1
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
2
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Le Guern F, Ouk TS, Yerzhan I, Nurlykyz Y, Arnoux P, Frochot C, Leroy-Lhez S, Sol V. Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy. Molecules 2021; 26:molecules26041122. [PMID: 33672630 PMCID: PMC7924203 DOI: 10.3390/molecules26041122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
Despite advances achieved over the last decade, infections caused by multi-drug-resistant bacterial strains are increasingly becoming important societal issues that need to be addressed. New approaches have already been developed in order to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide an alternative to fight infectious bacteria. Many studies have highlighted the value of cationic photosensitizers in order to improve this approach. This study reports the synthesis and the characterization of cationic porphyrins derived from methylimidazolium and phenylimidazolium porphyrins, along with a comparison of their photophysical properties with the well-known N-methylpyridyl (pyridinium) porphyrin family. PACT tests conducted with the tetracationic porphyrins of these three families showed that these new photosensitizers may offer a good alternative to the classical pyridinium porphyrins, especially against S.aureus and E.coli. In addition, they pave the way to new cationic photosensitizers by the means of derivatization through amide bond formation.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78035 Versailles, France;
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Tan-Sothéa Ouk
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Issabayev Yerzhan
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Yesmurzayeva Nurlykyz
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, UMR 7274 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France; (I.Y.); (Y.N.); (P.A.); (C.F.)
| | - Stéphanie Leroy-Lhez
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
| | - Vincent Sol
- Laboratoire PEIRENE, Université de Limoges, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France; (T.-S.O.); (S.L.-L.)
- Correspondence:
| |
Collapse
|
4
|
Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019; 175:72-106. [PMID: 31096157 DOI: 10.1016/j.ejmech.2019.04.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
Abstract
The multi-drug resistant bacteria have become a serious problem complicating therapies to such a degree that often the term "post-antibiotic era" is applied to describe the situation. The infections with methicillin-resistant S. aureus, vancomycin-resistant E. faecium, third generation cephalosporin-resistant E. coli, third generation cephalosporin-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa have become commonplace. Thus, the new strategies of infection treatment have been searched for, and one of the approaches is based on photodynamic antimicrobial chemotherapy. Photodynamic protocols require the interaction of photosensitizer, molecular oxygen and light. The aim of this review is to provide a comprehensive overview of photodynamic antimicrobial chemotherapy by porphyrinoid photosensitizers. In the first part of the review information on the mechanism of photodynamic action and the mechanism of the bacteria resistance to the photodynamic technique were described. In the second one, it was described porphyrinoids photosensitizers like: porphyrins, chlorins and phthalocyanines useable in photodynamic bacteria inactivation.
Collapse
|
5
|
Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Yang W, Fortunati E, Bertoglio F, Owczarek J, Bruni G, Kozanecki M, Kenny J, Torre L, Visai L, Puglia D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 2018; 181:275-284. [DOI: 10.1016/j.carbpol.2017.10.084] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
|
7
|
Le Guern F, Sol V, Ouk C, Arnoux P, Frochot C, Ouk TS. Enhanced Photobactericidal and Targeting Properties of a Cationic Porphyrin following the Attachment of Polymyxin B. Bioconjug Chem 2017; 28:2493-2506. [PMID: 28853858 DOI: 10.1021/acs.bioconjchem.7b00516] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel compound consisting of a cationic porphyrin covalently attached to a derivative of polymyxin B has been synthesized and presents enhanced activity and targeting properties compared to the usual cationic porphyrins recognized as efficient photosensitizers in photodynamic antimicrobial chemotherapy (PACT). A synthesis pathway was established to preserve the bactericidal activity of the peptide. Accordingly, the N-terminal amino acid (l-2,4-diaminobutyric acid) of polymyxin B (PMB) was switched for a cysteine residue. Then, the resulting derivative of PMB was covalently bound to 5-(4-aminophenyl)-10,15,20-tri(4-N-methylpyridyl)-21H,23H-porphyrin using a thiol-maleimide "click" coupling. The peptide-coupled photosensitizer has demonstrated an improved PACT efficiency compared to the cationic porphyrin alone. This enhancement has been observed against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli in particular. Flow cytometry analyses and confocal imaging microscopy demonstrated that the porphyrin-peptide conjugate selectively adhered to the cell walls of either Gram-positive or Gram-negative bacteria, thus justifying the damages induced by singlet oxygen production.
