1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Cameron T, Allan K, Kay Cooper. The use of ketogenic diets in children living with drug-resistant epilepsy, glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency: A scoping review. J Hum Nutr Diet 2024; 37:827-846. [PMID: 38838079 DOI: 10.1111/jhn.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is a high fat, moderate protein and very low carbohydrate diet. It can be used as a medical treatment for drug-resistant epilepsy (DRE), glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency. The aim of this scoping review was to map the KD literature, with a focus on epilepsy and associated metabolic conditions, to summarise the current evidence-base and identify any gaps. METHODS This review was conducted using JBI scoping review methodological guidance and the PRISMA extension for scoping reviews reporting guidance. A comprehensive literature search was conducted in September 2021 and updated in February 2024 using MEDLINE, CINAHL, AMED, EmBASE, CAB Abstracts, Scopus and Food Science Source databases. RESULTS The initial search yielded 2721 studies and ultimately, data were extracted from 320 studies that fulfilled inclusion criteria for the review. There were five qualitative studies, and the remainder were quantitative, including 23 randomised controlled trials (RCTs) and seven quasi-experimental studies. The USA published the highest number of KD studies followed by China, South Korea and the UK. Most studies focused on the classical KD and DRE. The studies key findings suggest that the KD is efficacious, safe and tolerable. CONCLUSIONS There are opportunities available to expand the scope of future KD research, particularly to conduct high-quality RCTs and further qualitative research focused on the child's needs and family support to improve the effectiveness of KDs.
Collapse
Affiliation(s)
- Tracy Cameron
- Royal Aberdeen Children's Hospital, NHS Grampian, Aberdeen, Scotland, UK
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Karen Allan
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Kay Cooper
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
- Scottish Centre for Evidence-based, Multi-professional Practice: A JBI Centre of Excellence, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Corwin DJ, Myers SR, Arbogast KB, Lim MM, Elliott JE, Metzger KB, LeRoux P, Elkind J, Metheny H, Berg J, Pettijohn K, Master CL, Kirschen MP, Cohen AS. Head Injury Treatment With Healthy and Advanced Dietary Supplements: A Pilot Randomized Controlled Trial of the Tolerability, Safety, and Efficacy of Branched Chain Amino Acids in the Treatment of Concussion in Adolescents and Young Adults. J Neurotrauma 2024; 41:1299-1309. [PMID: 38468511 PMCID: PMC11339555 DOI: 10.1089/neu.2023.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Concussion is a common injury in the adolescent and young adult populations. Although branched chain amino acid (BCAA) supplementation has shown improvements in neurocognitive and sleep function in pre-clinical animal models of mild-to-moderate traumatic brain injury (TBI), to date, no studies have been performed evaluating the efficacy of BCAAs in concussed adolescents and young adults. The goal of this pilot trial was to determine the efficacy, tolerability, and safety of varied doses of oral BCAA supplementation in a group of concussed adolescents and young adults. The study was conducted as a pilot, double-blind, randomized controlled trial of participants ages 11-34 presenting with concussion to outpatient clinics (sports medicine and primary care), urgent care, and emergency departments of a tertiary care pediatric children's hospital and an urban tertiary care adult hospital, between June 24, 2014 and December 5, 2020. Participants were randomized to one of five study arms (placebo and 15 g, 30 g, 45 g, and 54 g BCAA treatment daily) and followed for 21 days after enrollment. Outcome measures included daily computerized neurocognitive tests (processing speed, the a priori primary outcome; and attention, visual learning, and working memory), symptom score, physical and cognitive activity, sleep/wake alterations, treatment compliance, and adverse events. In total, 42 participants were randomized, 38 of whom provided analyzable data. We found no difference in our primary outcome of processing speed between the arms; however, there was a significant reduction in total symptom score (decrease of 4.4 points on a 0-54 scale for every 500 g of study drug consumed, p value for trend = 0.0036, [uncorrected]) and return to physical activity (increase of 0.503 points on a 0-5 scale for every 500 g of study drug consumed, p value for trend = 0.005 [uncorrected]). There were no serious adverse events. Eight of 38 participants reported a mild (not interfering with daily activity) or moderate (limitation of daily activity) adverse event; there were no differences in adverse events by arm, with only two reported mild adverse events (both gastrointestinal) in the highest (45 g and 54 g) BCAA arms. Although limited by slow enrollment, small sample size, and missing data, this study provides the first demonstration of efficacy, as well as safety and tolerability, of BCAAs in concussed adolescents and young adults; specifically, a dose-response effect in reducing concussion symptoms and a return to baseline physical activity in those treated with higher total doses of BCAAs. These findings provide important preliminary data to inform a larger trial of BCAA therapy to expedite concussion recovery.
