1
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
2
|
Liao CH, Chen CS, Chen YC, Jiang NE, Farn CJ, Shen YS, Hsu ML, Chang CH. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: Bio-compatibility, drug release, antimicrobial activity, and biofilm model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:525-531. [PMID: 31607570 DOI: 10.1016/j.jmii.2019.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Prosthesis infection is a difficult-to-treat situation. Hydrogel is a novel biomaterial, which can be applied by simply spraying or by coating on implants before surgery and can be easily mixed with antibiotics. METHODS In order to evaluate the potential use of antibiotic-loaded hydrogel, we incorporated vancomycin into oxidized hyaluronic acid (HA) and adipic acid dihydrazide and evaluated the drug release and antimicrobial activity against methicillin-resistant Staphylococcus aureus (ATCC 29213). RESULTS The average release percentage of vancomycin on day 3 was about 86%. The antibiotic-loaded gel was biocompatible with mesenchymal stem cell, MC3T3, and L929 cell lines. The in vitro inhibition zones of vancomycin-loaded hydrogel [500X minimal inhibition concentration (MIC), 50X MIC, 10X MIC, and blank hydrogel] were 21, 13, 9, and 5 mm, respectively. In the Ti6Al4V implant biofilm model, 0.01-1% vancomycin-loaded gel exhibited significant anti-biofilm activity, measured by the MTT assay. CONCLUSIONS Vancomycin could be loaded onto oxidized HA and adipic acid dihydrazide, which exhibited excellent drug release and in vitro antimicrobial activity with minimal cell toxicity.
Collapse
Affiliation(s)
- Chun-Hsing Liao
- Department of Medicine, Yang-Ming University, Taiwan; Division of Infectious Disease, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chiang Sang Chen
- Department of Material and Fiber, Oriental Institute of Technology, New Taipei City, Taiwan; Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Chun Chen
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of General Studies, Yuan Ze University, Taoyuan City, Taiwan
| | - Ni-En Jiang
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chui Jia Farn
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taiwan
| | - Yi-Shan Shen
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Lun Hsu
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
| | - Chih-Hung Chang
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Eren B, Karagöz Güzey F, Kitiş S, Özkan N, Korkut C. The effectiveness of pedicle screw immersion in vancomycin and ceftriaxone solution for the prevention of postoperative spinal infection: A prospective comparative study. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2018; 52:289-293. [PMID: 29887199 PMCID: PMC6150440 DOI: 10.1016/j.aott.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/09/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy of the local application of vancomycin hydrochloride (HCl)-ceftriaxone disodium hemiheptahydrate onto implants before using them to prevent postoperative infection. METHODS The study included 239 patients (153 women and 86 men; mean age: 48.23 ± 16.77 years) who had thoracolumbar stabilization with transpedicular screws. All surgeries were performed by the same surgeon. Patients were divided into two groups. In the group 1 (n = 104), implants were bathed in a solution of local prophylactic antibiotics for 5 seconds just before implantation. In the group 2 (n = 135), implants were not bathed before implantation. Local antibiotics used in the study was effective against gram positive bacteria (including methicillin resistant Staphylococcus aureus) and gram negative bacteria. The rate of surgical site infection and wound healing time were compared between the groups. RESULTS A total of 10 patients (4.1%) had deep wound infection and 20 (8.4%) had superficial infection. The most common bacteria was Staphylococcus aureus. One patient died 21 days after the surgery because of sepsis. The wound healed in a mean of 9.66 ± 2.04 days in patients who had no infection and in 32.33 ± 19.64 days in patients with infection (p < 0.001). The patients in group 1 had significantly less deep infection than the patients in group 2 (p < 0.05). However, there was no statistically significant difference between the groups for superficial infection. Patients with vertebral fracture had significantly lower deep infection rate in group 1. The deep infection rate of group 1 patients with diabetes, with bleeding of more than 2000 mL, transfused with blood transfusions above 3 units and with dural injury was significantly lower than those in the group 2. None of the patients had allergic reactions to the drugs used for local prophylaxis. CONCLUSIONS This study shown that bathing implants in antibiotics solution was an effective local prophylactic method to prevent deep infections in spinal surgeries with instrumentation. LEVEL OF EVIDENCE Level III, Therapeutic study.