Collapse
Affiliation(s)
- Florent Le Guern
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles , EA 1069, 123 Avenue Albert Thomas, 87060 Limoges, CEDEX, France
| | - Vincent Sol
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles , EA 1069, 123 Avenue Albert Thomas, 87060 Limoges, CEDEX, France
| | - Catherine Ouk
- Université de Limoges, BISCEm , 87000 Limoges, France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274 CNRS Université de Lorraine, ENSIC , 1 rue Grandville, 54000 Nancy, France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274 CNRS Université de Lorraine, ENSIC , 1 rue Grandville, 54000 Nancy, France
| | - Tan-Sothea Ouk
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles , EA 1069, 123 Avenue Albert Thomas, 87060 Limoges, CEDEX, France
| |
Collapse
|
8
|
Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater 2017; 55:493-504. [PMID: 28412552 DOI: 10.1016/j.actbio.2017.04.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
The application of mesoporous bioactive glasses (MBGs) containing controllable amount of different ions, with the aim to impart antibacterial activity, as well as stimulation of osteogenesis and angiogenesis, is attracting an increasing interest. In this contribution, in order to endow nano-sized MBG with additional biological functions, the framework of a binary SiO2-CaO mesoporous glass was modified with different concentrations of copper ions (2 and 5%mol.), through a one-pot ultrasound-assisted sol-gel procedure. The Cu-containing MBG (2%mol.) showed high exposed surface area (550m2g-1), uniform mesoporous channels (2.6nm), remarkable in vitro bioactive behaviour and sustained release of Cu2+ ions. Cu-MBG nanoparticles and their ionic dissolution extracts exhibited antibacterial effect against three different bacteria strains, E. coli, S. aureus, S. epidermidis, and the ability to inhibit and disperse the biofilm produced by S. epidermidis. The obtained results suggest that the developed material, which combines in single multifunctional agent excellent bioactivity and antimicrobial ability, offers promising opportunities for the prevention of infectious diseases and the effective treatment of bone defects. STATEMENT OF SIGNIFICANCE In order to endow mesoporous bioactive glass, characterized by excellent bioactive properties, with additional biological functions, Cu-doped mesoporous SiO2-CaO glass (Cu-MBG) in the form of nanoparticles was prepared by an ultra-sound assisted one pot synthesis. The analysis of the bacterial viability, using different bacterial strains, and the morphological observation of the biofilm produced by the Staphylococcus epidermidis, revealed the antimicrobial effectiveness of the Cu-MBG and the relative ionic extracts against both the bacterial growth and the biofilm formation/dispersion, providing a true alternative to traditional antibiotic systemic therapies. The proposed multifunctional agent represents a promising and versatile platform for bone and soft tissues regeneration.
Collapse
|
9
|
Le Guern F, Ouk TS, Grenier K, Joly N, Lequart V, Sol V. Enhancement of photobactericidal activity of chlorin-e6-cellulose nanocrystals by covalent attachment of polymyxin B. J Mater Chem B 2017; 5:6953-6962. [DOI: 10.1039/c7tb01274h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following light irradiation, a new nanomaterial, elaborated from CNCs, chlorin-e6 and polymyxin B, demonstrated efficiency against Gram-negative bacteria (Escherichia coli,Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus,Staphylococcus epidermidis).