Collapse
Affiliation(s)
- Daniel J. Corwin
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sage R. Myers
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kristy B. Arbogast
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Miranda M. Lim
- Oregon Alzheimer's Disease Research Center & Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Research Service and VA RR&D VISN20 Northwest Mental Illness Research Education and Clinical Center (MIRECC), VA Portland Health Care System, Portland, Oregon, USA
| | - Jonathan E. Elliott
- Oregon Alzheimer's Disease Research Center & Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kristina B. Metzger
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter LeRoux
- Department of Neurosurgery, University of Rochester Medical Center and Bassett Medical Center, Cooperstown, New York, USA
| | - Jaclynn Elkind
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hannah Metheny
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey Berg
- Department of Family Medicine, Suburban Community Hospital, East Norriton, Pennsylvania, USA
| | - Kevin Pettijohn
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina L. Master
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew P. Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE. Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr 2024; 131:73-81. [PMID: 37424284 DOI: 10.1017/s0007114523001496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The branched-chain amino acid (BCAA) is a group of essential amino acids that are involved in maintaining the energy balance of a human being as well as the homoeostasis of GABAergic, glutamatergic, serotonergic and dopaminergic systems. Disruption of these systems has been associated with the pathophysiology of autism while low levels of these amino acids have been discovered in patients with autism. A pilot open-label, prospective, follow-up study of the use of BCAA in children with autistic behaviour was carried out. Fifty-five children between the ages of 6 and 18 participated in the study from May 2015 to May 2018. We used a carbohydrate-free BCAA-powdered mixture containing 45·5 g of leucine, 30 g of isoleucine and 24·5 g of valine in a daily dose of 0·4 g/kg of body weight which was administered every morning. Following the initiation of BCAA administration, children were submitted to a monthly psychological examination. Beyond the 4-week mark, BCAA were given to thirty-two people (58·18 %). Six of them (10·9 %) discontinued after 4-10 weeks owing to lack of improvement. The remaining twenty-six children (47·27 %) who took BCAA for longer than 10 weeks displayed improved social behaviour and interactions, as well as improvements in their speech, cooperation, stereotypy and, principally, their hyperactivity. There were no adverse reactions reported during the course of the treatment. Although these data are preliminary, there is some evidence that BCAA could be used as adjunctive treatment to conventional therapeutic methods for the management of autism.
Collapse
Affiliation(s)
- Despoina D Aspragkathou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Martha G Spilioti
- Department of Neurology, Aristotle University of Thessaloniki, Medical School, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Gkampeta
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Efterpi Dalpa
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Vasiliki Holeva
- Psychiatric Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Maria T Papadopoulou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Aspasia Serdari
- Psychiatric Clinic, University Hospital of Alexandroupolis, Thrace University, Medical School, Alexandroupolis, Greece
| | - Vaios Dafoulis
- Psychiatric Clinic of the Hippokration Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Athanasios E Evangeliou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| |
Collapse
|
5
|
Meguid NA, Hashem HS, Ghanem MH, Helal SA, Semenova Y, Hashem S, Hashish A, Chirumbolo S, Elwan AM, Bjørklund G. Evaluation of Branched-Chain Amino Acids in Children with Autism Spectrum Disorder and Epilepsy. Mol Neurobiol 2023; 60:1997-2004. [PMID: 36600079 DOI: 10.1007/s12035-022-03202-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorder (ASD) and epilepsy run hand-to-hand in their pathophysiology. Epilepsy is not an uncommon finding in patients with ASD. The aim of the present study was to identify the metabolic abnormalities of BCAAs (leucine, isoleucine, and valine) in children with ASD with and without seizures in comparison with neurotypical controls. Also, this study aimed to investigate the presence of epileptiform discharges on electroencephalography (EEG) in ASD patients and to describe the types and frequency of seizures observed. The study included 90 children aged 2-7 years, 30 of whom were diagnosed with both ASD and epilepsy. The other 30 children were diagnosed as ASD