1
|
Ridge ST, Trotter T, Sponbeck JK, Johnson AW, Hunter I, Bruening DA. Variability Among Individual Male Runners Influences Cumulative Loading More Than Foot Strike Type. Sports Health 2025:19417381251333415. [PMID: 40251769 PMCID: PMC12009271 DOI: 10.1177/19417381251333415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Foot strike type affects running mechanics and may influence overuse injury occurrence. Measuring the interaction between cumulative load and foot strike type may provide additional information that could increase understanding of injury mechanisms. HYPOTHESIS There will be no differences in cumulative loading between runners using rearfoot strike (RFS) and nonrearfoot strike (NRFS) patterns. NRFS runners will have a greater stride rate. There will be differences in per stride metrics of select lower extremity mechanics. STUDY DESIGN Observational laboratory study. LEVEL OF EVIDENCE Level 3. METHODS Thirty male participants (age, 22.7 ± 2.9 years; height, 1.79 ± 0.07 m; mass, 70.7 ± 7.86 kg; mean ± SD) ran on an instrumented treadmill for 5 km at 3.15 m/s with their preferred foot strike type (14 RFS, 16 NRFS). Stride rate, foot strike angle, loading rate (LR), per stride and per kilometer (cumulative) vertical ground-reaction force (VGRF) impulse, impact peak, absolute peak, knee negative work, and ankle negative work were calculated and compared across time and between groups. RESULTS Per stride differences were seen for stance time, foot strike angle, and LR (greater for RFS runners, P = 0.003). Per stride and cumulative ankle and knee negative work showed significant differences (greater ankle negative work for NRFS runners, P < 0.001 [per stride and cumulative], greater knee negative work for RFS runners, P = 0.01 per stride, P = 0.008 cumulative). CONCLUSION Ankle and knee loading metrics showed differences in per stride and cumulative metrics between foot strike groups. Individual variability in VGRF loading patterns was more apparent than group distinctions. The common perception that NRFS runners have a higher stride rate was not supported. CLINICAL RELEVANCE Individual loading patterns, not just foot strike type, and training session characteristics related to cumulative load should be considered when assessing injury risk.
Collapse
|
2
|
Zhang X, Fu B, Li Y, Deng L, Fu W. Effects of habitual foot strike patterns on patellofemoral joint and Achilles tendon loading in recreational runner. Gait Posture 2025; 117:121-128. [PMID: 39701021 DOI: 10.1016/j.gaitpost.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Most running biomechanics studies have focused on either the patellofemoral joint (PFJ) or Achilles tendon (AT) alone, generating fragmented understanding of how these structures interact as components of an integrated kinetic chain during running. This study was to investigate concurrent biomechanical changes in the PFJ and AT in recreational runners. METHODS The recreational runners who are accustomed to run with rearfoot strike (RFS, n = 15) and forefoot strike (FFS, n = 15) patterns were recruited. They were instructed to run at 10 km/h in cushion shoes with their habitual strike patterns on an instrumented split-belt treadmill. Kinematics of the ankle and knee joints in the sagittal plane and ground reaction forces were recorded simultaneously. The contact force and stress at the PFJ, as well as the force, loading rate, impulse, and stress of the AT, were calculated. RESULTS The habitual RFS runners had significantly higher peak extension moment (p = 0.019, ES = 0.906), peak quadriceps force (p = 0.010, ES = 1.008), PFJ contact force (p = 0.007, ES = 1.056) and stress (p = 0.042, ES = 0.958) than habitual FFS runners. The peak plantar flexion moment (p < 0.001, ES = 2.692), peak AT force (p < 0.001, ES = -1.788), average (p < 0.001, ES = -2.337) and peak AT loading rate (p < 0.001, ES =-1.996), AT impulse (p = 0.002, ES = -1.246) and stress (p = 0.006, ES = -1.082) of the habitual RFS runners were significantly lower than those of the habitual FFS runners. CONCLUSION The FFS pattern could decrease PFJ load but simultaneously increased the mechanical load on the AT. Conversely, the RFS pattern increased PFJ load, but imposed less load on the AT.
Collapse
Affiliation(s)
- Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Baisheng Fu
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Yuxin Li
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China.
| |
Collapse
|
3
|
Rubio-Peirotén A, Cartón-Llorente A, Mugele H, Jaén-Carrillo D. The Trail Runners' Tendon-How Do Weekly Mileage and Elevation Gain Affect Achilles and Patellar Tendon Morphology? J Funct Morphol Kinesiol 2024; 10:1. [PMID: 39846642 PMCID: PMC11755538 DOI: 10.3390/jfmk10010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Background: Unlike road running, mountain and trail running typically cover longer distances and include uphill and downhill segments that impose unique physiological and mechanical demands on athletes. Objectives: This study aimed to identify morphological differences in the patellar and Achilles tendons between trail and road runners. Moreover, the potential influence of weekly mileage and accumulated positive elevation gain on the morphology of both tendons was obtained. Design: Cross-sectional comparative study. Methods: Thirty-three road runners (11 women, 22 men) and thirty-three trail runners (13 women, 20 men) were recruited and their weekly mileage and elevation gain collected. All participants had a weekly training volume exceeding 20 km. The thickness and cross-sectional area (CSA) of their patellar and Achilles tendons were evaluated using ultrasound. Results: Independent samples t-tests revealed significant differences between groups for the Achilles tendon (p < 0.003) but not for the patellar tendon (p > 0.330). Further, Spearman's correlation coefficients indicated moderate positive correlations for the thickness and CSA of the Achilles tendon with weekly running volume (0.256 and 0.291, respectively) and with elevation gain (0.332 and 0.334, respectively), suggesting a tendency for the tendon to adapt to greater training loads, enhancing its structural integrity and resilience. Conclusions: Trail runners exhibit larger and thicker Achilles tendons, likely due to increased weekly mileage and elevation gain, highlighting the adaptive response to mechanical overload from uphill running.
Collapse
Affiliation(s)
| | | | - Hendrik Mugele
- Department of Sport Science, Universität Innsbruck, 6020 Innsbruck, Austria; (H.M.); (D.J.-C.)
| | - Diego Jaén-Carrillo
- Department of Sport Science, Universität Innsbruck, 6020 Innsbruck, Austria; (H.M.); (D.J.-C.)
| |
Collapse
|
4
|
Verheul J, Harper D, Robinson MA. Forces experienced at different levels of the musculoskeletal system during horizontal decelerations. J Sports Sci 2024; 42:2242-2253. [PMID: 39545586 DOI: 10.1080/02640414.2024.2428086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Horizontal decelerations are frequently performed during team sports and are closely linked to sports performance and injury. This study aims to provide a comprehensive description of the kinetic demands of decelerations at the whole-body, structural, and tissue-specific levels of the musculoskeletal system. Team-sports athletes performed maximal-effort horizontal decelerations whilst full-body kinematics and ground reaction forces (GRFs) were recorded. A musculoskeletal model was used to determine whole-body (GRFs), structural (ankle, knee, and hip joint moments and contact forces), and tissue (twelve lower-limb muscle forces) loads. External GRFs in this study, especially in the horizontal direction, were up to six times those experienced during accelerated or constant-speed running reported in the literature. To cope with these high external forces, large joint moments (hip immediately after touchdown; ankle and knee during mid and late stance) and contact forces (ankle, knee, hip immediately after touchdown) were observed. Furthermore, eccentric force requirements of the tibialis anterior, soleus, quadriceps, and gluteal muscles were particularly high. The presented loading patterns provide the first empirical explanations for why decelerating movements are amongst the most challenging in team sports and can help inform deceleration-specific training prescription to target horizontal deceleration performance, or fatigue and injury resistance in team-sports athletes.
Collapse
Affiliation(s)
- Jasper Verheul
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Damian Harper
- School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - Mark A Robinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
5
|
Traut AG, Hannigan J, Ter Har JA, Pollard CD. Influence of Footwear Selection on Youth Running Biomechanics: A Pilot Study. Sports Health 2024; 16:913-919. [PMID: 38073161 PMCID: PMC11531011 DOI: 10.1177/19417381231215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The relationship of running biomechanics, footwear, and injury has been studied extensively in adults. There has been little research on the effects of footwear on running biomechanics in youth. HYPOTHESIS Running biomechanics of youth will be significantly affected by changes in footwear. Minimal shoe running will demonstrate similarities to barefoot. STUDY DESIGN Crossover study design: randomized trial. LEVEL OF EVIDENCE Level 2. METHODS A total of 14 active male youth (8-12 years old) participants with no previous exposure to minimalist shoes or barefoot running had running biomechanics (lower extremity sagittal plane kinematics and vertical ground reaction forces [vGRFs]) collected and analyzed in 3 footwear conditions (barefoot, traditional, and minimal shoe). RESULTS The average vertical loading rate (AVLR) was significantly greater running barefoot (173.86 bodyweights per second [BW/s]) and in the minimal shoe (138.71 BW/s) compared with the traditional shoe (78.06 BW/s), (P < 0.01). There were significant differences between shoe conditions for knee flexion at initial contact (P < 0.01), knee sagittal plane excursion (P < 0.01), peak dorsiflexion (P < 0.01), and dorsiflexion at initial contact (P = 0.03). No participants displayed a forefoot-strike during this study. CONCLUSION The introduction of barefoot and minimalist running in habitually shod youth significantly affected the running biomechanics of youth and caused immediate alterations in both lower extremity kinematics and vGRFs. Running barefoot or in minimal shoes dramatically increased the AVLR, which has been associated with injury, compared with a traditional shoe. CLINICAL RELEVANCE This study evaluated the effects of footwear on overground running biomechanics, including AVLR, in pre- and early-adolescent youth males. Based on our findings, clinicians should exercise caution in barefoot or minimal shoe transition among young, habitually shod, runners due to the immediate and dramatic increases in AVLRs.