Collapse
Affiliation(s)
- Florent Le Guern
- Université de Limoges
- Laboratoire de Chimie des Substances Naturelles
- 87060 Limoges Cedex
- France
| | - Tan-Sothea Ouk
- Université de Limoges
- Laboratoire de Chimie des Substances Naturelles
- 87060 Limoges Cedex
- France
| | - Karine Grenier
- Université de Limoges
- Laboratoire de Chimie des Substances Naturelles
- 87060 Limoges Cedex
- France
| | | | | | - Vincent Sol
- Université de Limoges
- Laboratoire de Chimie des Substances Naturelles
- 87060 Limoges Cedex
- France
| |
Collapse
|
10
|
Gándara L, Mamone L, Dotto C, Buzzola F, Casas A. Sae regulator factor impairs the response to photodynamic inactivation mediated by Toluidine blue in Staphylococcus aureus. Photodiagnosis Photodyn Ther 2016; 16:136-141. [PMID: 27619533 DOI: 10.1016/j.pdpdt.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Photodynamic inactivation (PDI) involves the combined use of light and a photosensitizer, which, in the presence of oxygen, originates cytotoxic species capable of inactivating bacteria. Since the emergence of multi-resistant bacterial strains is becoming an increasing public health concern, PDI becomes an attractive choice. The aim of this work was to study the differential susceptibility to Toluidine blue (TB) mediated PDI (TB-PDI) of S. aureus mutants (RN6390 and Newman backgrounds) for different key regulators of virulence factors related to some extent to oxidative stress. Complete bacteria eradication of planktonic cultures of RN6390 S. aureus photosensitized with 13μM TB was obtained upon illumination with a low light dose of 4.2J/cm2 from a non-coherent light source. Similarly, complete cell death was achieved applying 1.3μM TB and 19J/cm2 light dose, showing that higher light doses can lead to equal cell death employing low photosensitizer concentrations. Interestingly, RN6390 in planktonic culture responded significantly better to TB-PDI than the Newman strain. We showed that deficiencies in rsbU, mgrA (transcription factors related to stress response) or agr (quorum sensing system involved in copper resistance to oxidative stress) did not modify the response of planktonic S. aureus to PDI. On the other hand, the two component system sae impaired the response to TB-PDI through a mechanism not related to the Eap adhesin. More severe conditions were needed to inactivate S. aureus biofilms (0.5mM TB, 157J/cm2 laser light). In mutant sae biofilms, strain dependant differential susceptibilities are not noticed.
Collapse
Affiliation(s)
- Lautaro Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires, CP1120AAF, Argentina
| | - Leandro Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires, CP1120AAF, Argentina
| | - Cristian Dotto
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-UBA, Argentina
| | - Fernanda Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-UBA, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires, CP1120AAF, Argentina.
| |
Collapse
|
11
|
Brooks JL, Jefferson KK. Staphylococcal biofilms: quest for the magic bullet. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:63-87. [PMID: 22958527 DOI: 10.1016/b978-0-12-394382-8.00002-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biofilm phenotype has been recognized only relatively recently in medical history but it has rapidly become clear that the development of many, if not the majority of bacterial infections depends upon the formation of a biofilm. Medical device-related infections are one of the clearest examples of biofilm-dependent infections. Bacteria proficiently adhere to and establish biofilms on synthetic surfaces, and to date, no material has proven to completely preclude bacterial adherence. Any inserted device can be colonized but intravenous catheters, due to their widespread use, are the most commonly colonized devices. As many as half a million catheter-related infections occur each year in the United States and the staphylococci, in particular, Staphylococcus aureus and Staphylococcus epidermidis, are the leading cause. Biofilms exhibit tolerance to biocides, chemotherapeutic agents, and host-immune defenses and subsequently, biofilm-associated infections are extremely difficult to treat, frequently chronic, and often recurrent, making them a confounding clinical problem. Development of an effective strategy for preventing and/or treating these infections is of paramount importance and consequently, the search for novel approaches to target the biofilm phenotype has exploded in recent years. Because the biofilm phenotype is complex, targets for antibiofilm approaches are numerous and this line of research is significantly expanding our knowledge about the biofilm mode of growth and its role in disease. This review highlights a number of antibiofilm approaches that are currently under investigation as novel interventions for staphylococcal infections.
