1
|
Shilovskiy IP, Kovchina VI, Timotievich ED, Nikolskii AA, Khaitov MR. Role and Molecular Mechanisms of Alternative Splicing of Th2-Cytokines IL-4 and IL-5 in Atopic Bronchial Asthma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1608-1621. [PMID: 38105028 DOI: 10.1134/s0006297923100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the respiratory tract. Allergic (atopic) asthma is the most common (up to 80% of cases) phenotype developing through the Th2-dependent mechanisms involving cytokines: IL-4, IL-5, IL-9, and IL-13. The genes encoding Th2-cytokines have a mosaic structure (encode exons and introns). Therefore, several mature mRNA transcripts and protein isoforms can be derived from a single mRNA precursor through alternative splicing, and they may contribute to BA pathogenesis. Analysis of the published studies and databases revealed existence of the alternative mRNA transcripts for IL-4, IL-5, and IL-13. The alternative transcripts of IL-4 and IL-5 carry open reading frames and therefore can encode functional proteins. It was shown that not only alternative mRNA transcripts exist for IL-4, but alternative protein isoforms, as well. Natural protein isoform (IL-4δ2) lacking the part encoded by exon-2 was identified. Similarly, alternative mRNA transcript with deleted exon-2 (IL-5δ2) was also identified for IL-5. In this review, we summarize current knowledge about the identified alternative mRNA transcripts and protein isoforms of Th2-cytokinins, first of all IL-4 and IL-5. We have analyzed biological properties of the alternative variants of these cytokines, their possible role in the allergic asthma pathogenesis, and considered their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Igor P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia.
| | - Valeriya I Kovchina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Ekaterina D Timotievich
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Alexander A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| |
Collapse
|
2
|
Diogo GR, Sparrow A, Paul MJ, Copland A, Hart PJ, Stelter S, van Dolleweerd C, Drake PMW, Macallan DC, Reljic R. Murine IL-4Δ2 splice variant down-regulates IL-4 activities independently of IL-4Rα binding and STAT-6 phosphorylation. Cytokine 2017; 99:154-162. [PMID: 28917204 DOI: 10.1016/j.cyto.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/26/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
IL-4 is a pleiotropic cytokine that is highly Th2 polarizing. The ratio of IL-4 and its splice variant IL-4Δ2 observed in human health and disease suggests a role for both isoforms. In the present study, the biological function of murine IL-4Δ2 and the potential mechanism of action were studied. We report for the first time the generation of a functional, recombinant murine IL-4Δ2 form which is suggestive of its possible biological role in this species. Recombinant murine IL-4Δ2 inhibited IL-4 mediated cellular processes in macrophages and lymphocytes. Specifically, (i) it reversed IL-4 mediated inhibition of IFN-γ induced nitric oxide release by macrophages, (ii) inhibited IL-4 mediated induction of T cell proliferation, and (iii) prevented IL-4 stimulation of IgE synthesis by B cells. However, IL-4Δ2 did not compete with IL-4 for IL-4Rα binding and did not interfere with the downstream STAT-6 phosphorylation in T cells, suggesting an alternative mechanism for its antagonism of specific IL4-driven effects. These findings suggest that the mouse is a suitable experimental model for studies of the biology of IL-4 and its alternative splice variant.
Collapse
Affiliation(s)
- Gil R Diogo
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Adam Sparrow
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Matthew J Paul
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Alastair Copland
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Peter J Hart
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Szymon Stelter
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Craig van Dolleweerd
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Pascal M W Drake
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Derek C Macallan
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, SW17 0RE London, UK.
| |
Collapse
|
3
|
Talebkhan Y, Doozbakhshan M, Saberi S, Esmaeili M, Karami N, Mohajerani N, Abdirad A, Eshagh Hosseini M, Nahvijou A, Mohagheghi MA, Mohammadi M. Serum Antibodies against Helicobacter pylori Neutrophil Activating Protein in Carriers of IL-4 C-590T Genetic Polymorphism Amplify the Risk of Gastritis and Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2016; 21:321-9. [PMID: 27677314 PMCID: PMC5548964 DOI: 10.18869/acadpub.ibj.21.5.321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastric cancer arises, mainly, on an inflammatory background. Helicobacter pylori neutrophil activating (HP-NAP) protein functions as a potent pro-inflammatory mediator. Similarly, IL-4 plays a critical role in the inflammation pathway, the levels of which are altered by C to T transition at position -590 in its promoter region. Here, we have aimed to assess the risk of gastritis and gastric cancer in the co-presence of these two inflammation modulating mediators. METHODS Gastritis (n=58) and gastric cancer (n=31) patients were evaluated and compared with H. pylori-positive asymptomatic controls (n=46), for serum antibodies against recombinant HP-NAP and IL-4 C-590T single nucleotide polymorphism using immunoblotting and PCR-RFLP, respectively. Multivariable logistic regression, adjusting for age, gender and ethnicity, was used for data analysis. RESULTS In terms of susceptibility to gastritis, seropositivity to HP-NAP projected a risk impact of 4.62 fold (OR=4.62, 95% CI=1.50-14.22), which when present in IL-4 -590 T carriers augmented the risk up to 9.7 fold (OR=9.70, 95% CI=2.06-45.69). A similar pattern, but of a stronger magnitude, occurred for the risk of gastric cancer, which was estimated at 9.07 fold (OR=9.07, 95% CI=1.99-42.0) for HP-NAP-seropositive subjects and was drastically amplified (OR=33.64, 95% CI=2.06-548.68), when double-positive (HP-NAP seropositive/IL-4 -590 T carrier) subjects were examined against double negatives (HP-NAP seronegative/IL-4 -590 CC). CONCLUSION Our preliminary data indicate that serum antibodies against HP-NAP represent a state of risk, which is further exacerbated in IL-4 -590 T carriers. These biomarkers, if validated in larger prospective studies, can be used to screen for gastric cancer susceptibility.