Collapse
Affiliation(s)
- Andrew G. Traut
- Program in Kinesiology, College of Health, Oregon State University, Corvallis, Oregon
| | - J.J. Hannigan
- Program in Physical Therapy, College of Health, Oregon State University - Cascades, Bend, Oregon
| | | | - Christine D. Pollard
- Program in Physical Therapy, College of Health, Oregon State University - Cascades, Bend, Oregon
| |
Collapse
|
6
|
Rukmini PG, Hegde RB, Basavarajappa BK, Bhat AK, Pujari AN, Gargiulo GD, Gunawardana U, Jan T, Naik GR. Recent Innovations in Footwear and the Role of Smart Footwear in Healthcare-A Survey. SENSORS (BASEL, SWITZERLAND) 2024; 24:4301. [PMID: 39001080 PMCID: PMC11243832 DOI: 10.3390/s24134301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Smart shoes have ushered in a new era of personalised health monitoring and assistive technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking. As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor technology enhancements and smartphones' ubiquity. Shoes have begun incorporating accelerometers, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track rehabilitation progress, and detect falls among older people, thus expanding their application beyond fitness into medical monitoring. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. This study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.
Collapse
Affiliation(s)
- Pradyumna G. Rukmini
- Department of Electronics & Communication Engineering, NMAM Institute Technology, NITTE (Deemed to be University), Nitte 574110, India; (P.G.R.); (R.B.H.); (B.K.B.); (A.K.B.)
| | - Roopa B. Hegde
- Department of Electronics & Communication Engineering, NMAM Institute Technology, NITTE (Deemed to be University), Nitte 574110, India; (P.G.R.); (R.B.H.); (B.K.B.); (A.K.B.)
| | - Bommegowda K. Basavarajappa
- Department of Electronics & Communication Engineering, NMAM Institute Technology, NITTE (Deemed to be University), Nitte 574110, India; (P.G.R.); (R.B.H.); (B.K.B.); (A.K.B.)
| | - Anil Kumar Bhat
- Department of Electronics & Communication Engineering, NMAM Institute Technology, NITTE (Deemed to be University), Nitte 574110, India; (P.G.R.); (R.B.H.); (B.K.B.); (A.K.B.)
| | - Amit N. Pujari
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hertfordshire AL10 9AB, UK;
- School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Gaetano D. Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; (G.D.G.); (U.G.)
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia
- Translational Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
- The Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Upul Gunawardana
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; (G.D.G.); (U.G.)
| | - Tony Jan
- Centre for Artificial Intelligence Research and Optimization (AIRO), Design and Creative Technology Vertical, Torrens University, Ultimo, NSW 2007, Australia;
| | - Ganesh R. Naik
- Centre for Artificial Intelligence Research and Optimization (AIRO), Design and Creative Technology Vertical, Torrens University, Ultimo, NSW 2007, Australia;
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Design and Creative Technology Vertical, Torrens University, Wakefield Street, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Reiter AJ, Martin JA, Knurr KA, Adamczyk PG, Thelen DG. Achilles Tendon Loading during Running Estimated Via Shear Wave Tensiometry: A Step Toward Wearable Kinetic Analysis. Med Sci Sports Exerc 2024; 56:1077-1084. [PMID: 38240495 PMCID: PMC11096059 DOI: 10.1249/mss.0000000000003396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
PURPOSE Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous laboratory-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS Participants walked (1.34 m·s -1 ) and ran (2.68, 3.35, and 4.47 m·s -1 ) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole-body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared with ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m·s -1 ), Achilles tendon force (44.0-98.7 N·kg -1 ), and ankle torque (1.72-3.68 N·m·(kg -1 )) were observed with increasing locomotion speed (1.34-4.47 m·s -1 ). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.
Collapse
Affiliation(s)
- Alex J Reiter
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI
| | | | | | - Peter G Adamczyk
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
8
|
Rubio-Peirotén A, Cartón-Llorente A, Roche-Seruendo LE, Jaén-Carrillo D. Larger Achilles and plantar fascia induce lower duty factor during barefoot running. J Sci Med Sport 2023; 26:593-598. [PMID: 37778957 DOI: 10.1016/j.jsams.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Tendons play a crucial role allowing the storage and release of mechanical energy during the running cycle. Running kinematics, including duty factor, constitute a basic element of the runner's biomechanics, and can determine their performance. This study aimed to analyze the link between Achilles tendon and plantar fascia morphology and running parameters, considering the influence of wearing shoes versus running barefoot. DESIGN Cross-sectional study. METHODS 44 participants (30 men and 14 women) engaged in two running sessions, one with shoes and one without, both lasting 3 min at a consistent speed of 12 km/h. We captured running kinematic data using a photoelectric cell system throughout the sessions. Before the trials, we measured the thickness and cross-sectional area of both the Achilles tendon and plantar fascia using ultrasound. RESULTS The Pearson test revealed a significant correlation (p < 0,05) between Achilles tendon and plantar fascia morphology and contact time (r > -0.325), flight time (r > -0.325) and duty factor (ratio of ground contact to stride time) (r > -0.328) during barefoot running. During the shod condition, no significant correlation was found between connective tissue morphology and kinematic variables. CONCLUSIONS In barefoot running, greater size of the Achilles tendon and plantar fascia results in a reduced duty factor, attributed to longer flight times and shorter contact times.
Collapse
Affiliation(s)
- Alberto Rubio-Peirotén
- Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego Zaragoza, Spain.
| | - Antonio Cartón-Llorente
- Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego Zaragoza, Spain
| | - Luis E Roche-Seruendo
- Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego Zaragoza, Spain
| | | |
Collapse
|
9
|
Zhang X, Deng L, Xiao S, Fu W. Morphological and viscoelastic properties of the Achilles tendon in the forefoot, rearfoot strike runners, and non-runners in vivo. Front Physiol 2023; 14:1256908. [PMID: 37745236 PMCID: PMC10513438 DOI: 10.3389/fphys.2023.1256908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The purpose of this study was to investigate the differences in the morphological and viscoelastic properties of the Achilles tendon (AT) among different groups (rearfoot strikers vs. forefoot strikers vs. non-runners). Thirty healthy men were recruited, including habitual forefoot strike runners (n = 10), rearfoot strike runners (n = 10), and individuals with no running habits (n = 10). The AT morphological properties (cross-sectional area and length) were captured by using an ultrasound device. The real-time ultrasound video of displacement changes at the medial head of the gastrocnemius and the AT junction during maximal voluntary isometric contraction and the plantar flexion moment of the ankle was obtained simultaneously by connecting the ultrasound device and isokinetic dynamometer via an external synchronisation box. The results indicated that male runners who habitually forefoot strike exhibited significantly lower AT hysteresis than male non-runners (p < 0.05). Furthermore, a greater peak AT force during maximal voluntary contraction was observed in forefoot strike male runners compared to that in male individuals with no running habits (p < 0.05). However, foot strike patterns were not related to AT properties in recreational male runners (p > 0.05). The lower AT hysteresis in male FFS runners implied that long-term forefoot strike patterns could enhance male-specific AT's ability to store and release elastic energy efficiently during running, resulting in a more effective stretch-shortening cycle. The greater peak AT force in male FFS runners indicated a stronger Achilles tendon.
Collapse
Affiliation(s)
- Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Skypala J, Hamill J, Sebera M, Elavsky S, Monte A, Jandacka D. Running-Related Achilles Tendon Injury: A Prospective Biomechanical Study in Recreational Runners. J Appl Biomech 2023:1-9. [PMID: 37419494 DOI: 10.1123/jab.2022-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 07/09/2023]
Abstract
There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.
Collapse
Affiliation(s)
- Jiri Skypala
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Joseph Hamill
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA,USA
| | - Michal Sebera
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Steriani Elavsky
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| | - Andrea Monte
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona,Italy
| | - Daniel Jandacka
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava,Czech Republic
| |
Collapse
|
11
|
Skypala J, Monte A, Hamill J, Plesek J, Jandacka D. Achilles tendon dimensions, ankle stiffness and footfall patterns in recreational runners. J Sports Sci 2023; 41:812-819. [PMID: 37535868 DOI: 10.1080/02640414.2023.2240631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The main purpose of this study was to investigate the relationship among Achilles tendon (AT) dimensions, ankle joint stiffness, and footfall patterns in recreational rearfoot and non-rearfoot runners. Based on the foot strike index, a total of 107 runners were divided into rearfoot (47 females/40 males) and non-rearfoot runners (14 females/6 males). All participants had theirs AT dimensions (AT length, AT thickness, and AT moment arm) measured using a combination of ultrasound and motion capture systems. In addition, all performed running trials measured at self-selected speed in laboratory-neutral shoes. A partial correlation coefficient was used for correlations between the selected variables. The results revealed a significant relationship between ankle joint stiffness and level of footfall pattern in rearfoot (r = 0.232, p = 0.032) and non-rearfoot runners (r = -0.811, p < 0.001). The results also suggest a relationship between AT thickness and foot strike index (r = -0.486) in non-rearfoot runners. Runners whose footfall pattern is closer to the heel have greater ankle joint stiffness. Non-rearfoot runners whose footfall pattern is closer to the toe have a thinner AT. Non-rearfoot runners with thicker AT had greater ankle joint stiffness.