Collapse
|
12
|
Data in support of Gallium (Ga(3+)) antibacterial activities to counteract E. coli and S. epidermidis biofilm formation onto pro-osteointegrative titanium surfaces. Data Brief 2016; 6:758-62. [PMID: 26909385 PMCID: PMC4744237 DOI: 10.1016/j.dib.2016.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/02/2022] Open
Abstract
This paper contains original data supporting the antibacterial activities of Gallium (Ga3+)-doped pro-osteointegrative titanium alloys, obtained via Anodic Spark Deposition (ASD), as described in “The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii” (Cochis et al. 2016) [1]. In this article we included an indirect cytocompatibility evaluation towards Saos2 human osteoblasts and extended the microbial evaluation of the Ga3+ enriched titanium surfaces against the biofilm former Escherichia coli and Staphylococcus epidermidis strains. Cell viability was assayed by the Alamar Blue test, while bacterial viability was evaluated by the metabolic colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Finally biofilm morphology was analyzed by Scanning Electron Microscopy (SEM). Data regarding Ga3+ activity were compared to Silver.
Collapse
|
13
|
George DA, Gant V, Haddad FS. The management of periprosthetic infections in the future: a review of new forms of treatment. Bone Joint J 2015; 97-B:1162-9. [PMID: 26330580 DOI: 10.1302/0301-620x.97b9.35295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number of arthroplasties being undertaken is expected to grow year on year, and periprosthetic joint infections will be an increasing socioeconomic burden. The challenge to prevent and eradicate these infections has resulted in the emergence of several new strategies, which are discussed in this review. Cite this article: Bone Joint J 2015;97-B:1162-9.
Collapse
Affiliation(s)
- D A George
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| | - V Gant
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| | - F S Haddad
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| |
Collapse
|
14
|
García I, Ballesta S, Gilaberte Y, Rezusta A, Pascual Á. Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol 2015; 10:347-56. [DOI: 10.2217/fmb.14.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ABSTRACT Aim: To evaluate the effectiveness of the photodynamic therapy using hypericin (HYP) against both planktonic and biofilm-forming Staphylococcus aureus. Materials & methods: HYP photoactivity was evaluated against methicillin-susceptible and resistant S. aureus. Bacterial suspension or biofilm were preincubated with HYP and subjected to LED illumination. Viable bacteria were determined by colony counting. Results: Preincubation with HYP (5 min) plus light exposure (10 min) showed bactericidal effect against planktonic methicillin-susceptible S. aureus and methicillin-resistant S. aureus. Longer preincubation times (24 h) and time light exposure (30 min) were required to reach HYP-photoactivity against S. aureus biofilms. HYP-photoactivity was correlated to the biofilm production. Conclusion: HYP could be a potential photosensitizer for the inactivation of staphylococcal biofilms forming on the surfaces accessible to visible light.
Collapse
Affiliation(s)
- Isabel García
- Department of Microbiology, School of Medicine, Universidad de Sevilla, Sevilla, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Ballesta
- Department of Microbiology, School of Medicine, Universidad de Sevilla, Sevilla, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Gilaberte
- Department of Dermatology, IIS Aragón, Hospital San Jorge, Huesca, Spain
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Álvaro Pascual
- Department of Microbiology, School of Medicine, Universidad de Sevilla, Sevilla, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases & Clinical Microbiology Unit, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
15
|
Abstract
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Collapse
|
16
|
The interaction of bacteria with engineered nanostructured polymeric materials: a review. ScientificWorldJournal 2014; 2014:410423. [PMID: 25025086 PMCID: PMC4084677 DOI: 10.1155/2014/410423] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.
Collapse
|
17
|
de Melo WCMA, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, Chandran R, Huang YY, Yin R, Perussi LR, Tegos GP, Perussi JR, Dai T, Hamblin MR. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther 2014; 11:669-93. [PMID: 23879608 DOI: 10.1586/14787210.2013.811861] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents.