Collapse
|
4
|
Sampaio Fernandes M, Vaz P, Braga AC, Sampaio Fernandes JC, Figueiral MH. The role of IL-1 gene polymorphisms (IL1A, IL1B, and IL1RN) as a risk factor in unsuccessful implants retaining overdentures. J Prosthodont Res 2017; 61:439-449. [PMID: 28223139 DOI: 10.1016/j.jpor.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 11/18/2022]
Abstract
PURPOSE Implant-supported overdentures are an alternative predictable rehabilitation method that has a high impact on improving the patient's quality of life. However, some biological complications may interfere with the maintenance and survival of these overdenture implants. The goal of this article was to assess the factors that affect peri-implant success, through a hypothetical prediction model for biological complications of implant overdentures. METHODS A retrospective observational, prevalence study was conducted in 58 edentulous Caucasian patients rehabilitated with implant overdentures. A total of 229 implants were included in the study. Anamnestic, clinical, and implant-related parameters were collected and recorded in a single database. "Patient" was chosen as the unit of analysis, and a complete screening protocol was established. The data analytical study included assessing the odds ratio, concerning the presence or absence of a particular risk factor, by using binary logistic regression modeling. Probability values (p values) inferior to 0.05 were considered as representing statistically significant evidence. RESULTS The performed prediction model included the following variables: mean probing depth, metal exposure, IL1B_allele2, maxillary edentulousness, and Fusobacterium nucleatum. The F. nucleatum showed significant association with the outcome. Introducing a negative coefficient appeared to prevent complications or even boost the biological defense when associated with other factors. CONCLUSIONS The prediction model developed in this study could serve as a basis for further improved models that would assist clinicians in the daily diagnosis and treatment planning practice of oral rehabilitation with implant overdentures.
Collapse
Affiliation(s)
| | - Paula Vaz
- Department of Orofacial Genetics, Faculty of Dental Medicine of the University of Porto, Portugal.
| | - Ana Cristina Braga
- Department of Production and Systems Engineering-Algoritmi Centre, University of Minho, Braga, Portugal.
| | | | - Maria Helena Figueiral
- Department of Removable Prosthesis, Faculty of Dental Medicine of the University of Porto, Portugal.
| |
Collapse
|
5
|
Mechanisms of Bacterial Colonization of Implants and Host Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:15-27. [DOI: 10.1007/5584_2016_173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Thurnheer T, Belibasakis GN. Incorporation of staphylococci into titanium-grown biofilms: an in vitro "submucosal" biofilm model for peri-implantitis. Clin Oral Implants Res 2015; 27:890-5. [PMID: 26461083 PMCID: PMC5057304 DOI: 10.1111/clr.12715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 11/27/2022]
Abstract
Objectives Staphylococcus spp. are postulated to play a role in peri‐implantitis. This study aimed to develop a “submucosal” in vitro biofilm model, by integrating two staphylococci into its composition. Materials and methods The standard “subgingival” biofilm contained Actinomyces oris, Fusobacterium nucleatum, Streptococcus oralis, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Streptococcus anginosus, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, and was further supplemented with Staphyoccous aureus and/or Staphylococcus epidermidis. Biofilms were grown anaerobically on hydroxyapatite or titanium discs and harvested after 64 h for real‐time polymerase chain reaction, to determine their composition. Confocal laser scanning microscopy and fluorescence in situ hybridization were used for identifying the two staphylococci within the biofilm. Results Both staphylococci established within the biofilms when added separately. However, when added together, only S. aureus grew in high numbers, whereas S. epidermidis was reduced almost to the detection limit. Compared to the standard subgingival biofilm, addition of the two staphylococci had no impact on the qualitative or quantitative composition of the biofilm. When grown individually in the biofilm, S. epidermidis and S. aureus formed small distinctive clusters and it was confirmed that S. epidermidis was not able to grow in presence of S. aureus. Conclusions Staphyoccous aureus and S. epidermidis can be individually integrated into an oral biofilm grown on titanium, hence establishing a “submucosal” biofilm model for peri‐implantitis. This model also revealed that S. aureus outcompetes S. epidermidis when grown together in the biofilm, which may explain the more frequent association of the former with peri‐implantitis.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Georgios N Belibasakis