Collapse
Affiliation(s)
- Jiri Skypala
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Andrea Monte
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Joseph Hamill
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
- Department of Kinesiology, University of Massachusetts, Amherst, USA
| | - Jan Plesek
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
12
|
Ramsey C, Peterson B, Hébert-Losier K. Measurement and reporting of footwear characteristics in running biomechanics: A systematic search and narrative synthesis of contemporary research methods. Sports Biomech 2023; 22:351-387. [PMID: 36214324 DOI: 10.1080/14763141.2022.2125431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review aimed to synthesise the methods for assessing and reporting footwear characteristics among studies evaluating the effect of footwear on running biomechanics. Electronic searches of Scopus®, EBSCO, PubMed®, ScienceDirect®, and Web of Science® were performed to identify original research articles of the effect of running footwear on running biomechanics published from 1st January 2015 to 7th October 2020. Risk of bias among included studies was not assessed. Results were presented via narrative synthesis. Eligible studies compared the effect of two or more footwear conditions in adult runners on a biomechanical parameter. Eighty-seven articles were included and data from 242 individual footwear were extracted. Predominantly, studies reported footwear taxonomy (i.e., classification) and manufacturer information, however omitted detail regarding the technical specifications of running footwear and did not use validated footwear reporting tools. There is inconsistency among contemporary studies in the methods by which footwear characteristics are assessed and reported. These findings point towards a need for consensus regarding the reporting of these characteristics within biomechanical studies to facilitate the conduct of systematic reviews and meta-analyses pertaining to the effect of running footwear on running biomechanics.
Collapse
Affiliation(s)
- Codi Ramsey
- Institute of Sport , Exercise and Health, Otago Polytechnic, Dunedin, New Zealand
| | - Benjamin Peterson
- Department of Podiatry, School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, Australia
| | - Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
13
|
Gruber AH, Warne JP, Hamill J. Isolated effects of footwear structure and cushioning on running mechanics in habitual mid/forefoot runners. Sports Biomech 2023; 22:422-441. [PMID: 36200613 DOI: 10.1080/14763141.2022.2129088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The true differences between barefoot and shod running are difficult to directly compare because of the concomitant change to a mid/forefoot footfall pattern that typically occurs during barefoot running. The purpose of this study was to compare isolated effects of footwear structure and cushioning on running mechanics in habitual mid/forefoot runners running shod (SHOD), barefoot (BF), and barefoot on a foam surface (BF+FOAM). Ten habitually shod mid/forefoot runners were recruited (male = 8, female = 2). Repeated measures ANOVA (α = 0.05) revealed differences between conditions for only vertical peak active force, contact time, negative and total ankle joint work, and peak dorsiflexion angle. Post hoc tests revealed that BF+FOAM resulted in smaller vertical active peak magnitude and instantaneous vertical loading rate than SHOD. SHOD resulted in lower total ankle joint work than BF and BF+FOAM. BF+FOAM resulted in lower negative ankle joint work than either BF or SHOD. Contact time was shorter with BF than BF+FOAM or SHOD. Peak dorsiflexion angle was smaller in SHOD than BF. No other differences in sagittal joint kinematics, kinetics, or ground reaction forces were observed. These overall similarities in running mechanics between SHOD and BF+FOAM question the effects of footwear structure on habituated mid/forefoot running described previously.
Collapse
Affiliation(s)
- A H Gruber
- The H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - J P Warne
- Department of Applied Science, Technological University Dublin- Tallaght Campus, Dublin, Ireland.,Setanta College, Thurles Chamber of Commerce, Tipperary, Ireland
| | - J Hamill
- Biomechanics Laboratory, Department of Kinesiology, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Demangeot Y, Whiteley R, Gremeaux V, Degache F. The load borne by the Achilles tendon during exercise: A systematic review of normative values. Scand J Med Sci Sports 2023; 33:110-126. [PMID: 36278501 DOI: 10.1111/sms.14242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
The Achilles tendon (AT) can be exposed to considerable stress during athletic activities and is often subject to pathologies such as tendinopathies. When designing a prevention or rehabilitation protocol, mechanical loading is a key factor to consider. This implies being able to accurately determine the load applied to the AT when performing exercises that stress this tendon. A systematic review was performed to synthesize the load borne by the AT during exercises/activities. Three databases (Pubmed, Embase and Cochrane) were searched for articles up to May 2021, and only the studies assessing the AT load in newtons relative to body-weight (BW) on humans during activities or exercises were included. Most of the 11 included studies assessed AT load when running or walking (N = 10), and only three tested exercises were usually performed during rehabilitation. The load on the tendon ranged from 2.7 to 3.95 BW when walking, from 4.15 to 7.71 BW when running, and from 0.41 to 7.3 BW according to the strengthening exercise performed. From the collected data, a progression of exercises progressively loading the Achilles tendon, as well as the possible connections with walking and running activities, could be defined. However, the trends highlighted in the relationship between tendon loading and walking or running speeds present some inconsistencies. Further research is still needed to clarify them, but also to complete the data set in healthy and injured people.
Collapse
Affiliation(s)
- Yoann Demangeot
- Therapeutic and Performance Sports Institute, MotionLab, Le Mont-sur-Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rod Whiteley
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Vincent Gremeaux
- Unit of Sports Medicine, Swiss Olympic Medical Center, Lausanne University Hospital, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francis Degache
- Therapeutic and Performance Sports Institute, MotionLab, Le Mont-sur-Lausanne, Switzerland
| |
Collapse
|
15
|
AminiAghdam S, Epro G, James D, Karamanidis K. Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. J Strength Cond Res 2022; 36:3345-3351. [PMID: 34537800 DOI: 10.1519/jsc.0000000000004128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT AminiAghdam, S, Epro, G, James, D, and Karamanidis, K. Leaning the trunk forward decreases patellofemoral joint loading during uneven running. J Strength Cond Res 36(12): 3345-3351, 2022-Although decline surfaces or a more upright trunk posture during running increase the patellofemoral joint (PFJ) contact force and stress, less is known about these kinetic parameters under simultaneous changes to the running posture and surface height. This study aimed to investigate the interaction between Step (10-cm drop-step and level step) and Posture (trunk angle from the vertical: self-selected, ∼15°; backward, ∼0°; forward, ∼25°) on PFJ kinetics (primary outcomes) and knee kinematics and kinetics as well as hip and ankle kinetics (secondary outcomes) in 12 runners at 3.5 ms -1 . Two-way repeated measures analyses of variance ( α = 0.05) revealed no step-related changes in peak PFJ kinetics across running postures; however, a decreased peak knee flexion angle and increased joint stiffness in the drop-step only during backward trunk-leaning. The Step main effect revealed significantly increased peak hip and ankle extension moments in the drop-step, signifying pronounced mechanical demands on these joints. The Posture main effect revealed significantly higher and lower PFJ kinetics during backward and forward trunk-leaning, respectively, when compared with the self-selected condition. Forward trunk-leaning yielded significantly lower peak knee extension moments and higher hip extension moments, whereas the opposite effects occurred with backward trunk-leaning. Overall, changes to the running posture, but not to the running surface height, influenced the PFJ kinetics. In line with the previously reported efficacy of forward trunk-leaning in mitigating PFJ stress while even or decline running, this technique, through a distal-to-proximal joint load redistribution, also seems effective during running on surfaces with height perturbations.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Sport and Exercise Science Research Center, School of Applied Sciences, London South Bank University, London, United Kingdom
| | | | | | | |
Collapse
|
16
|
Shen B, Zhang S, Cui K, Zhang X, Fu W. Effects of a 12-week gait retraining program combined with foot core exercise on morphology, muscle strength, and kinematics of the arch: A randomized controlled trial. Front Bioeng Biotechnol 2022; 10:1022910. [PMID: 36299287 PMCID: PMC9589891 DOI: 10.3389/fbioe.2022.1022910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: This study aims to explore the effects of a 12-week gait retraining program combined with foot core exercise on arch morphology, arch muscles strength, and arch kinematics. Methods: A total of 26 male recreational runners with normal arch structure who used rear-foot running strike (RFS) were divided into the intervention group (INT group) and control group (CON group) (n = 13 in each group). The INT group performed a 12-week forefoot strike (FFS) training combined with foot core exercises. The CON group did not change the original exercise habit. Before and after the intervention, the arch morphology, as well as the strength of hallux flexion, lesser toe flexion, and the metatarsophalangeal joint (MPJ) flexors were measured in a static position, and changes in the arch kinematics during RFS and FFS running were explored. Results: After a 12-week intervention, 1) the normalized navicular height increased significantly in the INT group by 5.1% (p = 0.027, Cohen's d = 0.55); 2) the hallux absolute flexion and relative flexion of the INT group increased significantly by 20.5% and 21.7%, respectively (p = 0.001, Cohen's d = 0.59; p = 0.001, Cohen's d = 0.73), the absolute and relative strength of the MPJ flexors of the INT group were significantly improved by 30.7% and 32.5%, respectively (p = 0.006, Cohen's d = 0.94; p = 0.006, Cohen's d = 0.96); 3) and during RFS, the maximum arch angle of the INT group declined significantly by 5.1% (p < 0.001, Cohen's d = 1.49), the arch height at touchdown increased significantly in the INT group by 32.1% (p < 0.001, Cohen's d = 1.98). Conclusion: The 12-week gait retraining program combined with foot core exercise improved the arch in both static and dynamic positions with a moderate to large effect size, demonstrating the superiority of this combined intervention over the standalone interventions. Thus, runners with weak arch muscles are encouraged to use this combined intervention as an approach to enhance the arch.
