic migraine without aura, n = 171; chronic migraine, n = 48; migraine with aura, n = 61) and in a group of 24 non-migrainous neurological controls. Spectral frequency analyses were performed blindly by one of us (YF). On visual inspection, 50.4 % of migraineurs were thought to have increased 20 Hz PD. After spectral analysis, only 62.4 % of them had PD power superior to the mean + 95 % CI of the control group. Sensitivity of visually identified PD was 82.24 %, specificity 69.36 %. Increased PD on spectral analysis was more prevalent in episodic migraine than in chronic migraine, in patients with low attack frequency, in those with ictal autonomic symptoms in addition to nausea and in those with a strong family history of migraine. We confirm therefore that 20 Hz photic driving is of little diagnostic utility and its prevalence in migraine overestimated on visual inspection. Its presence on spectral analysis of the EEG, however, might be of pathophysiological interest, as it identifies subgroups of migraineurs of whom the common denominator could be lack of habituation of cortical responses during repetitive stimulation.
Collapse
|
32
|
Gupta SN, Gupta VS, Fields DM. Spectrum of complicated migraine in children: A common profile in aid to clinical diagnosis. World J Clin Pediatr 2015; 4:1-12. [PMID: 25664241 PMCID: PMC4318797 DOI: 10.5409/wjcp.v4.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Complicated migraine encompasses several individual clinical syndromes of migraine. Such a syndrome in children frequently presents with various neurological symptoms in the Emergency Department. An acute presentation in the absence of headache presents a diagnostic challenge. A delay in diagnosis and treatment may have medicolegal implication. To date, there are no reports of a common clinical profile proposed in making a clinical diagnosis for the complicated migraine. In this clinical review, we propose and describe: (1) A common clinical profile in aid to clinical diagnosis for spectrum of complicated migraine; (2) How it can be used in differentiating complicated migraine from migraine without aura, migraine with aura, and seizure; (3) We discuss the status of complicated migraine in the International Headache Society classification 2013; and (4) In addition, a common treatment strategy for the spectrum of migraine has been described. To diagnose complicated migraine clinically, it is imperative to adhere with the proposed profile. This will optimize the use of investigation and will also avoid a legal implication of delay in their management. The proposed common clinical profile is incongruent with the International Headache Society 2013. Future classification should minimize the dissociation from clinically encountered syndromes and coin a single word to address collectively this subtype of migraine with an acute presentation of a common clinical profile.
Collapse
|
33
|
|
34
|
de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014; 10:144-55. [PMID: 24535465 DOI: 10.1038/nrneurol.2014.14] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes.
Collapse
Affiliation(s)
| | - Anna Ambrosini
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | - Armando Perrotta
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Francesco Pierelli
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Gantenbein AR, Sandor PS, Goadsby PJ, Kaube H. Chirp stimulation: H-response short and dynamic. Cephalalgia 2014; 34:554-8. [DOI: 10.1177/0333102413517777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
Abstract
Background Migraine patients have an increased photic-driving response. This ‘H-response’ (HR) has potential diagnostic value but it is time consuming. Aim The aim of the study was to establish a fast and standardized test for the study of migraine biology and treatment. Methods We studied 11 migraine patients and 11 matched control participants. We used stroboscope flashes with a ‘chirp’-like linear frequency-increase from 10 to 40 Hz. EEG was recorded from occipital electrodes. Power spectral density was calculated for the stimulus response and corrected for baseline. An HR-estimator was calculated as the average power between 18 and 26 Hz in the stimulation-frequency window. Results There was a significant difference for single ( p < 0.05) and for 10 averaged recordings ( p < 0.01) between migraineurs and controls, and a high inter-test reliability (Cronbach’s alpha = 0.94). Conclusion Chirp-like stimulation to study the H-response is reliable and efficient and might therefore have a potential for acute interventional studies in migraine research.
Collapse
Affiliation(s)
- Andreas R Gantenbein
- Headache and Pain Unit, Department of Neurology, University Hospital Zurich, Switzerland
- RehaClinic Bad Zurzach, Switzerland
| | | | - Peter J Goadsby
- Headache Group, NIHR-Wellcome Trust Clinical Research Facility, King's College London, UK
| | - Holger Kaube
- Neurology and Headache Centre, MünchnerFreiheit, Germany
| |
Collapse
|
36
|
de Tommaso M, Stramaglia S, Marinazzo D, Trotta G, Pellicoro M. Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia 2013; 33:938-47. [DOI: 10.1177/0333102413477741] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: This research was a case-control study to evaluate functional and effective connectivity patterns in ongoing electroencephalography (EEG) under repetitive photic stimulation in the interictal phase of migraine patients with and without aura compared to nonmigraine controls. Methods: EEG was recorded by six scalp electrodes from 19 migraine without aura patients (MO), 19 migraine with aura patients (MA) and 11 healthy subjects (control group (N)). Flash stimuli were presented at 9–27 Hz frequencies. Phase synchronization after Hilbert transform and Granger causality were evaluated filtering the EEG in alpha and beta bands. Results: Phase synchronization increased in alpha band in MO, and decreased in beta band in MA, with respect to controls. The intensity of directed interactions in beta band, revealed by Granger causality, increased in MA compared to both MO patients and controls. Discussion: There were clear differences in ongoing EEG under visual stimulation, which emerged between the two forms of migraine, probably subtended by increased cortical activation in migraine with aura, and compensatory phenomena of reduced connectivity and functional networks segregation, occurring in patients not experiencing aura symptoms. Further investigation may confirm whether the clinical manifestation of aura symptoms is subtended by a peculiar neuronal connectivity pattern.