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Chen S, He N, Yu J, Li L, Sun F, Hu Y, Deng R, Zhong S, Shen L. Inhibitory effect of 2‑mercaptoethane sulfonate on the formation of Escherichia coli biofilms in vitro. Mol Med Rep 2015; 12:5223-30. [PMID: 26238522 DOI: 10.3892/mmr.2015.4112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The biofilms (BF) formed by Escherichia coli (E. coli) is an important cause of chronic and recurrent infections due to its capacity to persist on medical surfaces and indwelling devices, demonstrating the importance of inhibiting the formation of E. coli BF and reducing BF infection. Although 2‑mercaptoethane sulfonate (MESNA) exhibits a marked mucolytic effect clinically, the effect of MESNA on the inhibition of E. coli BF formation remains to be elucidated. The present study investigated whether MESNA inhibits the formation of E. coli BF in vitro. The minimum inhibitory concentration of MESNA on E. coli was determined to be 10 mg/ml. Subsequently, the effect of MESNA on BF early adhesion, extracellular polysaccharide (EPS) and extracellular protein were detected. The effect of a subinhibitory concentration of MESNA on BF formation was evaluated, and the inhibitory potency of MESNA against matured BF was assayed. The results revealed that MESNA inhibited early stage adhesion and formation of the E. coli BF, destroyed the mature BF membrane and reduced the EPS and extracellular proteins levels of the BF. In addition, the present study investigated the effects of MESNA on the expression of EPS‑ and adhesion protein‑associated genes using quantitative polymerase chain reaction analysis, which demonstrated that MESNA effectively inhibited the expression of these genes. These results suggested that MESNA possesses anti‑BF formation capability on E. coli in vitro and may be used as a potential reagent for the clinical treatment of E. coli BF‑associated infections.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Nianhai He
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Luquan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Ying Hu
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui Deng
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Shiming Zhong
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Leilei Shen
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
8
|
Dharmaprakash A, Thandavarayan R, Joseph I, Thomas S. Development of broad-spectrum antibiofilm drugs: strategies and challenges. Future Microbiol 2015; 10:1035-48. [DOI: 10.2217/fmb.15.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT The severity of many chronic bacterial infections is mainly due to the biofilm mode of life adapted by pathogenic bacteria. The bacteria in biofilm-stage exhibit high resistance to host immune responses and antimicrobials, which complicates the treatment process and results in life threatening conditions. Most of the chronic infections are polymicrobial in nature. In order to combat the polymicrobial biofilm infections and to increase the efficiency of antimicrobials, there is an urgent need for broad-spectrum antibiofilm drugs. This review discusses the clinical needs and current status of broad-spectrum antibiofilm drugs with special emphasis on prospective strategies and hurdles in the process of new drug discovery.
Collapse
Affiliation(s)
- Akhilandeswarre Dharmaprakash
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| | | | - Iype Joseph
- Pathogen Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| | - Sabu Thomas
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| |
Collapse
|
9
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7. [PMID: 25713785 PMCID: PMC4322838 DOI: 10.3389/fcimb.2015.00007] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
10
|
Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 2014; 472:3311-23. [PMID: 24622801 PMCID: PMC4182393 DOI: 10.1007/s11999-014-3558-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Implant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials. QUESTIONS/PURPOSES We asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion? METHODS We tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs. RESULTS Complete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion. CONCLUSIONS Implant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro. CLINICAL RELEVANCE A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.