Collapse
Affiliation(s)
- Bin Shen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shen Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Kedong Cui
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
17
|
Davis IS, Chen TLW, Wearing SC. Reversing the Mismatch With Forefoot Striking to Reduce Running Injuries. Front Sports Act Living 2022; 4:794005. [PMID: 35663502 PMCID: PMC9160598 DOI: 10.3389/fspor.2022.794005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have suggested that 95% of modern runners land with a rearfoot strike (RFS) pattern. However, we hypothesize that running with an RFS pattern is indicative of an evolutionary mismatch that can lead to musculoskeletal injury. This perspective is predicated on the notion that our ancestors evolved to run barefoot and primarily with a forefoot strike (FFS) pattern. We contend that structures of the foot and ankle are optimized for forefoot striking which likely led to this pattern in our barefoot state. We propose that the evolutionary mismatch today has been driven by modern footwear that has altered our footstrike pattern. In this paper, we review the differences in foot and ankle function during both a RFS and FFS running pattern. This is followed by a discussion of the interaction of footstrike and footwear on running mechanics. We present evidence supporting the benefits of forefoot striking with respect to common running injuries such as anterior compartment syndrome and patellofemoral pain syndrome. We review the importance of a gradual shift to FFS running to reduce transition-related injuries. In sum, we will make an evidence-based argument for the use of minimal footwear with a FFS pattern to optimize foot strength and function, minimize ground reaction force impacts and reduce injury risk.
Collapse
Affiliation(s)
- Irene S. Davis
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, United States
- *Correspondence: Irene S. Davis
| | - Tony Lin-Wei Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Scott C. Wearing
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Thompson M, Hoffman K, Blythe L, Hasler R, Longtain M. The Coupling of Stride Length and Foot Strike in Running. Front Sports Act Living 2022; 4:768801. [PMID: 35498531 PMCID: PMC9039359 DOI: 10.3389/fspor.2022.768801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Modifying stride length and/or foot strike in running results in mechanical alterations associated with injury risk. Stride length and foot strike have often been treated as independent factors that affect running mechanics, but there is evidence to suggest that they may be coupled. The purpose of this study was to determine if foot strike and stride length are coupled in running, and if so, can these variables be independently manipulated? Additionally, we sought to determine how independently and simultaneously manipulating stride length and foot strike influenced running kinematics and kinetics. Fifteen individuals ran over ground with stride lengths +/– 10 % of their preferred stride length while adopting both a fore/mid foot strike and rear foot strike pattern, as well as running with their self-selected stride length and foot strike when the opposite variable was controlled. Three-dimensional motion capture and force plate data were captured synchronously during the manipulated stride length x foot strike trials. The results indicate that foot strike and stride length are coupled, with shorter stride lengths being associated with a F/MFS and longer stride lengths being associated with a RFS pattern. Impact peak magnitude was primarily dependent on foot strike, with a F/MFS pattern reducing the magnitude of the impact peak force regardless of stride length. Peak vertical and horizontal ground reaction forces were found to be primarily dependent on stride length, with longer stride lengths resulting in increased vertical and horizontal ground reaction forces, regardless of foot strike. It is difficult, but possible, to independently manipulate stride length and foot strike. Clinicians should be aware of the coupled changes in stride length and foot strike.
Collapse
Affiliation(s)
- Missy Thompson
- Department of Health & Human Performance, Fort Lewis College, Durango, CO, United States
- *Correspondence: Missy Thompson
| | - Kristine Hoffman
- Department of Orthopedics, Denver Health Medical Center, Denver, CO, United States
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lindsay Blythe
- Department of Health & Human Performance, Fort Lewis College, Durango, CO, United States
| | - Rachel Hasler
- Department of Health & Human Performance, Fort Lewis College, Durango, CO, United States
| | - Megan Longtain
- Department of Health & Human Performance, Fort Lewis College, Durango, CO, United States
| |
Collapse
|
19
|
Sichting F, Kram NC, Legerlotz K. An Identical Twin Study on Human Achilles Tendon Adaptation: Regular Recreational Exercise at Comparatively Low Intensities Can Increase Tendon Stiffness. Front Physiol 2022; 12:777403. [PMID: 35069241 PMCID: PMC8766644 DOI: 10.3389/fphys.2021.777403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Achilles tendon adaptation is a key aspect of exercise performance and injury risk prevention. However, much debate exists about the adaptation of the Achilles tendon in response to exercise activities. Most published research is currently limited to elite athletes and selected exercise activities. Also, existing studies on tendon adaptation do not control for genetic variation. Our explorative cross-sectional study investigated the effects of regular recreational exercise activities on Achilles tendon mechanical properties in 40 identical twin pairs. Using a handheld oscillation device to determine Achilles tendon mechanical properties, we found that the Achilles tendon appears to adapt to regular recreational exercise at comparatively low intensities by increasing its stiffness. Active twins showed a 28% greater Achilles tendon stiffness than their inactive twin (p < 0.05). Further, our research extends existing ideas on sport-specific adaptation by showing that tendon stiffness seemed to respond more to exercise activities that included an aerial phase such as running and jumping. Interestingly, the comparison of twin pairs revealed a high variation of Achilles tendon stiffness (305.4–889.8 N/m), and tendon adaptation was only revealed when we controlled for genetic variance. Those results offer new insights into the impact of genetic variation on individual Achilles tendon stiffness, which should be addressed more closely in future studies.
Collapse
Affiliation(s)
- Freddy Sichting
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Nicolai C Kram
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Kirsten Legerlotz
- Movement Biomechanics, Institute of Sport Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Zhang X, Deng L, Yang Y, Xiao S, Li L, Fu W. Effects of 12-week transition training with minimalist shoes on Achilles tendon loading in habitual rearfoot strike runners. J Biomech 2021; 128:110807. [PMID: 34670150 DOI: 10.1016/j.jbiomech.2021.110807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
Minimalist shod runners have reported greater material and mechanical properties of the Achilles tendon (AT) due to increased loading than runners who wear more cushioned running shoes. This study aimed to investigate the effects of 12-week transition training from conventional shoes to minimalist shoes on AT loading in habitual rearfoot strike runners. Seventeen healthy male habitual rearfoot strikers completed 12-week transition training. They were instructed either to run in minimalist shoes with a forefoot strike pattern (MIN + FFS, n = 9) or run in minimalist shoes but were free to develop their strike pattern (MIN, n = 8). Ultrasound images were captured to determine the cross-sectional area of the AT. Sagittal plane ankle kinematics and ground reaction forces were recorded simultaneously to quantify ankle joint mechanics and AT loading. The strike angle significantly decreased in MIN + FFS after the transition training, indicating a flatter foot at initial contact, whereas no changes were observed in MIN. After training, a significant increase in peak plantarflexion moment was observed for MIN + FFS (15.4%) and MIN (7.6%). Significantly increased peak AT force, peak loading rate and peak stress were observed after training in both groups. Specifically, MIN + FFS had a greater increase in peak AT force (20.3% versus 10.1%), peak loading rate (37.2% versus 25.4%) and peak AT stress (13.7% versus 8.1%) than MIN. Furthermore, for both groups, there were no significant differences in the moment arm and cross-sectional area of the AT observed before and after 12 weeks of training. The results of this study suggested that it was insufficient to promote the morphological adaptation of the AT, but the mechanical loading of the AT was adapted during running after 12-week transition training with minimalist shoes in MIN + FFS and MIN. Preliminary evidence showed that a gradual transition to minimalist shoes with a forefoot strike pattern may be beneficial to the mechanical loading of the AT.
Collapse
Affiliation(s)
- Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Liqin Deng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lu Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Institute of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
21
|
Backward Running on a Negative Slope as a Treatment for Achilles Tendinopathy in Runners: A Feasibility Pilot Study. J Sport Rehabil 2021; 30:1197-1202. [PMID: 34438365 DOI: 10.1123/jsr.2020-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Achilles tendinopathy (AT) is a common musculoskeletal injury among runners. Eccentric exercises are considered first-line treatment. However, during the early stages of rehabilitation, patients are usually instructed to stop running. Backward running (BR) on a negative slope provides a similar eccentric load while enabling ongoing physical activity; thus, it may be suggested as an alternative treatment. OBJECTIVES To determine the feasibility of a BR program as a treatment option for AT in runners. DESIGN Prospective, single-arm feasibility study. SETTING Outpatient clinic. PATIENTS Recreational runners diagnosed with AT and referred to the Meuhedet Health Services Physical Therapy Clinic in Jerusalem, Israel, from September 2019 to February 2020. INTERVENTION The patients completed a 5-week (9 sessions) rehabilitation program of supervised BR on a negatively inclined treadmill. MAIN OUTCOME MEASURES Compliance with the program was evaluated by calculating the percentage of patients who completed the full protocol with no adverse events. Personal running-related goals were set before the program and were assessed following rehabilitation using the goal attainment scaling method. Forward-running time until the onset of relevant Achilles tendon pain, and the Victorian Institute of Sports Assessment Scale-Achilles were measured at baseline (T0), before treatment session 6 (T1), and after the last session (T2). RESULTS Among the 15 patients recruited, 14 (93%), average age 48.8 (10.4) years (86% males), completed the full protocol with no adverse events. Almost all participants (85.7%) achieved their running-related functional goals. Postintervention, the median forward-running time increased from 52.5 (92.5) to 900 (522.5) seconds (P = .008, effect size = .858), and the median Victorian Institute of Sports Assessment Scale-Achilles score improved by 28 points (P = .003, effect size = .881). CONCLUSIONS BR on a negative slope may be a feasible treatment method for runners suffering from AT. Future randomized control trials are required to further validate the efficacy of this method.