without epilepsy, and a comparable 30 normally developed children served as a control group. The groups were matched by age and gender. All patients were referred to the Autism Disorders Clinic for interviews and examinations. The Childhood Autism Rating Scale (CARS) was applied to all study participants to assess the degree of autism. The present study results show that all types of seizures may be identified in ASD children. The median serum levels of BCAAs were lower in ASD children with and without epilepsy than in neurotypical controls. This opens the door for discussion about new etiologies and better categorizations of ASD based on genotype and genetic abnormalities detected. More studies with larger samples are needed to understand ASD better and to more reliable evaluate the association between ASD, EEG changes, seizures, and BCAAs.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Research On Children With Special Needs Department, National Research Centre, Giza, Egypt.,CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | - Heba S Hashem
- Research On Children With Special Needs Department, National Research Centre, Giza, Egypt
| | - Mohamed H Ghanem
- Faculty of Medicine, Department of Neurology and Psychiatry, Ain Shams University, El-Abaseya, Egypt
| | - Samia A Helal
- Faculty of Medicine, Department of Neurology and Psychiatry, Ain Shams University, El-Abaseya, Egypt
| | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Saher Hashem
- Department of Neurology, Cairo University, Cairo, Egypt
| | - Adel Hashish
- Research On Children With Special Needs Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ahmed M Elwan
- Research On Children With Special Needs Department, National Research Centre, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| |
Collapse
|
6
|
Godoi AB, do Canto AM, Donatti A, Rosa DC, Bruno DCF, Alvim MK, Yasuda CL, Martins LG, Quintero M, Tasic L, Cendes F, Lopes-Cendes I. Circulating Metabolites as Biomarkers of Disease in Patients with Mesial Temporal Lobe Epilepsy. Metabolites 2022; 12:446. [PMID: 35629950 PMCID: PMC9148034 DOI: 10.3390/metabo12050446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
A major challenge in the clinical management of patients with mesial temporal lobe epilepsy (MTLE) is identifying those who do not respond to antiseizure medication (ASM), allowing for the timely pursuit of alternative treatments such as epilepsy surgery. Here, we investigated changes in plasma metabolites as biomarkers of disease in patients with MTLE. Furthermore, we used the metabolomics data to gain insights into the mechanisms underlying MTLE and response to ASM. We performed an untargeted metabolomic method using magnetic resonance spectroscopy and multi- and univariate statistical analyses to compare data obtained from plasma samples of 28 patients with MTLE compared to 28 controls. The patients were further divided according to response to ASM for a supplementary and preliminary comparison: 20 patients were refractory to treatment, and eight were responsive to ASM. We only included patients using carbamazepine in combination with clobazam. We analyzed the group of patients and controls and found that the profiles of glucose (p = 0.01), saturated lipids (p = 0.0002), isoleucine (p = 0.0001), β-hydroxybutyrate (p = 0.0003), and proline (p = 0.02) were different in patients compared to controls (p < 0.05). In addition, we found some suggestive metabolites (without enough predictability) by multivariate analysis (VIP scores > 2), such as lipoproteins, lactate, glucose, unsaturated lipids, isoleucine, and proline, that might be relevant to the process of pharmacoresistance in the comparison between patients with refractory and responsive MTLE. The identified metabolites for the comparison between MTLE patients and controls were linked to different biological pathways related to cell-energy metabolism and pathways related to inflammatory processes and the modulation of neurotransmitter release and activity in MTLE. In conclusion, in addition to insights into the mechanisms underlying MTLE, our results suggest that plasma metabolites may be used as disease biomarkers. These findings warrant further studies exploring the clinical use of metabolites to assist in decision-making when treating patients with MTLE.
Collapse
Affiliation(s)
- Alexandre B. Godoi
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Amanda M. do Canto
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Amanda Donatti
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Douglas C. Rosa
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Danielle C. F. Bruno
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| | - Marina K. Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Clarissa L. Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Melissa Quintero
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (L.G.M.); (M.Q.); (L.T.)