Collapse
|
11
|
Khan MSA, Ahmad I, Sajid M, Cameotra SS. Current and Emergent Control Strategies for Medical Biofilms. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. INTERNATIONAL ORTHOPAEDICS 2013; 38:1505-12. [PMID: 24363076 PMCID: PMC4071480 DOI: 10.1007/s00264-013-2237-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 11/07/2022]
Abstract
Purpose The purpose of this study was to test the ability of DAC®, a fast resorbable, antibacterial-loaded hydrogel coating, to prevent acute bacterial colonization in an in vivo model of an intra-operatively highly contaminated implant. Methods A histocompatibility study was performed in 10 adult New Zealand rabbits. Then, methicillin-resistant Staph. aureus were inoculated in the femur of 30 adult New Zealand rabbits at the time of intra-medullary nailing; vancomycin-loaded DAC® coated nails were compared to controls regarding local and systemic infection development. Results Histocompatibility study showed no detrimental effect of DAC® hydrogel on bone tissue after 12 weeks from implant. After seven days from implant, none of the rabbits receiving vancomycin-loaded DAC® nail showed positive blood cultures, compared to all the controls; vancomycin-loaded DAC® coating was associated with local bacterial load reduction ranging from 72 to 99 %, compared to controls. Conclusions Vancomycin-loaded DAC® coating is able to significantly reduce bacterial colonization in an animal model of an intra-operatively highly contaminated implant, without local or general side effect.
Collapse
|
13
|
Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 2013; 41:341-52. [PMID: 24303798 DOI: 10.3109/1040841x.2013.841639] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The significance of extracellular DNA (eDNA) in biofilms was overlooked until researchers added DNAse to a Pseudomonas aeruginosa biofilm and watched the biofilm disappear. Now, a decade later, the widespread importance of eDNA in biofilm formation is undisputed, but detailed knowledge about how it promotes biofilm formation and conveys antimicrobial resistance is only just starting to emerge. In this review, we discuss how eDNA is produced, how it aids bacterial adhesion, secures the structural stability of biofilms and contributes to antimicrobial resistance. The appearance of eDNA in biofilms is no accident: It is produced by active secretion or controlled cell lysis - sometimes linked to competence development. eDNA adsorbs to and extends from the cell surface, promoting adhesion to abiotic surfaces through acid-base interactions. In the biofilm, is it less clear how eDNA interacts with cells and matrix components. A few eDNA-binding biomolecules have been identified, revealing new concepts in biofilm formation. Being anionic, eDNA chelates cations and restricts diffusion of cationic antimicrobials. Furthermore, chelation of Mg(2+) triggers a genetic response that further increases resistance. The multifaceted role of eDNA makes it an attractive target to sensitize biofilms to conventional antimicrobial treatment or development of new strategies to combat biofilms.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanosicence Center, Aarhus University , Aarhus , Denmark
| | | |
Collapse
|
14
|
Romanò CL, Toscano M, Romanò D, Drago L. Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 2013; 25:67-80. [PMID: 23684354 DOI: 10.1179/1973947812y.0000000045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Orthopaedics is currently the largest market of biomaterials worldwide and implant-related infections, although relatively rare, remain among the first reasons for joint arthroplasty and osteosynthesis failure. Bacteria start implant infection by adhering to biomaterials and producing biofilms, which represent a major reason for bacterial persistence, in spite of antibiotic treatment and host's defence. In the last two decades, a number of different antibiofilm agents have been studied and both in vitro and in vivo results appear now promising, even if their effective role in orthopaedics remains to be assessed. In this review, we introduce an original classification of antibiofilm agents, based on their mechanism of action and examine the available data concerning their possible application to orthopaedic implant-related infections. Molecules that interfere with biofilm production (biofilm prevention agents) include anti-adhesion compounds, quorum sensing inhibitors, non-steroideal anti-inflammatory drugs, and antimicrobial peptides; N-acetylcysteine and specific enzymes promise the greatest therapeutic possibilities by disrupting established biofilms (biofilm disrupting agents). The identification of antimicrobials able to bypass the biofilm barrier (biofilm bypassing agents), and antibiofilm vaccines are further strategies aimed to reduce the impact of biofilm-related infections, opening new pathways in controlling implant-related infections. However, this review shows that still insufficient knowledge is currently available as to regard the efficacy and safety of the investigated antibiofilm strategies to treat infection that involve bone tissue and biomaterials commonly implanted in orthopaedics, pointing out the need for further research in this promising field.