Collapse
|
22
|
Zhang X, Deng L, Xiao S, Li L, Fu W. Sex Differences in the Morphological and Mechanical Properties of the Achilles Tendon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178974. [PMID: 34501564 PMCID: PMC8430544 DOI: 10.3390/ijerph18178974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Background: Patients with Achilles tendon (AT) injuries are often engaged in sedentary work because of decreasing tendon vascularisation. Furthermore, men are more likely to be exposed to AT tendinosis or ruptures. These conditions are related to the morphological and mechanical properties of AT, but the mechanism remains unclear. This study aimed to investigate the effects of sex on the morphological and mechanical properties of the AT in inactive individuals. Methods: In total, 30 inactive healthy participants (15 male participants and 15 female participants) were recruited. The AT morphological properties (cross-sectional area, thickness, and length) were captured by using an ultrasound device. The AT force–elongation characteristics were determined during isometric plantarflexion with the ultrasonic videos. The AT stiffness was determined at 50%–100% maximum voluntary contraction force. The AT strain, stress, and hysteresis were calculated. Results: Male participants had 15% longer AT length, 31% larger AT cross-sectional area and 21% thicker AT than female participants (p < 0.05). The plantarflexion torque, peak AT force, peak AT stress, and AT stiffness were significantly greater in male participants than in female participants (p < 0.05). However, no significant sex-specific differences were observed in peak AT strain and hysteresis (p > 0.05). Conclusions: In physically inactive adults, the morphological properties of AT were superior in men but were exposed to higher stress conditions. Moreover, no significant sex-specific differences were observed in peak AT strain and hysteresis, indicating that the AT of males did not store and return elastic energy more efficiently than that of females. Thus, the mechanical properties of the AT should be maintained and/or improved through physical exercise.
Collapse
Affiliation(s)
- Xini Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (X.Z.); (L.D.); (S.X.)
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (X.Z.); (L.D.); (S.X.)
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (X.Z.); (L.D.); (S.X.)
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (X.Z.); (L.D.); (S.X.)
- Institute of Sport and Sport Science, University of Freiburg, 79098 Freiburg, Germany
- Correspondence: (L.L.); (W.F.)
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (X.Z.); (L.D.); (S.X.)
- Correspondence: (L.L.); (W.F.)
| |
Collapse
|
23
|
Relationship between Connective Tissue Morphology and Lower-Limb Stiffness in Endurance Runners. A Prospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168453. [PMID: 34444202 PMCID: PMC8391394 DOI: 10.3390/ijerph18168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The lower limb behaves like a spring compressing and decompressing during running, where lower-limb stiffness is one of the most influential factors. This prospective observational study is aimed at examining the relationship between the connective tissue morphology and lower-limb stiffness and investigating whether the barefoot/shod condition influences on such relationship. METHODS 14 male amateur runners (10-km time trial <50') were included. Data were recorded over one session, where participants ran 2 trials (i.e., barefoot and shod conditions) of 3 minutes at 12 km/h, where running spatiotemporal parameters and vertical (Kvert) and leg stiffness (Kleg) were obtained. Prior to testing trials, thickness and cross-sectional area (CSA) were recorded for Achilles (AT) and patellar tendons (PT) and plantar fascia (PF) with ultrasound. RESULTS Under barefoot condition, a positive correlation was found between Kleg and AT-thickness and CSA and PF-thickness; and between Kvert and AT-thickness and PF thickness. Under shod condition, a positive correlation was found between Kleg and PT-CSA and PT-thickness, and between Kvert and PT-CSA and PT-thickness. CONCLUSIONS The results reveal a specificity of the relationship between the lower-limb stiffness and the morphology of the connective tissue. Greater tendon shows higher lower-limb stiffness when that tendon is specially demanded by the function.
Collapse
|
24
|
What are the Benefits and Risks Associated with Changing Foot Strike Pattern During Running? A Systematic Review and Meta-analysis of Injury, Running Economy, and Biomechanics. Sports Med 2021; 50:885-917. [PMID: 31823338 DOI: 10.1007/s40279-019-01238-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Running participation continues to increase. The ideal strike pattern during running is a controversial topic. Many coaches and therapists promote non-rearfoot strike (NRFS) running with a belief that it can treat and prevent injury, and improve running economy. OBJECTIVE The aims of this review were to synthesise the evidence comparing NRFS with rearfoot strike (RFS) running patterns in relation to injury and running economy (primary aim), and biomechanics (secondary aim). DESIGN Systematic review and meta-analysis. Consideration was given to within participant, between participant, retrospective, and prospective study designs. DATA SOURCES MEDLINE, EMBASE, CINAHL, and SPORTDiscus. RESULTS Fifty-three studies were included. Limited evidence indicated that NRFS running is retrospectively associated with lower reported rates of mild (standard mean difference (SMD), 95% CI 3.25, 2.37-4.12), moderate (3.65, 2.71-4.59) and severe (0.93, 0.32-1.55) repetitive stress injury. Studies prospectively comparing injury risk between strike patterns are lacking. Limited evidence indicated that running economy did not differ between habitual RFS and habitual NRFS runners at slow (10.8-11.0 km/h), moderate (12.6-13.5 km/h), and fast (14.0-15.0 km/h) speeds, and was reduced in the immediate term when an NRFS-running pattern was imposed on habitual RFS runners at slow (10.8 km/h; SMD = - 1.67, - 2.82 to - 0.52) and moderate (12.6 km/h; - 1.26, - 2.42 to - 0.10) speeds. Key biomechanical findings, consistently including both comparison between habitual strike patterns and following immediate transition from RFS to NRFS running, indicated that NRFS running was associated with lower average and peak vertical loading rate (limited-moderate evidence; SMDs = 0.72-2.15); lower knee flexion range of motion (moderate-strong evidence; SMDs = 0.76-0.88); reduced patellofemoral joint stress (limited evidence; SMDs = 0.63-0.68); and greater peak internal ankle plantar flexor moment (limited evidence; SMDs = 0.73-1.33). CONCLUSION The relationship between strike pattern and injury risk could not be determined, as current evidence is limited to retrospective findings. Considering the lack of evidence to support any improvements in running economy, combined with the associated shift in loading profile (i.e., greater ankle and plantarflexor loading) found in this review, changing strike pattern cannot be recommended for an uninjured RFS runner. PROSPERO REGISTRATION CRD42015024523.
Collapse
|
25
|
Leg Stiffness and Vertical Stiffness of Habitual Forefoot and Rearfoot Strikers during Running. Appl Bionics Biomech 2020; 2020:8866340. [PMID: 33299469 PMCID: PMC7707969 DOI: 10.1155/2020/8866340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
Foot strike patterns influence the running efficiency and may be an injury risk. However, differences in the leg stiffness between runners with habitual forefoot (hFFS) and habitual rearfoot (hRFS) strike patterns remain unclear. This study aimed at determining the differences in the stiffness, associated loading rate, and kinematic performance between runners with hFFS and hRFS during running. Kinematic and kinetic data were collected amongst 39 runners with hFFS and 39 runners with hRFS running at speed of 3.3 m/s, leg stiffness (Kleg), and vertical stiffness (Kvert), and impact loads were calculated. Results found that runners with hFFS had greater Kleg (P = 0.010, Cohen′s d = 0.60), greater peak vertical ground reaction force (vGRF) (P = 0.040, Cohen′s d = 0.47), shorter contact time(tc) (P < 0.001, Cohen′s d = 0.85), and smaller maximum leg compression (ΔL ) (P = 0.002, Cohen′s d = 0.72) compared with their hRFS counterparts. Runners with hFFS had lower impact peak (IP) (P < 0.001, Cohen′s d = 1.65), vertical average loading rate (VALR) (P < 0.001, Cohen′s d = 1.20), and vertical instantaneous loading rate (VILR) (P < 0.001, Cohen′s d = 1.14) compared with runners with hRFS. Runners with hFFS landed with a plantar flexed ankle, whereas runners with hRFS landed with a dorsiflexed ankle (P < 0.001, Cohen′s d = 3.35). Runners with hFFS also exhibited more flexed hip (P = 0.020, Cohen′s d = 0.61) and knee (P < 0.001, Cohen′s d = 1.15) than runners with hRFS at initial contact. These results might indicate that runners with hFFS were associated with better running economy through the transmission of elastic energy.