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (A.B.G.); (A.M.d.C.); (A.D.); (D.C.R.); (D.C.F.B.)
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas 13083-888, Brazil; (M.K.A.); (C.L.Y.); (F.C.)
| |
Collapse
|
7
|
Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity. Neurochem Res 2022; 47:2109-2122. [PMID: 35522366 DOI: 10.1007/s11064-022-03605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma β-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.
Collapse
|
8
|
Branched Chain Amino Acid Supplementation to a Hypocaloric Diet Does Not Affect Resting Metabolic Rate but Increases Postprandial Fat Oxidation Response in Overweight and Obese Adults after Weight Loss Intervention. Nutrients 2021; 13:nu13124245. [PMID: 34959797 PMCID: PMC8708242 DOI: 10.3390/nu13124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Branched chain amino acids (BCAA) supplementation is reported to aid in lean mass preservation, which may in turn minimize the reduction in resting metabolic rate (RMR) during weight loss. Our study aimed to examine the effect of BCAA supplementation to a hypocaloric diet on RMR and substrate utilization during a weight loss intervention. Methods: A total of 111 Chinese subjects comprising 55 males and 56 females aged 21 to 45 years old with BMI between 25 and 36 kg/m2 were randomized into three hypocaloric diet groups: (1) standard-protein (14%) with placebo (CT), (2) standard-protein with BCAA, and (3) high-protein (27%) with placebo. Indirect calorimetry was used to measure RMR, carbohydrate, and fat oxidation before and after 16 weeks of dietary intervention. Results: RMR was reduced from 1600 ± 270 kcal/day to 1500 ± 264 kcal/day (p < 0.0005) after weight loss, but no significant differences in the change of RMR, respiratory quotient, and percentage of fat and carbohydrate oxidation were observed among the three diet groups. Subjects with BCAA supplementation had an increased postprandial fat (p = 0.021) and decreased postprandial carbohydrate (p = 0.044) oxidation responses compared to the CT group after dietary intervention. Conclusions: BCAA-supplemented standard-protein diet did not significantly attenuate reduction of RMR compared to standard-protein and high-protein diets. However, the postprandial fat oxidation response increased after BCAA-supplemented weight loss intervention.
Collapse
|
9
|
Takeuchi F, Nishikata N, Nishimura M, Nagao K, Kawamura M. Leucine-Enriched Essential Amino Acids Enhance the Antiseizure Effects of the Ketogenic Diet in Rats. Front Neurosci 2021; 15:637288. [PMID: 33815043 PMCID: PMC8017216 DOI: 10.3389/fnins.2021.637288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/17/2021] [Indexed: 01/22/2023] Open
Abstract
The classic ketogenic diet (KD) can be used successfully to treat medically refractory epilepsy. However, the KD reduces seizures in 50-70% of patients with medically refractory epilepsy, and its antiseizure effect is limited. In the current study, we developed a new modified KD containing leucine (Leu)-enriched essential amino acids. Compared with a normal KD, the Leu-enriched essential amino acid-supplemented KD did not change the levels of ketosis and glucose but enhanced the inhibition of bicuculline-induced seizure-like bursting in extracellular recordings of acute hippocampal slices from rats. The enhancement of antiseizure effects induced by the addition of Leu-enriched essential amino acids to the KD was almost completely suppressed by a selective antagonist of adenosine A1 receptors or a selective dose of pannexin channel blocker. The addition of Leu-enriched essential amino acids to a normal diet did not induce any antiseizure effects. These findings indicate that the enhancement of the antiseizure effects of the KD is mediated by the pannexin channel-adenosine A1 receptor pathway. We also analyzed amino acid profiles in the plasma and hippocampus. A normal KD altered the levels of many amino acids in both the plasma and hippocampus. The addition of Leu-enriched essential amino acids to a KD further increased and decreased the levels of several amino acids, such as threonine, histidine, and serine, suggesting that altered metabolism and utilization of amino acids may play a role in its antiseizure effects. A KD supplemented with Leu-enriched essential amino acids may be a new therapeutic option for patients with epilepsy, including medically refractory epilepsy.