Collapse
Affiliation(s)
- Carlo L Romanò
- CRIO Unit, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | | |
Collapse
|
15
|
Functional Imaging in Diagnostic of Orthopedic Implant-Associated Infections. Diagnostics (Basel) 2013; 3:356-71. [PMID: 26824928 PMCID: PMC4665528 DOI: 10.3390/diagnostics3040356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 12/11/2022] Open
Abstract
Surgeries’ sterile conditions and perioperative antibiotic therapies decrease implant associated infections rates significantly. However, up to 10% of orthopedic devices still fail due to infections. An implant infection generates a high socio-economic burden. An early diagnosis of an infection would significantly improve patients’ outcomes. There are numerous clinical tests to diagnose infections. The “Gold Standard” is a microbiological culture, which requires an invasive sampling and lasts up to several weeks. None of the existing tests in clinics alone is sufficient for a conclusive diagnosis of an infection. Meanwhile, there are functional imaging modalities, which hold the promise of a non-invasive, quick, and specific infection diagnostic. This review focuses on orthopedic implant-associated infections, their pathogenicity, diagnosis and functional imaging.
Collapse
|
16
|
Internalization by osteoblasts of two Staphylococcus aureus clinical isolates differing in their adhesin gene pattern. Int J Artif Organs 2012; 34:789-98. [PMID: 22094558 DOI: 10.5301/ijao.5000058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is the leading etiologic agent of implant orthopedic infections. Until recently S. aureus was considered a mere extracellular pathogen; it then turned out to be able to invade eukaryotic cells. Adhesion of S. aureus to peri-prosthesis tissues represents the starting of the infection pathogenesis and the first step of the subsequent internalization of S. aureus by host cells. In the present work the experimental observations on two epidemic clinical strains differing in their adhesin pattern demonstrate the crucial role of the fibronectin-binding protein A in the internalization process and suggest that CNA and Bbp adhesins can play a synergistic role by acting in the initial adhesion of S. aureus to osteoblasts, thus favoring the subsequent FnBPA-mediated internalization.
Collapse
|
17
|
Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus. Int J Artif Organs 2012; 34:799-810. [PMID: 22094559 DOI: 10.5301/ijao.5000030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.
Collapse
|
18
|
Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs 2012; 34:811-7. [PMID: 22094560 DOI: 10.5301/ijao.5000061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE Bacterial biofilm formation on prostheses or devices used for osteosynthesis is increasingly recognized as cause of persistent infections, an entity known as implant-associated posttraumatic osteomyelitis. Biofilm formation is a very complex, multistep process with adhesion as the first and decisive step. The most prevalent pathogens found are staphylococci species, especially S. aureus, presumably due to a preference to non-biological materials, such as metal. Adherence is influenced by several factors, including the microenvironment, in which blood proteins from serum or plasma might influence adhesion and maybe biofilm formation. The aim of the present study was to test and to compare adherence of S. aureus and P. aeruginosa to different biological and non-biological surfaces in vitro. The question was addressed if coating of the surface by plasma or serum proteins influences bacterial adherence. METHODS Adherence of radiolabeled bacteria to different surfaces in the presence or absence or serum/plasma proteins was measured over time. RESULTS When testing adherence of S. aureus to plastic, titanium or to monolayers of epithelial cells (A549) or fibroblasts (Colo800) a clear-cut preference for non-biological surfaces, especially for titanium was seen. Using P. aeruginosa species a similar pattern without a significant difference was revealed. When mimicking the in vivo situation by pre-coating of titanium with human serum or plasma adherence was increased, especially when titanium was coated ("opsonized") by plasma. CONCLUSIONS Bacterial adherence to surfaces is determined by a variety of factors such as temperature, the presence of nutrients, the absence of host defense systems and the configuration of the covered surface. In vivo, adherence to non-biological surfaces is also influenced by the microenvironment, especially plasma proteins, promoting biofilm formation.