Collapse
|
26
|
Zhang X, Deng L, Yang Y, Li L, Fu W. Acute shoe effects on Achilles tendon loading in runners with habitual rearfoot strike pattern. Gait Posture 2020; 82:322-328. [PMID: 33022565 DOI: 10.1016/j.gaitpost.2020.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Although the overuse injury rate of the Achilles tendon (AT) for running is high, the effect of shoe conditions on AT loading remains unclear. Hence, this study aims to determine the mechanical properties of AT during running under different shoe conditions (minimalist vs. conventional shoes). DESIGN This work is a controlled laboratory study. METHODS Sixteen healthy male rearfoot strike runners were recruited to complete over ground running trials at 3.33 m/s (±5%) under two shoe conditions (minimalist shoes: INOV-8 Bare-XF 210; conventional shoes: NIKE AIR ZOOM PEGASUS 34). Sagittal plane ankle kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle and moment) and the mechanical properties (peak force, impulse, stress, strain, and their corresponding peak rate) of the AT were calculated. RESULTS In comparison with conventional shoes, wearing minimalist shoes showed significant changes (p < 0.05): (1) decreased strike angle (48.92 ± 9.01 vs. 41.04 ± 8.69°); (2) increased ankle moment (2.34 ± 0.44 vs. 2.55 ± 0.46 Nm/kg); (3) increased peak AT force (5.85 ± 1.22 vs. 6.24 ± 1.13 BW), AT force impulse (0.65 ± 0.13 vs. 0.70 ± 0.13 BW·s), peak AT loading rate (109.94 ± 9.33 vs. 118.84 ± 26.62 BW/s), and average loading rate (48.42 ± 15.64 vs. 54.90 ± 17.47 BW/s); (4) decreased time to peak AT force (126.31 ± 20.68 vs. 117.77 ± 17.62 ms); (5) increased AT stress (66.96 ± 14.59 vs. 71.89 ± 14.74 MPa), strain (8.19 ± 1.77 vs. 8.78 ± 1.80 %), peak AT stress rate (66.96 ± 14.59 vs. 71.89 ± 14.74 MPa/s), and strain rate (148.71 ± 48.52 vs. 167.28 ± 42.82 %/s). CONCLUSION Increased AT force, loading rate, and stress were observed in runners who habitually wear conventional shoes with rearfoot strike patterns when they wore minimalist shoes. Hence, we recommend a gradual transition to minimalist shoes for runners who habitually wear conventional shoes with rearfoot strike patterns.
Collapse
Affiliation(s)
- Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Liqin Deng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lu Li
- Institute of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
27
|
Changes in the Plantar Flexion Torque of the Ankle and in the Morphological Characteristics and Mechanical Properties of the Achilles Tendon after 12-Week Gait Retraining. Life (Basel) 2020; 10:life10090159. [PMID: 32842586 PMCID: PMC7555353 DOI: 10.3390/life10090159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: Although the Achilles tendon (AT) is the largest and strongest tendon, it remains one of the most vulnerable tendons among elite and recreational runners. The present study aims to explore the effects of 12-week gait retraining (GR) on the plantar flexion torque of the ankle and the morphological and mechanical properties of the AT. Methods: Thirty-four healthy male recreational runners (habitual rearfoot strikers) who never tried to run in minimal shoes were recruited, and the intervention was completed (20 in the GR group vs. 14 in the control (CON) group). The participants in the GR group were asked to run in minimal shoes (INOV-8 BARE-XF 210) provided by the investigators with forefoot strike patterns during the progressive 12-week GR. Meanwhile, the participants in the CON group were instructed to run in their own running shoes, which they were familiar with, with original foot strike patterns and intensities. The morphological properties of the AT, namely, length and cross-sectional area (CSA), were obtained by using an ultrasound device. A dynamometer was utilized simultaneously to measure and calculate the plantar flexion torque of the ankle, the rate of torque development, the peak force of the AT, and the stress and strain of the AT. Results: After 12-week GR, the following results were obtained: (1) A significant time effect in the peak ankle plantarflexion torque was observed (p = 0.005), showing a 27.5% increase in the GR group; (2) A significant group effect in the CSA was observed (p = 0.027), specifically, the increase in CSA was significantly larger in the GR group than the CON group; (3) A significant time effect in the peak AT force was observed (p = 0.005), showing a 27.5% increase in the GR group. Conclusion: The effect of 12 weeks of GR is an increase in AT CSA, plantar flexor muscle strength of the ankle, and peak AT force during a maximal voluntary isometric contraction test. These changes in AT morphology and function could be positive for tendon health and could prevent future AT injury.
Collapse
|
28
|
Xu Y, Yuan P, Wang R, Wang D, Liu J, Zhou H. Effects of Foot Strike Techniques on Running Biomechanics: A Systematic Review and Meta-analysis. Sports Health 2020; 13:71-77. [PMID: 32813597 DOI: 10.1177/1941738120934715] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTENT Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks. OBJECTIVE To determine the effects of foot strike techniques on running biomechanics. DATA SOURCES The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception through November 2018. STUDY SELECTION The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were eligible for inclusion in this meta-analysis. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 4. DATA EXTRACTION Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) groups using a random-effects model. RESULTS FFS showed significantly smaller magnitude (SMD, -1.84; 95% CI, -2.29 to -1.38; P < 0.001) and loading rate (mean: SMD, -2.1; 95% CI, -3.18 to -1.01; P < 0.001; peak: SMD, -1.77; 95% CI, -2.21 to -1.33; P < 0.001) of impact force, ankle stiffness (SMD, -1.69; 95% CI, -2.46 to -0.92; P < 0.001), knee extension moment (SMD, -0.64; 95% CI, -0.98 to -0.3; P < 0.001), knee eccentric power (SMD, -2.03; 95% CI, -2.51 to -1.54; P < 0.001), knee negative work (SMD, -1.56; 95% CI, -2.11 to -1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, -0.71; 95% CI, -1.28 to -0.14; P = 0.01; integral: SMD, -0.63; 95% CI, -1.11 to -0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08;P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 1.6; P < 0.001) compared with RFS. CONCLUSION Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.
Collapse
Affiliation(s)
- Yilin Xu
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Peng Yuan
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Ran Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Dan Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Jia Liu
- Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Hui Zhou
- School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Teng HL, Dilauro A, Weeks C, Odell C, Kincaid H, VanDine B, Wu WFW. Short-term effects of a trunk modification program on patellofemoral joint stress in asymptomatic runners. Phys Ther Sport 2020; 44:107-113. [PMID: 32504959 DOI: 10.1016/j.ptsp.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To evaluate short-term effects of a four-week gait retraining program using visual feedback on trunk flexion angle, patellofemoral joint (PFJ) stress, lower extremity biomechanics and motor skill automaticity. DESIGN Longitudinal interventional study. SETTINGS University research laboratory. PARTICIPANTS Twelve asymptomatic recreational runners (seven male and five female). MAIN OUTCOME MEASURES Trunk kinematics as well as lower extremity kinematics and kinetics were assessed prior to training at week 1 (baseline) and week 2, 3, 4 and 8 (retention). PFJ stress was computed using a sagittal plane model. A dual-task procedure was performed to examine automaticity. RESULTS At week 8, runners demonstrated 10.1° increase in trunk flexion angle (p < .001) and 17.8% reduction in peak PFJ stress (p < .001) compared to baseline. This is associated with a 16.8% decrease in knee extensor moment and less than 2.5° change in knee flexion angle. Participants also showed 33.3% increase in peak hip extensor moment and small reduction in peak ankle plantar flexor moment. Lastly, runners demonstrated automaticity of the modified skill with a dual-task cost of less than 3%. CONCLUSION The gait retraining program is effective to elicit short term changes in trunk position, PFJ stress, and automaticity of the new motor skill.
Collapse
Affiliation(s)
- Hsiang-Ling Teng
- Department of Physical Therapy, California State University, Long Beach, United States.
| | - Alyssa Dilauro
- Department of Physical Therapy, California State University, Long Beach, United States
| | - Courtney Weeks
- Department of Physical Therapy, California State University, Long Beach, United States
| | - Christopher Odell
- Department of Physical Therapy, California State University, Long Beach, United States
| | - Heather Kincaid
- Department of Physical Therapy, California State University, Long Beach, United States
| | - Brittany VanDine
- Department of Physical Therapy, California State University, Long Beach, United States
| | - Will F W Wu
- Department of Kinesiology, California State University, Long Beach, United States
| |
Collapse
|
30
|
Liew BX, Sullivan L, Morris S, Netto K. Mechanical work performed by distal foot-ankle and proximal knee-hip segments during anticipated and unanticipated cutting. J Biomech 2020; 106:109839. [DOI: 10.1016/j.jbiomech.2020.109839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
|
31
|
Abstract
Loading rates have been linked to running injuries, revealing persistent impact features that change direction among three-dimensional axes in different footwear and footstrike patterns. Extracting peak loads from ground reaction forces, however, can neglect the time-varying loading patterns experienced by the runner in each footfall. Following footwear and footstrike manipulations during laboratory-based overground running, we examined three-dimensional loading rate-time features in each direction (X, Y, Z) using principal component analysis. Twenty participants (9 M, 11 F, age: 25.3 ± 3.6 y) were analysed during 14 running trials in each of two footwear (cushioned and minimalist) and three footstrike conditions (forefoot, midfoot, rearfoot). Two principal components (PC) captured the primary loading rate-time features (PC1: 42.5% and PC2: 22.8% explained variance) and revealed interaction among axes, footwear, and footstrike conditions (PC1: F (2.1, 40.1) = 5.6, p = 0.007, η 2 = 0.23; PC2: F (2.0, 38.4) = 62.3, p < 0.001, η 2 = 0.77). Rearfoot running in cushioned footwear attenuated impact loads in the vertical direction, and forefoot running in minimalist footwear attenuated impact loads in the anterior-posterior and medial-lateral directions relative to forefoot running in cushioned shoes. Loading patterns depend on footwear and footstrike interactions, which require shoes that match the runner's footstrike pattern.