Collapse
Affiliation(s)
- Wanessa C M A de Melo
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khan MSA, Ahmad I, Sajid M, Cameotra SS. Current and Emergent Control Strategies for Medical Biofilms. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Pallavicini P, Donà A, Taglietti A, Minzioni P, Patrini M, Dacarro G, Chirico G, Sironi L, Bloise N, Visai L, Scarabelli L. Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chem Commun (Camb) 2014; 50:1969-71. [DOI: 10.1039/c3cc48667b] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Self-assembled monolayers of gold nanostars exert efficient photothermal action againstS. aureusbiofilms upon laser irradiation in the nearIR.
Collapse
Affiliation(s)
| | - Alice Donà
- inLAB
- Department of Chemistry
- University of Pavia
- 27100 Pavia, Italy
| | - Angelo Taglietti
- inLAB
- Department of Chemistry
- University of Pavia
- 27100 Pavia, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, and CNISM
- University of Pavia
- 27100 Pavia, Italy
| | | | | | - Giuseppe Chirico
- Department of Physics “G. Occhialini”
- University of Milano Bicocca
- 20126 Milano, Italy
| | - Laura Sironi
- Department of Physics “G. Occhialini”
- University of Milano Bicocca
- 20126 Milano, Italy
| | - Nora Bloise
- Department of Molecular Medicine
- Center for Tissue Engineering (C.I.T.)
- INSTM UdR of Pavia
- University of Pavia
- 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine
- Center for Tissue Engineering (C.I.T.)
- INSTM UdR of Pavia
- University of Pavia
- 27100 Pavia, Italy
| | - Leonardo Scarabelli
- CIC biomaGUNE
- Center for Cooperative Research in Biomaterials
- 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
20
|
Romanò CL, Toscano M, Romanò D, Drago L. Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 2013; 25:67-80. [PMID: 23684354 DOI: 10.1179/1973947812y.0000000045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Orthopaedics is currently the largest market of biomaterials worldwide and implant-related infections, although relatively rare, remain among the first reasons for joint arthroplasty and osteosynthesis failure. Bacteria start implant infection by adhering to biomaterials and producing biofilms, which represent a major reason for bacterial persistence, in spite of antibiotic treatment and host's defence. In the last two decades, a number of different antibiofilm agents have been studied and both in vitro and in vivo results appear now promising, even if their effective role in orthopaedics remains to be assessed. In this review, we introduce an original classification of antibiofilm agents, based on their mechanism of action and examine the available data concerning their possible application to orthopaedic implant-related infections. Molecules that interfere with biofilm production (biofilm prevention agents) include anti-adhesion compounds, quorum sensing inhibitors, non-steroideal anti-inflammatory drugs, and antimicrobial peptides; N-acetylcysteine and specific enzymes promise the greatest therapeutic possibilities by disrupting established biofilms (biofilm disrupting agents). The identification of antimicrobials able to bypass the biofilm barrier (biofilm bypassing agents), and antibiofilm vaccines are further strategies aimed to reduce the impact of biofilm-related infections, opening new pathways in controlling implant-related infections. However, this review shows that still insufficient knowledge is currently available as to regard the efficacy and safety of the investigated antibiofilm strategies to treat infection that involve bone tissue and biomaterials commonly implanted in orthopaedics, pointing out the need for further research in this promising field.
Collapse
Affiliation(s)
- Carlo L Romanò
- CRIO Unit, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | | |
Collapse
|
21
|
Yin R, Dai T, Avci P, Jorge AES, de Melo WCMA, Vecchio D, Huang YY, Gupta A, Hamblin MR. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol 2013; 13:731-62. [PMID: 24060701 DOI: 10.1016/j.coph.2013.08.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/26/2022]
Abstract
Owing to the worldwide increase in antibiotic resistance, researchers are investigating alternative anti-infective strategies to which it is supposed microorganisms will be unable to develop resistance. Prominent among these strategies, is a group of approaches which rely on light to deliver the killing blow. As is well known, ultraviolet light, particularly UVC (200-280 nm), is germicidal, but it has not been much developed as an anti-infective approach until recently, when it was realized that the possible adverse effects to host tissue were relatively minor compared to its high activity in killing pathogens. Photodynamic therapy is the combination of non-toxic photosensitizing dyes with harmless visible light that together produce abundant destructive reactive oxygen species (ROS). Certain cationic dyes or photosensitizers have good specificity for binding to microbial cells while sparing host mammalian cells and can be used for treating many localized infections, both superficial and even deep-seated by using fiber optic delivered light. Many microbial cells are highly sensitive to killing by blue light (400-470 nm) due to accumulation of naturally occurring photosensitizers such as porphyrins and flavins. Near infrared light has also been shown to have antimicrobial effects against certain species. Clinical applications of these technologies include skin, dental, wound, stomach, nasal, toenail and other infections which are amenable to effective light delivery.