Collapse
|
19
|
Concise Survey of Staphylococcus Aureus Virulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. Int J Artif Organs 2011; 34:771-80. [DOI: 10.5301/ijao.5000046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2011] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus is the leading cause of infection in orthopedic implants and of osteomyelitis consequent to it. Here we focus on the wide array of virulence factors that endow S. aureus with its abilities to colonize peri-prosthesis tissues and to attack and damage them. Following an infective strategy orchestrated by agr locus, Staphylococcus aureus first deploys virulence factors for adhesion to the prosthesis and peri-prosthesis tissues and then launches its attack by delivering destructive factors.
Collapse
|
20
|
Abstract
Extracellular DNA (eDNA) is an important biofilm component that was recently discovered. Its presence has been initially observed in biofilms of Pseudomonas aeruginosa, Streptococcus intermedius, Streptococcus mutans, then Enterococcus faecalis and staphylococci. Autolysis is the common mechanism by which eDNA is released. In P. aeruginosa eDNA is generated by lysis of a bacterial subpopulation, under control of quorum sensing system. In E. faecalis autolysis proceeds in a fratricide mode, resulting from a process similar to necrosis of eukaryotic cells. In Staphylococcus aureus autolysis originates by an altruistic suicide, i.e., a programmed cell death similar to apoptosis of eukaryotic cells. In S. aureus autolysis is mediated by murein hydrolase, while in S. epidermidis by the autolysin protein AtlE. In P. aeruginosa eDNA is located primarily in the stalks of mushroom-shaped multicellular structures. In S. aureus the crucial role of eDNA in stabilizing biofilm is highlighted by the disgregating effect of DNase I. eDNA represents an important mechanism for horizontal gene transfer in bacteria. eDNA and other microbial structural motifs are recognized by the innate immune system via the TLR family of pattern recognition receptors (PRRs).
Collapse
|
21
|
Exopolysaccharide Production by Staphylococcus Epidermidis and its Relationship with Biofilm Extracellular DNA. Int J Artif Organs 2011; 34:832-9. [DOI: 10.5301/ijao.5000048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/20/2022]
Abstract
Implant-related infections are difficult to treat because they are very often associated with biofilm-forming micro-organisms capable of resisting host immune defenses and surviving conventional antibiotic treatments. In Staphylococcus epidermidis biofilm-forming strains, the polysaccharide intercellular adhesin (PIA), whose expression is encoded by the icaADBC operon, is recognized as a main staphylococcal accumulation mechanism. Nevertheless, various observations have shown that PIA expression is dispensable and a variety of additional/alternative accumulation mechanisms, including extracellular DNA (eDNA) and several other factors of proteic nature, can compensate for icaADBC low expression or even for its absence. A suggestive hypothesis points to the possibility that changes in biofilm extracellular matrix composition can be induced in different environmental niches. In this study we aimed at investigating the relationship between the exopolysaccharide and eDNA biofilm components, screening 55 S. epidermidis clinical isolates by means of a simple fluorescence-based microtiter-plate assay. Our findings indicate the existence of a certain degree of correlation, although not a strict one, between eDNA and the exopolysaccharide component. The presence of exopolysaccharide greatly varied even in strains belonging to the same strain type determined by automated riboprinting.