Collapse
Affiliation(s)
- Andrew D Nordin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, FL, USA
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada , Las Vegas, NV, USA
| |
Collapse
|
32
|
Twelve-Week Gait Retraining Reduced Patellofemoral Joint Stress during Running in Male Recreational Runners. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9723563. [PMID: 32258162 PMCID: PMC7109573 DOI: 10.1155/2020/9723563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/02/2020] [Accepted: 03/06/2020] [Indexed: 12/01/2022]
Abstract
Purpose To explore the changes in knee sagittal angle and moment and patellofemoral joint (PFJ) force and stress before and after 12-week gait retraining. Methods A total of 30 healthy male recreational runners were randomized into a control group (n = 15) who ran in their original strike pattern using minimalist shoes or experimental group (n = 15) who ran in a forefoot strike pattern using minimalist shoes during the 12-week gait retraining. The kinematic and kinetic data of the dominant leg of the participants during the 12 km/h running were collected by 3D motion capture systems and 3D force platforms. Besides, the biomechanical property of the PFJ was calculated on the basis of the joint force model and the regression equation of the contact area. Results After the 12-week gait retraining, 78% of the rearfoot strikers turned into forefoot strikers. Peak knee extension moment and peak PFJ stress decreased by 13.8% and 13.3% without altering the running speed, respectively. Meanwhile, no changes in maximum knee flexion angle/extension moment and PFJ force/stress were observed for the control group. Conclusion The 12-week gait retraining effectively reduced the PFJ stress, thereby providing a potential means of reducing the risk of patellofemoral pain syndrome while running.
Collapse
|
33
|
Yong JR, Dembia CL, Silder A, Jackson RW, Fredericson M, Delp SL. Foot strike pattern during running alters muscle-tendon dynamics of the gastrocnemius and the soleus. Sci Rep 2020; 10:5872. [PMID: 32245985 PMCID: PMC7125118 DOI: 10.1038/s41598-020-62464-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Running is thought to be an efficient gait due, in part, to the behavior of the plantar flexor muscles and elastic energy storage in the Achilles tendon. Although plantar flexor muscle mechanics and Achilles tendon energy storage have been explored during rearfoot striking, they have not been fully characterized during forefoot striking. This study examined how plantar flexor muscle-tendon mechanics during running differs between rearfoot and forefoot striking. We used musculoskeletal simulations, driven by joint angles and electromyography recorded from runners using both rearfoot and forefoot striking running patterns, to characterize plantar flexor muscle-tendon mechanics. The simulations revealed that foot strike pattern affected the soleus and gastrocnemius differently. For the soleus, forefoot striking decreased tendon energy storage and fiber work done while the muscle fibers were shortening compared to rearfoot striking. For the gastrocnemius, forefoot striking increased muscle activation and fiber work done while the muscle fibers were lengthening compared to rearfoot striking. These changes in gastrocnemius mechanics suggest that runners planning to convert to forefoot striking might benefit from a progressive eccentric gastrocnemius strengthening program to avoid injury.
Collapse
Affiliation(s)
- Jennifer R Yong
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.
| | - Christopher L Dembia
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Amy Silder
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Rachel W Jackson
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Scott L Delp
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
34
|
Chan ZYS, Zhang JH, Ferber R, Shum G, Cheung RTH. The effects of midfoot strike gait retraining on impact loading and joint stiffness. Phys Ther Sport 2020; 42:139-145. [PMID: 31995786 DOI: 10.1016/j.ptsp.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To assess the biomechanical changes following a systematic gait retraining to modify footstrike patterns from rearfoot strike (RFS) to midfoot strike (MFS). DESIGN Pre-post interventional study. All participants underwent a gait retraining program designed to modify footstrike pattern to MFS. SETTING Research laboratory. PARTICIPANTS Twenty habitual RFS male runners participated. MAIN OUTCOME MEASURES Gait evaluations were conducted before and after the training. Footstrike pattern, vertical loading rates, ankle and knee joint stiffness were compared. RESULTS Participants' footstrike angle was reduced (p < 0.001, Cohen's d = 1.65) and knee joint stiffness was increased (p = 0.003, Cohen's d = 0.69). No significant difference was found in the vertical loading rates (p > 0.155). Further subgroup analyses were conducted on the respondents (n = 8, 40% of participants) who exhibited MFS for over 80% of their footfalls during the post-training evaluation. Apart from the increased knee joint stiffness (p = 0.005, Cohen's d = 1.14), respondents exhibited a significant reduction in the ankle joint stiffness (p = 0.019, Cohen's d = 1.17) when running with MFS. CONCLUSIONS Gait retraining to promote MFS was effective in reducing runners' footstrike angle, but only 40% of participants responded to this training program. The inconsistent training effect on impact loading suggests a need to develop new training protocols in an effort to prevent running injuries.
Collapse
Affiliation(s)
- Zoe Y S Chan
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Janet H Zhang
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Reed Ferber
- Running Injury Clinic, University of Calgary, Calgary, Canada; Faculties of Kinesiology, Nursing, and Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gary Shum
- Faculty of Sport & Health Sciences, Plymouth Marjon University, Plymouth, United Kingdom
| | - Roy T H Cheung
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
35
|
Differences in running biomechanics between a maximal, traditional, and minimal running shoe. J Sci Med Sport 2020; 23:15-19. [DOI: 10.1016/j.jsams.2019.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 11/24/2022]
|
36
|
Greenberg ET, Garcia MC, Galante J, Werner WG. Acute changes in sagittal plane kinematics while wearing a novel belt device during treadmill running. Sports Biomech 2019; 21:718-730. [PMID: 31722619 DOI: 10.1080/14763141.2019.1676462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Somatosensory feedback is used in walking retraining; however, its utility in running is less feasible due to the greater associated speeds. The purpose of this study was to examine the acute effects of wearing a novel running belt device on sagittal plane running kinematics. Ten healthy runners ran on a treadmill with and without the use of a running belt device within a repeated measures study design. Temporal-spatial characteristics and sagittal plane knee and ankle kinematics were recorded with three-dimensional motion analysis. Wilcoxon Signed-Rank Tests revealed significant decreases in centre of mass vertical displacement (z = -2.083, p = 0.003), tibial inclination at initial contact (z = -2.803, p = 0.003), and stance phase knee joint excursion (z = -2.701, p = 0.003), and greater knee flexion at initial contact (z = -2.803, p = 0.003) when the belt was donned. No differences were observed in step rate (z = -0.351, p = 0.363), foot inclination angle at initial contact (z = -2.090, p = 0.018), or peak knee flexion during stance (z = -1.172, p = 0.121). Findings suggest that donning a running belt can minimise specific high-risk biomechanical characteristics in runners with particular kinematic profiles.
Collapse
Affiliation(s)
- Eric T Greenberg
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, NY, USA
| | - Micah C Garcia
- Motion Analysis Lab, Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juliana Galante
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, NY, USA
| | - William G Werner
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, NY, USA
| |
Collapse
|
37
|
Kaplan K, Olivencia O, Dreger M, Hanney WJ, Kolber MJ. Achilles Tendinopathy: An Evidence-Based Overview for the Sports Medicine Professional. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Wearing SC, Davis IS, Brauner T, Hooper SL, Horstmann T. Do habitual foot-strike patterns in running influence functional Achilles tendon properties during gait? J Sports Sci 2019; 37:2735-2743. [PMID: 31506014 DOI: 10.1080/02640414.2019.1663656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The capacity of foot-strike running patterns to influence the functional properties of the Achilles tendon is controversial. This study used transmission-mode ultrasound to investigate the influence of habitual running foot-strike pattern on Achilles tendon properties during barefoot walking and running. Fifteen runners with rearfoot (RFS) and 10 with a forefoot (FFS) foot-strike running pattern had ultrasound transmission velocity measured in the right Achilles tendon during barefoot walking (≈1.1 ms-1) and running (≈2.0 ms-1). Temporospatial gait parameters, ankle kinematics and vertical ground reaction force were simultaneously recorded. Statistical comparisons between foot-strike patterns were made using repeated measure ANOVAs. FFS was characterised by a significantly shorter stance duration (-4%), greater ankle dorsiflexion (+2°), and higher peak vertical ground reaction force (+20% bodyweight) than RFS running (P < .05). Both groups adopted a RFS pattern during walking, with only the relative timing of peak dorsiflexion (3%), ground reaction force (1-2%) and peak vertical force loading rates (22-23%) differing between groups (P < .05). Peak ultrasound transmission velocity in the Achilles tendon was significantly higher in FFS during walking (≈100 ms-1) and running (≈130 ms-1) than RFS (P < .05). Functional Achilles tendon properties differ with habitual footfall patterns in recreational runners.
