1
|
Helms F, Käding D, Aper T, Ruhparwar A, Wilhelmi M. An Arteriovenous Bioreactor Perfusion System for Physiological In Vitro Culture of Complex Vascularized Tissue Constructs. Bioengineering (Basel) 2024; 11:1147. [PMID: 39593807 PMCID: PMC11591738 DOI: 10.3390/bioengineering11111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The generation and perfusion of complex vascularized tissues in vitro requires sophisticated perfusion techniques. For multiscale arteriovenous networks, not only the arterial, but also the venous, biomechanical and biochemical conditions that physiologically exist in the human body must be accurately emulated. For this, we here present a modular arteriovenous perfusion system for the in vitro culture of a multi-scale bioartificial vascular network. METHODS The custom-built perfusion system consisted of two circuits: in the arterial circuit, physiological arterial biomechanical and biochemical conditions were simulated using a modular set-up with a pulsatile peristaltic pump, compliance chambers, and resistors. In the venous circuit, venous conditions were emulated accordingly. In the center of the system, a bioartificial multi-scale vascularized fibrin-based tissue was perfused by both circuits simultaneously under biomimetic arteriovenous conditions. Culture conditions were monitored continuously using a multi-sensor monitoring system. RESULTS The physiological arterial and venous pressure- and flow-curves, as well as the microvascular arteriovenous oxygen partial pressure gradient, were accurately emulated in the perfusion system. The multi-sensor monitoring system facilitated live monitoring of the respective parameters and data-logging. In a proof-of-concept experiment, vascularized three-dimensional fibrin tissues showed sustained cell viability and homogenous microvessel formation after culture in the perfusion system. CONCLUSIONS The arteriovenous perfusion system facilitated the in vitro culture of a multiscale vascularized tissue under physiological pressure-, flow-, and oxygen-gradient conditions. With that, it presents a promising technique for the in vitro generation and culture of complex large-scale vascularized tissues.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Delia Käding
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Thomas Aper
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Department of Vascular and Endovascular Surgery, St. Bernward Hospital, 31134 Hildesheim, Germany
| |
Collapse
|
2
|
Wachendörfer M, Palkowitz AL, Fischer H. Development of a biofabricated 3D in vitrovessel model for investigating transendothelial migration in stem cell therapy. Biofabrication 2024; 16:035028. [PMID: 38810632 DOI: 10.1088/1758-5090/ad51a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Systemic stem cell therapies hold promise for treating severe diseases, but their efficiency is hampered by limited migration of injected stem cells across vascular endothelium towards diseased tissues. Understanding transendothelial migration is crucial for improving therapy outcomes. We propose a novel 3Din vitrovessel model that aids to unravel these mechanisms and thereby facilitates stem cell therapy development. Our model simulates inflammation through cytokine diffusion from the tissue site into the vessel. It consists of a biofabricated vessel embedded in a fibrin hydrogel, mimicking arterial wall composition with smooth muscle cells and fibroblasts. The perfusable channel is lined with a functional endothelium which expresses vascular endothelial cadherin, provides an active barrier function, aligns with flow direction and is reconstructed byin situtwo-photon-microscopy. Inflammatory cytokine release (tumor necrosis factorα, stromal-derived factor (1) is demonstrated in both a transwell assay and the 3D model. In proof-of-principle experiments, mesoangioblasts, known as a promising candidate for a stem cell therapy against muscular dystrophies, are injected into the vessel model, showing shear-resistant endothelial adhesion under capillary-like flow conditions. Our 3Din vitromodel offers significant potential to study transendothelial migration mechanisms of stem cells, facilitating the development of improved stem cell therapies.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alena Lisa Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
3
|
Wachendörfer M, Buhl EM, Messaoud GB, Richtering W, Fischer H. pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Open-Porous Fibrin-Collagen Hydrogel Blends without Chemical Cross-Linker. Adv Healthc Mater 2023; 12:e2203302. [PMID: 36546310 PMCID: PMC11468609 DOI: 10.1002/adhm.202203302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ghazi Ben Messaoud
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
4
|
Wachendörfer M, Schräder P, Buhl EM, Palkowitz AL, Ben Messaoud G, Richtering W, Fischer H. A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin-gelatin hydrogel blends. Biomater Sci 2022; 10:5552-5565. [PMID: 35969162 DOI: 10.1039/d2bm00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibrin-gelatin hydrogel blends exhibit high potential for tissue engineering in vitro applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability. We investigated these hydrogel blends' compressive strength, in vitro degradation stability, and microstructure in order to test this hypothesis. In addition, we examined the gel's ability to support endothelial cell proliferation and stretching of encapsulated smooth muscle cells. This research showed that a controlled heat pretreatment of the gelatin component strongly influenced the stiffness, swelling, shrinking, and microstructural architecture of the final blends regardless of identical gelatin mass fractions. All blends offered high long-term hydrolytic stability. In conclusion, the results of this study open the possibility to use this technique in order to tune low-concentrated, open-porous fibrin-based hydrogels, even in long-term tissue engineering in vitro experiments.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Philipp Schräder