Collapse
|
22
|
Biofilm Extracellular-DNA in 55 Staphylococcus Epidermidis Clinical Isolates from Implant Infections. Int J Artif Organs 2011; 34:840-6. [DOI: 10.5301/ijao.5000057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/20/2022]
Abstract
Biofilm formation is broadly recognized as an important virulence factor in many bacterial species implicated in implant-related opportunistic infections. In spite of a long history of research and many investigative efforts aimed at elucidating their chemical composition, structure, and function, the nature of bacterial biofilms still remains only partly revealed. Over the years, different extracellular polymeric substances (EPS) have been described that contribute functionally and structurally to the organization of biofilms. Recently extracellular DNA (eDNA) has emerged as a quantitatively conspicuous and potentially relevant structural component of microbial biofilms of many microbial species, Staphylococcus aureus and S. epidermidis among them. The present study aims at comparatively investigating the amount of eDNA present in the biofilm of 55 clinical isolates of S. epidermidis from postsurgical and biomaterial-related orthopedic infections. Quantification of eDNA was performed by a non-destructive method directly on bacterial biofilms formed under static conditions on the plastic surface of 96-well plates.
Collapse
|
23
|
Emerging Pathogenetic Mechanisms of the Implant-Related Osteomyelitis by Staphylococcus Aureus. Int J Artif Organs 2011; 34:781-8. [DOI: 10.5301/ijao.5000052] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2011] [Indexed: 01/23/2023]
Abstract
Implant-related osteomyelitis is a severe and deep infection of bone that arises and develops all around an implant. Staphylococcus aureus is the first cause of osteomyelitis, whether implant-related or not. Bone is an optimal substratum for S. aureus, since this bacterium expresses various adhesins by which can adhere to bone proteins and to the biomaterial surfaces coated with the proteins of the host extracellular matrix. S. aureus is able not only to colonize bone tissues, but also to invade and disrupt them by entering bone cells and inducing cell death and osteolysis. Here we illustrate the pathogenetic mechanisms that can explain how the osteomyelitis sets in and develops around an implant.
Collapse
|
24
|
New Trends in Diagnosis and Control Strategies for Implant Infections. Int J Artif Organs 2011; 34:727-36. [DOI: 10.5301/ijao.2011.8784] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/17/2022]
Abstract
In implant infections, a quick and reliable identification of the etiological agent is crucial to realizing efficacious therapies. Among molecular methods, automated ribotyping has proven to be an accurate and rapid technique. More recently, MALDI-TOF/MS and PCR-electrospray ionization (ESI)/ MS have been applied successfully to microbiological diagnosis. In implant infections, biofilm is still the major problem for bacterial persistence and recalcitrance to antibiotic therapy. Among biofilm-disrupting agents, enzymes promise the greatest therapeutic possibilities. DNase I degrades biofilm extracellular DNA and has been shown to sensitize biofilm to various biocides and anionic detergents, while dispersin B acts on biofilm exopolysaccharide and, combined with antiseptic, gives a broad-spectrum antibiofilm and antimicrobial activity. The novel antimicrobial approach based on photodynamic treatment (PDT) applies, in combination with antibiotics, to the implant or medical devices reachable by optical fibers. Better progress could be gained by the development of infection-resistant biomaterials able to both inhibit bacterial adhesion and promote tissue integration. New knowledge regarding the fibronectin-mediated internalization of Staphylococcus aureus by osteoblasts, and on its role in the pathogenesis of implant-related osteomyelitis, paves the way for the development of vaccines against staphylococcal adhesins, to prevent both adhesion on biomaterials and bacterial invasion of bone cells.