Collapse
Affiliation(s)
- Yeganeh Talebkhan
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Doozbakhshan
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Saberi
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Najmeh Karami
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Mohajerani
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Afshin Abdirad
- Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Eshagh Hosseini
- Department of Gastroenterology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nahvijou
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Mohammadi
- HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Horvath DJ, Radin JN, Cho SH, Washington MK, Algood HMS. The interleukin-17 receptor B subunit is essential for the Th2 response to Helicobacter pylori, but not for control of bacterial burden. PLoS One 2013; 8:e60363. [PMID: 23533678 PMCID: PMC3606319 DOI: 10.1371/journal.pone.0060363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/26/2013] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori infection leads to an inflammatory response in 100% of infected individuals. The inflammatory cells which are recruited to the gastric mucosa during infection produce several pro- and anti-inflammatory cytokines including several cytokines in the interleukin-17 family. The anti-inflammatory cytokine, interleukin 25 (IL-25, also known as IL-17E), signals through a receptor, which is a heterotrimeric receptor comprised of two IL-17 receptor A subunits and an IL-17 receptor B subunit. Previous studies in our laboratory demonstrated that IL-17RA is required to control infection with Helicobacter pylori in the mouse model. Moreover, the absence of IL-17 receptor A leads to a significant B cell infiltrate and a remarkable increase in lymphoid follicle formation in response to infection compared to infection in wild-type mice. We hypothesized that IL-25, which requires both IL-17 receptor A and IL-17 receptor B for signaling, may play a role in control of inflammation in the mouse model of Helicobacter pylori infection. IL-17 receptor B deficient mice, IL-17 receptor A deficient mice and wild-type mice were infected with Helicobacter pylori (strains SS1 and PMSS1). At several time points H. pylori-infected mice were sacrificed to investigate their ability to control infection and inflammation. Moreover, the effects of IL-17 receptor B deficiency on T helper cytokine expression and H. pylori- specific serum antibody responses were measured. IL-17 receptor B-/- mice (unlike IL-17 receptor A-/- mice) exhibited similar or modest changes in gastric colonization, inflammation, and Th1 and Th17 helper cytokine responses to wild-type mice infected with Helicobacter pylori. However, H. pylori-infected IL-17 receptor B-/- mice have reduced expression of IL-4 and lower serum IgG1 and IgG2a levels compared to infected IL-17 receptor A-/- and wild-type mice. These data indicate that signaling through the IL-17 receptor B subunit is not necessary for control of Helicobacter pylori in our model.
Collapse
Affiliation(s)
- Dennis J. Horvath
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jana N. Radin
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sung Hoon Cho
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - M. Kay Washington
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Holly M. Scott Algood
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
5
|
Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: a review of "alternatives". J Leukoc Biol 2012; 92:753-64. [PMID: 22782966 DOI: 10.1189/jlb.0412214] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies of IL-4 have revealed a wealth of information on the diverse roles of this cytokine in homeostatic regulation and disease pathogenesis. Recent data suggest that instead of simple linear regulatory pathways, IL-4 drives regulation that is full of alternatives. In addition to the well-known dichotomous regulation of Th cell differentiation by IL-4, this cytokine is engaged in several other alternative pathways. Its own production involves alternative mRNA splicing, yielding at least two functional isoforms: full-length IL-4, encoded by the IL-4 gene exons 1-4, and IL-4δ2, encoded by exons 1, 3, and 4. The functional effects of these two isoforms are in some ways similar but in other ways quite distinct. When binding to the surface of target cells, IL-4 may differentially engage two different types of receptors. By acting on macrophages, a cell type critically involved in inflammation, IL-4 induces the so-called alternative macrophage activation. In this review, recent advances in understanding these three IL-4-related branch points--alternative splicing of IL-4, differential receptor engagement by IL-4, and differential regulation of macrophage activation by IL-4--are summarized in light of their contributions to inflammation.