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Helms F, Zippusch S, Aper T, Kalies S, Heisterkamp A, Haverich A, Böer U, Wilhelmi M. Mechanical stimulation induces vasa vasorum capillary alignment in a fibrin-based tunica adventitia. Tissue Eng Part A 2022; 28:818-832. [PMID: 35611972 DOI: 10.1089/ten.tea.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Generation of bioartificial blood vessels with a physiological three-layered wall architecture is a long pursued goal in vascular tissue engineering. While considerable advances have been made to resemble the physiological tunica intima and media morphology and function in bioartificial vessels, only very few studies have targeted the generation of a tunica adventitia including its characteristic vascular network known as the vasa vasorum, which are essential for graft nutrition and integration. In healthy native blood vessels, capillary vasa vasorum are aligned longitudinally to the vessel axis. Thus, inducing longitudinal alignment of capillary tubes to generate a physiological tunica adventitia morphology and function may be advantageous in bioengineered vessels as well. In this study, we investigated the effect of two biomechanical stimulation parameters, longitudinal tension and physiological cyclic stretch, on tube alignment in capillary networks formed by self-assembly of human umbilical vein endothelial cells in tunica adventitia-equivalents of fibrin-based bioartificial blood vessels. Moreover, the effect of changes of the biomechanical environment on network remodeling after initial tube formation was analyzed. Both, longitudinal tension and cyclic stretch by pulsatile perfusion induced physiological capillary tube alignment parallel to the longitudinal vessel axis. This effect was even more pronounced when both biomechanical factors were applied simultaneously, which resulted in alignment of 57.2% ± 5.2% within 5° of the main vessel axis. Opposed to that, random tube orientation was observed in vessels incubated statically. Scanning electron microscopy showed that longitudinal tension also resulted in longitudinal alignment of fibrin fibrils, which may function as a guidance structure for directed capillary tube formation. Moreover, existing microvascular networks showed distinct remodeling in response to addition or withdrawal of mechanical stimulation with corresponding increase or decrease of the degree of alignment. With longitudinal tension and cyclic stretch, we identified two mechanical stimuli that facilitate the generation of a pre-vascularized tunica adventitia-equivalent with physiological tube alignment in bioartificial vascular grafts.
Collapse
Affiliation(s)
- Florian Helms
- Hannover Medical School, 9177, Lower Saxony centre of biotechnology implant research and development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Sarah Zippusch
- Hannover Medical School, 9177, Lower Saxony centre of biotechnology implant research and development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Thomas Aper
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Stefan Kalies
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Leibniz University Hannover, 26555, Institute of Quantum Optics, Hannover, Niedersachsen, Germany;
| | - Alexander Heisterkamp
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Leibniz University Hannover, 26555, Institure of Quantum Optics, Hannover, Niedersachsen, Germany;
| | - Axel Haverich
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Ulrike Böer
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Mathias Wilhelmi
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,St Bernward Hospital, 14966, Department of Vascular- and Endovascular Surgery, Hildesheim, Niedersachsen, Germany;
| |
Collapse
|
6
|
Helms F, Zippusch S, Theilen J, Haverich A, Wilhelmi M, Böer U. An encapsulated fibrin-based bioartificial tissue construct with integrated macrovessels, microchannels and capillary tubes. Biotechnol Bioeng 2022; 119:2239-2249. [PMID: 35485750 DOI: 10.1002/bit.28111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022]
Abstract
Facilitating sufficient nutrient and oxygen supply in large-scale bioartificial constructs is a critical step in organ bioengineering. Immediate perfusion not only depends on a dense capillary network, but also requires integrated large-diameter vessels that allow vascular anastomoses during implantation. These requirements set high demands for matrix generation as well as for in vitro cultivation techniques and remain mostly unsolved challenges up until today. Additionally, bioartificial constructs must have sufficient biomechanical stability to withstand mechanical stresses during and after implantation. We developed a bioartificial tissue construct with a fibrin matrix containing human umbilical vein endothelial cells and adipose tissue-derived stem cells facilitating capillary-like network formation. This core matrix was surrounded by a dense acellular fibrin capsule providing biomechanical stability. Two fibrin-based macrovessels were integrated on each side of the construct and interconnected via four 1.2 mm thick microchannels penetrating the cellularized core matrix. After four days of perfusion in a custom-built bioreactor, homogenous capillary-like network formation throughout the core matrix was observed. The fibrin capsule stabilized the core matrix and facilitated the generation of a self-supporting construct. Thus, the encapsulated fibrin tissue construct could provide a universal pre-vascularized matrix for seeding with different cell types in various tissue engineering approaches. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jonathan Theilen