Collapse
Affiliation(s)
- Rui Yin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
From Koch's postulates to biofilm theory. The lesson of Bill Costerton. Int J Artif Organs 2013; 35:695-9. [PMID: 23138704 DOI: 10.5301/ijao.5000169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2012] [Indexed: 11/20/2022]
Abstract
The clinical diagnoses of implant infections pose insurmountable difficulties for cultural methods because of their frequent failure when bacteria are growing in biofilms. In 1978 Bill Costerton warned that chronic infections in patients with indwelling medical devices were caused by bacteria growing in well-developed glycocalyx-enclosed biofilms and that bacteria within biofilms resist antibiotic therapies and immune host defenses. Costerton's "biofilm theory" opened two lines of scientific endeavor: the study of the biochemistry and genetics of biofilm formation and function; and, on the other side, the search for new methods for medical diagnosis and treatment of biofilm-centered implant infections. This Editorial and the entire 2012 issue "Focus on Implant Infections" are dedicated to the memory of Bill Costerton, recognized worldwide as the Father of Biofilms for his innovation and body of work on infections caused by sessile bacteria. Bill Costerton was a great scientist, heedful both to the biological aspects of biofilms and to the medical challenges of new diagnostic methods and modern therapeutic approaches to implant infections. But, most of all, he was a charming Maestro for the large number of colleagues and students whose enthusiasm for the science he was able to nourish. Bill passed away on May 12th, 2012 and the entire science community mourns the death of a friend and a leader.
Collapse
|
23
|
Photoinactivation of Staphylococcus epidermidis biofilms and suspensions by the hydrophobic photosensitizer curcumin – Effect of selected nanocarrier. Eur J Pharm Sci 2012; 47:65-74. [DOI: 10.1016/j.ejps.2012.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/19/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022]
|
24
|
Vera DMA, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 2012; 88:499-511. [PMID: 22242675 DOI: 10.1111/j.1751-1097.2012.01087.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conventional antimicrobial strategies have become increasingly ineffective due to the emergence of multidrug resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered the exploration of alternative treatments and unconventional approaches towards controlling microbial infections. Photodynamic therapy (PDT) was originally established as an anticancer modality and is currently used in the treatment of age-related macular degeneration. The concept of photodynamic inactivation requires cell exposure to light energy, typically wavelengths in the visible region that causes the excitation of photosensitizer molecules either exogenous or endogenous, which results in the production of reactive oxygen species (ROS). ROS produce cell inactivation and death through modification of intracellular components. The versatile characteristics of PDT prompted its investigation as an anti-infective discovery platform. Advances in understanding of microbial physiology have shed light on a series of pathways, and phenotypes that serve as putative targets for antimicrobial drug discovery. Investigations of these phenotypic elements in concert with PDT have been reported focused on multidrug efflux systems, biofilms, virulence and pathogenesis determinants. In many instances the results are promising but only preliminary and require further investigation. This review discusses the different antimicrobial PDT strategies and highlights the need for highly informative and comprehensive discovery approaches.