Collapse
Affiliation(s)
- Irina G Luzina
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
6
|
Luzina IG, Lockatell V, Lavania S, Pickering EM, Kang PH, Bashkatova YN, Andreev SM, Atamas SP. Natural production and functional effects of alternatively spliced interleukin-4 protein in asthma. Cytokine 2012; 58:20-6. [PMID: 22249152 DOI: 10.1016/j.cyto.2011.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/13/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
We have previously described an alternatively spliced isoform of IL-4 mRNA that omits exon 2 and is termed IL-4δ2. However, the natural production of IL-4δ2 protein and its association with disease have not been previously assessed due to unavailability of an antibody that interacts with IL-4δ2 without cross-reactivity with full length IL-4. We used a unique monoclonal antibody (mAb) that reacts with IL-4δ2, but not with IL-4, and observed that IL-4δ2 is naturally produced by T cells from patients with asthma, but not from healthy controls. The kinetics of IL-4δ2 and IL-4 production by phorbol myristate acetate (PMA)/ionomycin-activated cells differed, with IL-4δ2 increasing at 48-72h and IL-4 peaking at 24h. The steady-state levels of IL-4δ2 mRNA varied significantly among the donors and were discordant with the corresponding protein levels, suggesting post-transcriptional regulation of protein production. Polarized Th1 or Th2 lymphocytes were not a major source of IL-4δ2. Stimulation of cultured T lymphocytes with IL-4δ2 caused elevated production of IFN-γ, IL-10, IL-6, MCP-1, and TNF-α, with notable differences between patients and controls in the production of IFN-γ, IL-10, and IL-6. Thus, IL-4δ2 is natively produced not only as mRNA but also as a protein by cells other than Th1 or Th2. It is regulated post-transcriptionally, is associated with allergic asthma, and regulates production of other cytokines by primary T lymphocytes. Alternatively spliced interleukin-4 may be a new biomarker, a pathophysiological player, and possibly a molecular target for future therapies in asthma.
Collapse
Affiliation(s)
- Irina G Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Beigier-Bompadre M, Moos V, Belogolova E, Allers K, Schneider T, Churin Y, Ignatius R, Meyer TF, Aebischer T. Modulation of the CD4+ T-cell response by Helicobacter pylori depends on known virulence factors and bacterial cholesterol and cholesterol α-glucoside content. J Infect Dis 2011; 204:1339-48. [PMID: 21921201 DOI: 10.1093/infdis/jir547] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori blocks the proliferation of human CD4(+) T cells, facilitated by vacuolating exotoxin (VacA) and γ-glutamyl transpeptidase (GGT). H. pylori-triggered T-cell reactions in mice correlate with bacterial cholesterol and cholesterol α-glucoside content but their role in human cells is unclear. We characterized the effect of VacA, GGT, and cholesterol on T-helper 1, T-helper 2, T-regulatory and T-helper 17 associated cytokines and T-cell proliferation. VacA, GGT, and bacterial cholesterol content exhibited differential and synergistic inhibitory effects on the expression of activation markers CD25 and CD69 and on interleukin 2, interleukin 4, interleukin 10, and interferon γ production. These factors did not affect the H. pylori-mediated abrogation of transforming growth factor β secretion or increased interleukin 6 production. Cholesterol α-glucosyltransferase-deficient bacteria exerted strongly reduced antiproliferative effects on primary human CD4(+) T cells. In conclusion, H. pylori shapes rather than suppresses human CD4(+) T-cell responses, and glucosylated cholesterol is a relevant bacterial component involved in this modulation.
Collapse
|
8
|
Doherty TM, Wallis RS, Zumla A. Biomarkers of disease activity, cure, and relapse in tuberculosis. Clin Chest Med 2010; 30:783-96, x. [PMID: 19925967 DOI: 10.1016/j.ccm.2009.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The changing face of tuberculosis, with epidemics fueled by HIV and urbanization in much of the world and a relative increase in the importance of latent tuberculosis as a source of cases in the more economically developed countries, has led to a demand for more robust, clinically applicable diagnostic tools. As a result, research aiming to identify biomarkers of Mycobacterium tuberculosis infection and disease has flourished. This article discusses the most recent findings of that work.
Collapse
Affiliation(s)
- T Mark Doherty
- Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, 2300 København S, Denmark.
| | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Every year, over 8 million people develop tuberculosis and nearly 1.8 million die from it, despite extensive vaccination and drug treatment programmes. It is increasingly recognized that the diagnosis of tuberculosis, which relies heavily on century-old techniques, is one of the weakest links in the chain of tuberculosis control, hampering not just treatment but also the development of new drugs and vaccines. As a result, recent years have seen the initiation of large-scale studies aiming to identify biomarkers of Mycobacterium tuberculosis infection and disease. This review discusses initial results and future prospects for that work. RECENT FINDINGS The key finding from recent work has been that no one factor seems able to explain the complex course of Mycobacterium tuberculosis infection. Multifactorial analyses have identified a variety of genes and proteins, mostly involved in bacterial persistence or host responses, that offer promise as biomarkers for different disease stages. SUMMARY The challenge now is to validate the suggested biomarkers being described and then reduce them to clinical practice. If this can be done, it offers the possibility of greatly improved clinical management of tuberculosis, allowing segregation of patients and contacts into appropriate treatment regimens.
Collapse
|