1
|
Mohamed AF, Hanafy SM, Abdelgalil RM, Abo-Ouf AM. Effect of copper oxide nanoparticles (CuONPs) on the testes of adult male albino rats and the possible protective role of extra virgin olive oil (EVOO). Ultrastruct Pathol 2025; 49:130-147. [PMID: 39957005 DOI: 10.1080/01913123.2025.2462534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
We have assessed the effects of copper oxide nanoparticles on the testis of adult male albino rats, and evaluated the protective potential of EVOO, which has antioxidant properties. The study involved treatment of seventy adult male rats followed by examination of their testis. The rats were divided into four groups (I-V), each contained 20 rats except group II which contained 10 rats. Each of groups (I, III, IV) was subdivided equally into two subgroups (A and B). Rats in group I did not receive any treatment (IA) or injected intraperitoneal (IP) with 0.5 ml of distilled water daily for two weeks (IB). Rats in group II were gavaged 0.4 ml EVOO daily for 2 weeks. Rats in group III injected IP daily for 2 weeks with 0.5 ml distilled water containing 1 mg CuO NPs (subgroup IIIA) and 4 mg CuO NPs (IIIB). Rats in group IV were gavaged 0.4 ml EVOO before IP injected daily for 2 weeks with 0.5 ml distilled water containing either 1 mg CuO NPs (subgroup IVA) or 4 mg CuO NPs (IVB). After treatment, morphological, histological and biochemical studies on the testes were conducted. Examination of CuO NPs treated groups revealed dose dependant increase in pathological changes. These changes were reduced body weight, distorted basement membranes of seminiferous tubules and degeneration of seminiferous cells. Co-administration of EVOO ameliorated most pathological changes. We concluded that CuO NPs induced deteriorating changes in rats' testes which were improved after co-administration of EVOO.
Collapse
Affiliation(s)
- Amany F Mohamed
- Anatomy Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Safaa M Hanafy
- Anatomy Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Amany M Abo-Ouf
- Anatomy Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Anatomy Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Jarrar B, Almansour M, Al-Doaiss A, Lee SY, Melhem W, Jarrar Q, Sewelam A. Metallic and metallic oxide nanoparticles toxicity primarily targets the mitochondria of hepatocytes and renal cells. Toxicol Ind Health 2024; 40:667-678. [PMID: 39287072 DOI: 10.1177/07482337241282860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) are utilized in various applications, posing potential risks to human health, tissues, cells, and macromolecules. This study aimed to investigate the ultrastructural alterations in hepatocytes and renal tubular cells induced by metallic and metal oxide NPs. Adult healthy male Wistar albino rats (Rattus norvegicus) were divided into 6 (n = 7) control and 6 treated groups (n = 7). The rats in the treated groups exposed daily to silver NPs, gold NPs, zinc oxide NPs, silicon dioxide NPs, copper oxide NPs, and ferric oxide NPs for 35 days. The members of the control group for each corresponding NPs received the respective vehicle. Liver and kidney tissue blocks from all rats were processed for Transmission Electron Microscopy (TEM) examinations. The hepatocytes and renal tubular cells of all NPs-treated rats demonstrated mitochondrial ultrastructural alterations mainly cristolysis, swelling, membrane disruption, lucent matrices, matrices lysis, and electron-dense deposits. However, other organelles demonstrated injury but to a lesser extent in the form of shrunken nuclei, nuclear membrane indentation, endoplasmic reticulum fragmentation, cellular membranes enfolding, brush border microvilli disruption, lysosomal hyperplasia, ribosomes dropping, and peroxisome formation. One may conclude from the findings that the hepatocytes and the renal tubular cells mitochondria are the main targets for nanoparticles toxicity ending in mitochondrial disruption and cell injury. Further studies taking into account the relation of mitochondrial ultrastructural damage with a weakened antioxidant defense system induced by chronic exposure to nanomaterials are needed.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology Unit, Faculty of Sciences, Jerash University, Jordan
| | | | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Walid Melhem
- School of Medicine, King Faisal University, Saudi Arabia
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Jordan
| | - Amal Sewelam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
Jarrar Q, Almansour M, Jarrar B, Al-Doaiss A, Shati A. Hepatic ultrastructural alterations induced by copper oxide nanoparticles: In vivo electron microscopy study. Toxicol Ind Health 2023; 39:651-663. [PMID: 37789601 DOI: 10.1177/07482337231205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Copper oxide nanomaterials (CuO NPs) have been widely utilized in many fields, including antibacterial materials, anti-tumor, osteoporosis treatments, imaging, drug delivery, cosmetics, lubricants for metallic coating, the food industry, and electronics. Little is known about the potential risk to human health and ecosystems. The present work was conducted to investigate the ultrastructural changes induced by 20 ± 5 nm CuO NPs in hepatic tissues. Adult healthy male Wister albino rats were exposed to 36 intraperitoneal (ip) injections of 25 nm CuO NPs (2 mg/kg bw). Liver