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Department of Vascular- and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Bobylev D, Wilhelmi M, Lau S, Klingenberg M, Mlinaric M, Petená E, Helms F, Hassel T, Haverich A, Horke A, Böer U. Pressure-compacted and spider silk-reinforced fibrin demonstrates sufficient biomechanical stability as cardiac patch in vitro. J Biomater Appl 2021; 36:1126-1136. [PMID: 34617818 DOI: 10.1177/08853282211046800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The generation of bio-/hemocompatible cardiovascular patches with sufficient stability and regenerative potential remains an unmet goal. Thus, the aim of this study was the generation and in vitro biomechanical evaluation of a novel cardiovascular patch composed of pressure-compacted fibrin with embedded spider silk cocoons. METHODS Fibrin-based patches were cast in a customized circular mold. One cocoon of Nephila odulis spider silk was embedded per patch during the casting process. After polymerization, the fibrin clot was compacted by 2 kg weight for 30 min resulting in thickness reduction from up to 2 cm to <1 mm. Tensile strength and burst pressure was determined after 0 weeks and 14 weeks of storage. A sewing strength test and a long-term load test were performed using a customized device to exert physiological pulsatile stretching of a silicon surface on which the patch had been sutured. RESULTS Fibrin patches resisted supraphysiological pressures of well over 2000 mmHg. Embedding of spider silk increased tensile force 1.8-fold and tensile strength 1.45-fold (p < .001), resulting in a final strength of 1.07 MPa and increased sewing strength. Storage for 14 weeks decreased tensile strength, but not significantly and suturing properties of the spider silk patches were satisfactory. The long-term load test indicated that the patches were stable for 4 weeks although slight reduction in patch material was observed. CONCLUSION The combination of compacted fibrin matrices and spider silk cocoons may represent a feasible concept to generate stable and biocompatible cardiovascular patches with regenerative potential.
Collapse
Affiliation(s)
- Dmitry Bobylev
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Clinic for Vascular and Endovascular Surgery, 14966St. Bernward Hospital, Hildesheim, Germany
| | - Skadi Lau
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Markus Mlinaric
- Institute for Material Science, University of Hannover, Garbsen, Germany
| | - Elena Petená
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany
| | - Florian Helms
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Thomas Hassel
- Institute for Material Science, University of Hannover, Garbsen, Germany
| | - Axel Haverich
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Alexander Horke
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Department of Cardiacthoracic, Transplantation and Vascular Surgery, 9177Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Helms F, Lau S, Aper T, Zippusch S, Klingenberg M, Haverich A, Wilhelmi M, Böer U. A 3-Layered Bioartificial Blood Vessel with Physiological Wall Architecture Generated by Mechanical Stimulation. Ann Biomed Eng 2021; 49:2066-2079. [PMID: 33483842 DOI: 10.1007/s10439-021-02728-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The generation of cellularized bioartificial blood vessels resembling all three layers of the natural vessel wall with physiological morphology and cell alignment is a long pursued goal in vascular tissue engineering. Simultaneous culture of all three layers under physiological mechanical conditions requires highly sophisticated perfusion techniques and still today remains a key challenge. Here, three-layered bioartificial vessels based on fibrin matrices were generated using a stepwise molding technique. Adipose-derived stem cells (ASC) were differentiated to smooth muscle cells (SMC) and integrated in a compacted tubular fibrin matrix to resemble the tunica media. The tunica adventitia-equivalent containing human umbilical vein endothelial cells (HUVEC) and ASC in a low concentration fibrin matrix was molded around it. Luminal seeding with HUVEC resembled the tunica intima. Subsequently, constructs were exposed to physiological mechanical stimulation in a pulsatile bioreactor for 72 h. Compared to statically incubated controls, mechanical stimulation induced physiological cell alignment in each layer: Luminal endothelial cells showed longitudinal alignment, cells in the media-layer were aligned circumferentially and expressed characteristic SMC marker proteins. HUVEC in the adventitia-layer formed longitudinally aligned microvascular tubes resembling vasa vasorum capillaries. Thus, physiologically organized three-layered bioartificial vessels were successfully manufactured by stepwise fibrin molding with subsequent mechanical stimulation.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Thomas Aper
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Department of Vascular- and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|