Collapse
Affiliation(s)
- Domingo Mariano Adolfo Vera
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pereira Gonzales F, Maisch T. Photodynamic inactivation for controlling Candida albicans infections. Fungal Biol 2012; 116:1-10. [DOI: 10.1016/j.funbio.2011.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 01/04/2023]
|
26
|
Photoactivated Disinfection (PAD) in Endodontics: an in vitro Microbiological Evaluation. Int J Artif Organs 2011; 34:889-97. [DOI: 10.5301/ijao.5000056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2011] [Indexed: 01/10/2023]
Abstract
Purpose The objective of the present study was the in vitro evaluation by MTT test of the antimicrobial effect of photoactivated disinfection (PAD) and, comparatively, of a conventional 5.25% NaOCl irrigating solution. Methods Enterococcus faecalis, Streptococcus mutans and Streptococcus sanguis strains were selected for the test. Freshly extracted single-rooted human teeth were endodontically treated, inoculated with bacterial strains and then divided into different groups, each of them treated with PAD, with PAD plus 0.5% NaOCl solution, with TBO, with PAD for longer time and with 5% NaOCl solution (positive control). Results The results were significantly different among the various groups, and for Enterococcus faecalis, Streptococcus mutans and Streptococcus sanguis. PAD applied for a longer time (in respect to manufacturer's instructions) or PAD associated to 5% NaOCl showed the significantly higher antibacterial effects.
Collapse
|
27
|
New Trends in Diagnosis and Control Strategies for Implant Infections. Int J Artif Organs 2011; 34:727-36. [DOI: 10.5301/ijao.2011.8784] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/17/2022]
Abstract
In implant infections, a quick and reliable identification of the etiological agent is crucial to realizing efficacious therapies. Among molecular methods, automated ribotyping has proven to be an accurate and rapid technique. More recently, MALDI-TOF/MS and PCR-electrospray ionization (ESI)/ MS have been applied successfully to microbiological diagnosis. In implant infections, biofilm is still the major problem for bacterial persistence and recalcitrance to antibiotic therapy. Among biofilm-disrupting agents, enzymes promise the greatest therapeutic possibilities. DNase I degrades biofilm extracellular DNA and has been shown to sensitize biofilm to various biocides and anionic detergents, while dispersin B acts on biofilm exopolysaccharide and, combined with antiseptic, gives a broad-spectrum antibiofilm and antimicrobial activity. The novel antimicrobial approach based on photodynamic treatment (PDT) applies, in combination with antibiotics, to the implant or medical devices reachable by optical fibers. Better progress could be gained by the development of infection-resistant biomaterials able to both inhibit bacterial adhesion and promote tissue integration. New knowledge regarding the fibronectin-mediated internalization of Staphylococcus aureus by osteoblasts, and on its role in the pathogenesis of implant-related osteomyelitis, paves the way for the development of vaccines against staphylococcal adhesins, to prevent both adhesion on biomaterials and bacterial invasion of bone cells.
Collapse
|
28
|
St Denis TG, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2011; 2:509-20. [PMID: 21971183 DOI: 10.4161/viru.2.6.17889] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The story of prevention and control of infectious diseases remains open and a series of highly virulent pathogens are emerging both in and beyond the hospital setting. Antibiotics were an absolute success story for a previous era. The academic and industrial biomedical communities have now come together to formulate consensus beliefs regarding the pursuit of novel and effective alternative anti-infective countermeasures. Photodynamic therapy was established and remains a successful modality for malignancies but photodynamic inactivation has been transformed recently to an antimicrobial discovery and development platform. The concept of photodynamic inactivation is quite straightforward and requires microbial exposure to visible light energy, typically wavelengths in the visible region, that causes the excitation of photosensitizer molecules (either exogenous or endogenous), which results in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation. It is an area of increasing interest, as research is advancing i) to identify the photochemical and photophysical mechanisms involved in inactivation; ii) to develop potent and clinically compatible photosensitizer; iii) to understand how photoinactivation is affected by key microbial phenotypic elements (multidrug resistance and efflux, virulence and pathogenesis determinants, biofilms); iv) to explore novel delivery platforms inspired by current trends in pharmacology and nanotechnology; and v) to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants.
Collapse
Affiliation(s)
- Tyler G St Denis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery ofStaphylococcusimplant infections in orthopedics. Future Microbiol 2011; 6:1329-49. [DOI: 10.2217/fmb.11.117] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|