Collapse
Affiliation(s)
- Scott C Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia
| | - I S Davis
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston , USA
| | - T Brauner
- Faculty of Sports and Health Sciences, Technische Universität München , Munich , Germany
| | - S L Hooper
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia
| | - T Horstmann
- Faculty of Sports and Health Sciences, Technische Universität München , Munich , Germany
| |
Collapse
|
39
|
Vertical ground reaction forces during gait in children with and without calcaneal apophysitis. Gait Posture 2019; 71:126-130. [PMID: 31054494 DOI: 10.1016/j.gaitpost.2019.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Heightened vertical load beneath the foot has been anecdotally implicated in the development of activity-related heel pain of the calcaneal apophysis in children but is supported by limited evidence. RESEARCH QUESTION This study investigated whether vertical loading patterns during walking and running differed in children with and without calcaneal apophysitis. METHODS Vertical ground reaction force, peak plantar pressure (forefoot, midfoot, heel) and temporospatial gait parameters (cadence, step length, stride, stance and swing phase durations) were determined in children with (n = 14) and without (n = 14) calcaneal apophysitis. Measures were acquired during barefoot walking and running at matched and self-selected speed using an instrumented treadmill, sampling at 120 Hz. Statistical comparisons between groups were made using repeated measure ANOVAs. RESULTS There were no significant between group differences in vertical ground reaction force peaks or regional peak plantar pressures. However, when normalised to stature, cadence was significantly higher (≈ 5%) and step length shorter (≈ 5%) in children with calcaneal apophysitis than those without, but only during running (P <.05). Maximum pressure beneath the rearfoot during running was significantly correlated with self-reported pain in children with calcaneal apophysitis. SIGNIFICANCE Peak vertical force and plantar pressures did not differ significantly in children with and without calcaneal apophysitis during walking or running. However, children with calcaneal apophysitis adopted a higher cadence than children without heel pain during running. While the findings suggest that children with calcaneal apophysitis may alter their cadence to lower pressure beneath the heel and, hence pain, they also highlight the benefit of evaluating running rather than walking gait in children with calcaneal apophysitis.
Collapse
|
40
|
Chen TLW, Agresta CE, Lipps DB, Provenzano SG, Hafer JF, Wong DWC, Zhang M, Zernicke RF. Ultrasound elastographic assessment of plantar fascia in runners using rearfoot strike and forefoot strike. J Biomech 2019; 89:65-71. [DOI: 10.1016/j.jbiomech.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
|
41
|
Swinnen W, Hoogkamer W, Delabastita T, Aeles J, De Groote F, Vanwanseele B. Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running. J Appl Physiol (1985) 2019; 126:708-716. [PMID: 30629477 DOI: 10.1152/japplphysiol.00768.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaction between gastrocnemius medialis (GM) muscle and Achilles tendon, i.e., muscle-tendon unit (MTU) interaction, plays an important role in minimizing the metabolic cost of running. Foot-strike pattern (FSP) has been suggested to alter MTU interaction and subsequently the metabolic cost of running. However, metabolic data from experimental studies on FSP are inconsistent, and a comparison of MTU interaction between FSP is still lacking. We, therefore, investigated the effect of habitual rearfoot and mid-/forefoot striking on MTU interaction, ankle joint work, and plantar flexor muscle force production while running at 10 and 14 km/h. GM muscle fascicles of 9 rearfoot and 10 mid-/forefoot strikers were tracked using dynamic ultrasonography during treadmill running. We collected kinetic and kinematic data and used musculoskeletal models to determine joint angles and calculate MTU lengths. In addition, we used dynamic optimization to assess plantar flexor muscle forces. During ground contact, GM fascicle shortening ( P = 0.02) and average contraction velocity ( P = 0.01) were 40-45% greater in rearfoot strikers than mid-/forefoot strikers. Differences in contraction velocity were especially prominent during early ground contact. Moreover, GM ( P = 0.02) muscle force was greater during early ground contact in mid-/forefoot strikers than rearfoot strikers. Interestingly, we did not find differences in stretch or recoil of the series elastic element between FSP. Our results suggest that, for the GM, the reduced muscle energy cost associated with lower fascicle contraction velocity in mid-/forefoot strikers may be counteracted by greater muscle forces during early ground contact. NEW & NOTEWORTHY Kinetic and kinematic differences between foot-strike patterns during running imply (not previously reported) altered muscle-tendon interaction. Here, we studied muscle-tendon interaction using ultrasonography. We found greater fascicle contraction velocities and lower muscle forces in rearfoot compared with mid-/forefoot strikers. Our results suggest that the higher metabolic energy demand due to greater fascicle contraction velocities might offset the lower metabolic energy demand due to lower muscle forces in rearfoot compared with mid-/forefoot strikers.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Wouter Hoogkamer
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado Boulder , Boulder, Colorado
| | - Tijs Delabastita
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Jeroen Aeles
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| |
Collapse
|
42
|
Chen TLW, Wong DWC, Wang Y, Lin J, Zhang M. Foot arch deformation and plantar fascia loading during running with rearfoot strike and forefoot strike: A dynamic finite element analysis. J Biomech 2019; 83:260-272. [DOI: 10.1016/j.jbiomech.2018.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023]
|
43
|
Kernozek TW, Knaus A, Rademaker T, Almonroeder TG. The effects of habitual foot strike patterns on Achilles tendon loading in female runners. Gait Posture 2018; 66:283-287. [PMID: 30243212 DOI: 10.1016/j.gaitpost.2018.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Female runners that habitually use a forefoot/midfoot strike pattern (non-rearfoot runners) may be at greater risk for Achilles tendinopathy compared to runners that habitually use a rearfoot strike pattern. Differences in Achilles tendon loading between non-rearfoot and rearfoot strike runners may be a contributing factor. RESEARCH QUESTION Our purpose was to determine if there were differences in Achilles tendon loading and cross-sectional area between female habitual rearfoot and non-rearfoot strike runners. METHODS Thirty-five female runners participated in this cross-sectional study (17 rearfoot strike runners, 18 non-rearfoot strike runners). Ultrasound images of the Achilles tendon were used to measure cross-sectional area. Kinematic and kinetic data were collected at a set running speed and used in a muscloskeletal model to calculate Achilles tendon force. Achilles tendon stress was determined from specific Achilles tendon cross-sectional area. Principal components (PC) analysis was performed to identify/characterize the primary sources of variability in the Achilles tendon stress time series. The PC scores and cross-sectional area where compared using independent t-tests. RESULTS PC 1 reflected variability in the Achilles tendon stress magnitude from 25 to 100% of stance, PC 2 reflected timing variability, and PC 3 reflected variability in the magnitude during early stance (0-25%). The non-rearfoot strike runners demonstrated higher PC scores for PC 1 and PC 3 compared to the rearfoot strike runners. This reflected greater Achilles tendon stress during mid/late stance (PC 1) and early stance (PC 3) for the non-rearfoot strike runners. For PC 2, there was a trend toward higher PC scores in the non-rearfoot strike runners. Achilles tendon cross-sectional area for the rearfoot and non-rearfoot strike runners were not different. SIGNIFICANCE Habitual non-rearfoot strike runners did not have greater cross-sectional area despite higher Achilles tendon loading, which may pose a higher risk for Achilles tendinopathy.
Collapse
Affiliation(s)
- Thomas W Kernozek
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States.
| | - Allie Knaus
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States
| | - Tess Rademaker
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI, United States
| | - Thomas G Almonroeder
- Rinker-Ross School of Health Sciences, Physical Therapy Program, Trine University, 1819 Carew Street, Fort Wayne, IN, United States
| |
Collapse
|
44
|
Neal BS, Barton CJ, Birn-Jeffrey A, Daley M, Morrissey D. The effects & mechanisms of increasing running step rate: A feasibility study in a mixed-sex group of runners with patellofemoral pain. Phys Ther Sport 2018; 32:244-251. [PMID: 29879639 DOI: 10.1016/j.ptsp.2018.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES To explore feasibility of recruitment and retention of runners with patellofemoral pain (PFP), before delivering a step rate intervention. DESIGN Feasibility study. SETTING Human performance laboratory. PARTICIPANTS A mixed-sex sample of runners with PFP (n = 11). MAIN OUTCOME MEASURES Average/worst pain and the Kujala Scale were recorded pre/post intervention, alongside lower limb kinematics and surface electromyography (sEMG), sampled during a 3 KM treadmill run. RESULTS Recruitment and retention of a mixed-sex cohort was successful, losing one participant to public healthcare and with kinematic and sEMG data lost from single participants only. Clinically meaningful reductions in average (MD = 2.1, d = 1.7) and worst pain (MD = 3.9, d = 2.0) were observed. Reductions in both peak knee flexion (MD = 3.7°, d = 0.78) and peak hip internal rotation (MD = 5.1°, d = 0.96) were observed, which may provide some mechanistic explanation for the identified effects. An increase in both mean amplitude (d = 0.53) and integral (d = 0.58) were observed for the Vastus Medialis Obliqus (VMO) muscle only, of questionable clinical relevance. CONCLUSIONS Recruitment and retention of a mixed sex PFP cohort to a step rate intervention involving detailed biomechanical measures is feasible. There are indications of both likely efficacy and associated mechanisms. Future studies comparing the efficacy of different running retraining approaches are warranted.
Collapse
Affiliation(s)
- Bradley S Neal
- Sports & Exercise Medicine, Queen Mary University of London, United Kingdom; Pure Sports Medicine, London, United Kingdom
| | - Christian J Barton
- Sports & Exercise Medicine, Queen Mary University of London, United Kingdom; La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia; School of Allied Health, La Trobe University, Melbourne, Victoria, Australia; Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Aleksandra Birn-Jeffrey
- Sports & Exercise Medicine, Queen Mary University of London, United Kingdom; School of Engineering and Materials Science, Queen Mary University of London, United Kingdom
| | - Monica Daley
- Comparative Biomedical Sciences, Royal Vetinary College, United Kingdom
| | - Dylan Morrissey
- Sports & Exercise Medicine, Queen Mary University of London, United Kingdom; Physiotherapy Department, Bart's Health NHS Trust, London, United Kingdom.
| |
Collapse
|