Collapse
|
25
|
Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery ofStaphylococcusimplant infections in orthopedics. Future Microbiol 2011; 6:1329-49. [DOI: 10.2217/fmb.11.117] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Palmer M, Costerton W, Sewecke J, Altman D. Molecular techniques to detect biofilm bacteria in long bone nonunion: a case report. Clin Orthop Relat Res 2011; 469:3037-42. [PMID: 21416206 PMCID: PMC3183189 DOI: 10.1007/s11999-011-1843-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biofilms cause chronic infections including those associated with orthopaedic hardware. The only methods that are Food and Drug Administration-approved for detecting and identifying bacterial infections are cultures and selected DNA-based polymerase chain reaction methods that detect only specific pathogens (eg, methicillin-resistant Staphylococcus aureus). New DNA-based technologies enable the detection and identification of all bacteria present in a sample and to determine the antibiotic sensitivities of the organisms. CASE DESCRIPTION A 34-year-old man sustained an open tibia fracture. He experienced 3 years of delayed healing and episodic pain. In addition to his initial treatment, he underwent three additional surgeries to achieve fracture healing. During the last two procedures, cultures were taken and samples were tested with the IBIS T5000 and fluorescence in situ hybridization (FISH). In both cases, the cultures were negative, but the IBIS and FISH confirmed the presence of a biofilm within the tibial canal. LITERATURE REVIEW Examinations of tissues from biofilm infections, by DNA-based molecular methods and by direct microscopy, have often found bacteria present despite negative cultures. Infections associated with orthopaedic hardware may be caused by bacteria living in biofilms, and these biofilm organisms are particularly difficult to detect by routine culture methods. PURPOSES AND CLINICAL RELEVANCE Rapid DNA-based detection methods represent a potentially clinically useful tool in the detection of bacterial biofilms. The sensitivity and clinical impact of the technology has yet to be established.
Collapse
Affiliation(s)
- Michael Palmer
- Department of Orthopaedic Surgery, Allegheny General Hospital, c/o Leslie Hayes, 1307 Federal Street, 2nd Floor, Pittsburgh, 15212 PA USA
| | - William Costerton
- Allegheny Center for Genomic Sciences, Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA USA
| | - Jeffrey Sewecke
- Department of Orthopaedic Surgery, Allegheny General Hospital, c/o Leslie Hayes, 1307 Federal Street, 2nd Floor, Pittsburgh, 15212 PA USA
| | - Daniel Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, c/o Leslie Hayes, 1307 Federal Street, 2nd Floor, Pittsburgh, 15212 PA USA
| |
Collapse
|
27
|
Bruellhoff K, Fiedler J, Möller M, Groll J, Brenner RE. Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs 2011; 33:646-53. [PMID: 20890881 DOI: 10.1177/039139881003300910] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 02/02/2023]
Abstract
Implant surfaces should ideally be designed to promote the attachment of target tissue cells; at the same time, they should prevent bacterial adhesion, achievable through modification strategies comprising three lines of defense. As the first criterion, selective adhesion can be realized by means of non-adhesive coatings that can be functionalized with small peptides, thereby supporting osteogenic cell attachment for implants in bone contact but not bacterial adhesion. The second line of defense, defined by bacterial survival, quorum sensing and biofilm formation, can be addressed by various antimicrobial substances that can be leaching or non-leaching. The possibility of a third line of defense, the disruption of an established biofilm, is just emerging. Since microorganisms are quite ''ingenious'' at finding ways to overcome a certain line of defense, the most promising solution might be a combination of all these antibacterial strategies. Coating systems that allow such different approaches to be combined are scarce. However, ultrathin multifunctional NCO-sP(EO-stat-PO)-based layers may represent a promising platform for such an integrated approach.
Collapse
Affiliation(s)
- Kristina Bruellhoff
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
28
|
Current World Literature. Curr Opin Cardiol 2011; 26:71-8. [DOI: 10.1097/hco.0b013e32834294db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Chu W, Lu F, Zhu W, Kang C. Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J Appl Microbiol 2010; 110:202-8. [DOI: 10.1111/j.1365-2672.2010.04872.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Peramo A, Marcelo CL. Bioengineering the Skin–Implant Interface: The Use of Regenerative Therapies in Implanted Devices. Ann Biomed Eng 2010; 38:2013-31. [DOI: 10.1007/s10439-010-9937-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/17/2010] [Indexed: 11/25/2022]
|