biopsies from all rats under study were processed for transmission electron microscopy (TEM) processing and examination for hepatic ultrastructural alterations. The hepatic tissue of rats exposed to repeated administrations of CuO NPs exhibited the following ultrastructural alterations: extensive mitochondrial damage in the form of swelling, crystolysis and matrix lysis, formation of phagocytized bodies and myelin multilayer figures, lysosomal hyperplasia, cytoplasmic degeneration and vacuolation, fat globules precipitation, chromatin clumping, and nuclear envelope irregularity. The findings indicated that CuO NPs interact with the hepatic tissue components and could induce alterations in the hepatocytes with the mitochondria as the main target organelles of copper nanomaterials. More work is recommended for better understanding the pathogenesis of CuO NPs.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Mansour Almansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bashir Jarrar
- Nanobiolgy Unit, College of Applied Medical Sciences, Jerash University, Jerash, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Zheng X, Chen J, Kang L, Wei Y, Wu Y, Hong Y, Wang X, Li D, Shen L, Long C, Wei G, Wu S. Prepubertal exposure to copper oxide nanoparticles induces Leydig cell injury with steroidogenesis disorders in mouse testes. Biochem Biophys Res Commun 2023; 654:62-72. [PMID: 36889036 DOI: 10.1016/j.bbrc.2023.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Copper oxide nanoparticles (CuONPs) are metallic multifunctional nanoparticles with good conductive, catalytic and antibacterial characteristics that have shown to cause reproductive dysfunction. However, the toxic effect and potential mechanisms of prepubertal exposure to CuONPs on male testicular development have not been clarified. In this study, healthy male C57BL/6 mice received 0, 10, and 25 mg/kg/d CuONPs by oral gavage for 2 weeks (postnatal day 22-35). The testicular weight was decreased, testicular histology was disturbed and the number of Leydig cells was reduced in all CuONPs-exposure groups. Transcriptome profiling suggested steroidogenesis was impaired after exposure to CuONPs. The steroidogenesis-related genes mRNA expression level, concentration of serum steroids hormones and the HSD17B3-, STAR- and CYP11A1-positive Leydig cell numbers were dramatically reduced. In vitro, we exposed TM3 Leydig cells to CuONPs. Bioinformatic analysis, flow cytometry analysis and western blotting analysis confirmed that CuONPs can dramatically reduce Leydig cells viability, enhance apoptosis, trigger cell cycle arrest and reduce cell testosterone levels. U0126 (ERK1/2 inhibitor) significantly reversed TM3 Leydig cells injury and testosterone level decrease induced by CuONPs. These outcomes indicate that CuONPs exposure activates the ERK1/2 signaling pathway, which further promotes apoptosis and cell cycle arrest in TM3 Leydig cells, and ultimately leads to Leydig cells injury and steroidogenesis disorders.
Collapse
Affiliation(s)
- Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
5
|
Jarrar Q, Al-Doaiss A, Jarrar BM, Alshehri M. On the toxicity of gold nanoparticles: Histological, histochemical and ultrastructural alterations. Toxicol Ind Health 2022; 38:789-800. [PMID: 36253334 DOI: 10.1177/07482337221133881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (Au NPs) are used in diagnostic and therapeutic applications together with a variety of industrial purposes and in many biomedical sectors with potential risks to human health. The present study aimed to the histological, histochemical, and ultrastructural alterations induced by Au NPS in vital organs. Healthy male Wistar Albino rats (Rattus norvegicus) were subjected to 20 injections of 10-nm Au NPs at a daily dose of 2 mg/kg. Liver, kidney, heart, and lung biopsies from control and Au NPs-treated rats under study were subjected to histological and histochemical examinations. In comparison with the control rats, the renal tissue of Au NPs-treated rats demonstrated glomerular congestion, interstitial inflammatory cell infiltration, renal tubular hydropic degeneration, cloudy swelling, necrosis, and hyaline cast precipitation. In addition, Au NPs induced the following hepatic alterations: hepatocyte cytolysis, cytoplasmic vacuolation, hydropic degeneration, and nuclear alterations together with sinusoidal dilatation. Moreover, the hearts of the treated rats demonstrated myocarditis, cardiac congestion, hyalinosis, cardiomyocyte hydropic degeneration, myofiber disarray and cardiac congestion. The lungs of Au NPs-treated rats also exhibited the following pulmonary alterations: alectasis, emphysema, inflammatory cell inflammation, thickened alveolar walls, pulmonary interstitial edema, congestion, hypersensitivity, fibrocyte proliferation, and honeycombing. In conclusion, exposure to Au NPs induced histological, histochemical and ultrastructural alterations in the vital organs that may alter the function of these organs. Additional efforts are needed for better understanding the potential risks of Au NPs to human health.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Histology Department, College of Medicine, Sana University
| | - Bashir M Jarrar
- Nanobiology Unit, College of Applied Medical Sciences, 123295Jerash University, Jerash, Jordan
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| |
Collapse
|