Collapse
Affiliation(s)
- Marina de Tommaso
- Dipartimento di Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Italy
| | | | - Daniele Marinazzo
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Belgium
| | - Gabriele Trotta
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro and INFN, Italy
| | - Mario Pellicoro
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro and INFN, Italy
| |
Collapse
|
37
|
Omland PM, Nilsen KB, Uglem M, Gravdahl G, Linde M, Hagen K, Sand T. Visual Evoked Potentials in Interictal Migraine: No Confirmation of Abnormal Habituation. Headache 2013; 53:1071-86. [DOI: 10.1111/head.12006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Petter M. Omland
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim; Norway
| | - Kristian B. Nilsen
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim; Norway
| | - Martin Uglem
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim; Norway
| | - Gøril Gravdahl
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim; Norway
| | | | | | | |
Collapse
|
38
|
Kasteleijn-Nolst Trenité D, Parisi P. Migraine in the borderland of epilepsy: “Migralepsy” an overlapping syndrome of children and adults? Epilepsia 2012; 53 Suppl 7:20-5. [DOI: 10.1111/j.1528-1167.2012.03711.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ozkan M, Teber ST, Deda G. Electroencephalogram variations in pediatric migraines and tension-type headaches. Pediatr Neurol 2012; 46:154-7. [PMID: 22353289 DOI: 10.1016/j.pediatrneurol.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 11/30/2011] [Indexed: 11/19/2022]
Abstract
This study evaluates specific electroencephalogram abnormalities in pediatric migraine and tension-type headaches, and demonstrates the clinical value of these abnormalities. We studied 50 migraine patients and 50 tension-type headache patients. Their mean age ± SD was 10.62 ± 3.21 (range, 5-16) years in the migraine group, and 13.00 ± 2.37 (7-16) years in the tension-type headache group. Diagnoses were rendered according to the International Classification of Headache Disorders, 2nd Edition, First Revision, of the International Headache Society. All patients underwent two waking-state electroencephalograms, one during a headache, and the other when headache-free. Thirty-six percent (18/50) of migraine patients and 12% (6/50) of tension-type headache patients revealed specific electroencephalogram abnormalities in headache attack electroencephalograms (P < 0.05). In headache-free period electroencephalograms, 16% (8/50) of the migraine group and 2% (1/50) of the tension-type headache group revealed abnormalities (P < 0.05). Our results indicate that electroencephalogram abnormalities are particularly prevalent in migraines, especially during headache attacks. This study is the first, to the best of our knowledge, on electroencephalographic evaluation of pediatric migraine and tension-type headache patients during both headache attacks and headache-free periods.
Collapse
Affiliation(s)
- Mehpare Ozkan
- Department of Pediatric Neurology, Doctor Sami Ulus Children's Health and Disease Training and Research Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
40
|
Bjørk M, Stovner LJ, Hagen K, Sand T. What initiates a migraine attack? Conclusions from four longitudinal studies of quantitative EEG and steady-state visual-evoked potentials in migraineurs. Acta Neurol Scand 2011:56-63. [PMID: 21711258 DOI: 10.1111/j.1600-0404.2011.01545.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Quantitative electroencephalograpic (QEEG) frequency spectra and steady-state visual-evoked potentials (SSVEP) are indicators of corticothalamic excitability (e.g., arousal). Increased interictal excitability is suggested to be an important element in the migraine pathophysiology. In this paper, we summarize our results from four studies of QEEG and SSVEP recordings in migraineurs interictally and in the days before an attack with the intention to shed light on attack-initiating mechanisms. MATERIAL AND METHODS Thirty-two healthy controls, 33 migraineurs without and eight with aura each had three EEGs with photic stimulation on different days. Using the patient headache diaries, we classified the recordings as interictal, preictal, ictal, or post-ictal retrospectively. Interictal recordings were compared pairwise with attack-related EEGs from the same patient as well as with control EEGs. We also correlated clinical variables with the QEEG and SSVEP data. RESULTS Between attacks, we found increased relative theta activity and attenuated medium-frequency photic responses in migraineurs without aura compared with those in controls. Within 36 h before the attack, slow and asymmetric EEG activity developed. Increased trigger sensitivity and photophobia correlated with higher theta power and depressed photic responses. Attack duration, migraine history duration, and pain intensity were associated with EEG slowing. CONCLUSIONS A general tendency toward EEG slowing and depression of photic responses characterized the migraine group. This pattern was also related to increased severity of symptoms. A change in cortical activity occurred within 36 h before attacks. Our results indicate that thalamocortical hypoexcitability is associated with attack initiation and sensory hypersensitivity in migraine.
Collapse
Affiliation(s)
- M Bjørk
- Department of Neuroscience, Norwegian University of Science and Technology, Olav Kyrresgate 9, Trondheim, Norway.
| | | | | | | |
Collapse
|