Collapse
Affiliation(s)
- Fumika Takeuchi
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Natsumi Nishikata
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mai Nishimura
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kenji Nagao
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
10
|
Bjørklund G, Meguid NA, Dadar M, Pivina L, Kałużna-Czaplińska J, Jóźwik-Pruska J, Aaseth J, Chartrand MS, Waly MI, Al-Farsi Y, Rahman MM, Pen JJ, Chirumbolo S. Specialized Diet Therapies: Exploration for Improving Behavior in Autism Spectrum Disorder (ASD). Curr Med Chem 2020; 27:6771-6786. [PMID: 32065085 DOI: 10.2174/0929867327666200217101908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
As a major neurodevelopmental disorder, Autism Spectrum Disorder (ASD) encompasses deficits in communication and repetitive and restricted interests or behaviors in childhood and adolescence. Its etiology may come from either a genetic, epigenetic, neurological, hormonal, or an environmental cause, generating pathways that often altogether play a synergistic role in the development of ASD pathogenesis. Furthermore, the metabolic origin of ASD should be important as well. A balanced diet consisting of the essential and special nutrients, alongside the recommended caloric intake, is highly recommended to promote growth and development that withstand the physiologic and behavioral challenges experienced by ASD children. In this review paper, we evaluated many studies that show a relationship between ASD and diet to develop a better understanding of the specific effects of the overall diet and the individual nutrients required for this population. This review will add a comprehensive update of knowledge in the field and shed light on the possible nutritional deficiencies, metabolic impairments (particularly in the gut microbiome), and malnutrition in individuals with ASD, which should be recognized in order to maintain the improved socio-behavioral habit and physical health.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Nagwa Abdel Meguid
- Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Giza, Egypt,CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Joanna Kałużna-Czaplińska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland,CONEM Poland Chemistry and Nutrition Research Group, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland,CONEM Poland Chemistry and Nutrition Research Group, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | | | - Mostafa Ibrahim Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman,Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Yahya Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Joeri Jan Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit
Brussel (VUB), Brussels, Belgium,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
11
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. J Neurosurg Anesthesiol 2019; 31:247-256. [PMID: 29620688 DOI: 10.1097/ana.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.
Collapse
|
13
|
Harvey CJDC, Schofield GM, Williden M. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review. PeerJ 2018; 6:e4488. [PMID: 29576959 PMCID: PMC5858534 DOI: 10.7717/peerj.4488] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references. Results Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. Conclusions There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that have typically were not designed to evaluate these variables as primary outcomes, and thus, more research is required to elucidate the role that supplementation might play in encouraging ketogenesis, improve time to NK, and reduce symptoms associated with keto-induction.
Collapse
Affiliation(s)
- Cliff J D C Harvey
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| | - Grant M Schofield
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| | - Micalla Williden
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
14
|
Yuen AWC, Walcutt IA, Sander JW. An acidosis-sparing ketogenic (ASK) diet to improve efficacy and reduce adverse effects in the treatment of refractory epilepsy. Epilepsy Behav 2017; 74:15-21. [PMID: 28667864 DOI: 10.1016/j.yebeh.2017.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
Diets that increase production of ketone bodies to provide alternative fuel for the brain are evolving from the classic ketogenic diet for epilepsy devised nearly a century ago. The classic ketogenic diet and its more recent variants all appear to have similar efficacy with approximately 50% of users showing a greater than 50% seizure reduction. They all require significant medical and dietetic support, and there are tolerability issues. A review suggests that low-grade chronic metabolic acidosis associated with ketosis is likely to be an important contributor to the short term and long term adverse effects of ketogenic diets. Recent studies, particularly with the characterization of the acid sensing ion channels, suggest that chronic metabolic acidosis may increase the propensity for seizures. It is also known that low-grade chronic metabolic acidosis has a broad range of negative health effects and an increased risk of early mortality in the general population. The modified ketogenic dietary treatment we propose is formulated to limit acidosis by measures that include monitoring protein intake and maximizing consumption of alkaline mineral-rich, low carbohydrate green vegetables. We hypothesize that this acidosis-sparing ketogenic diet is expected to be associated with less adverse effects and improved efficacy. A case history of life-long intractable epilepsy shows this diet to be a successful long-term strategy but, clearly, clinical studies are needed.
Collapse
Affiliation(s)
- Alan W C Yuen
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| | | | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| |
Collapse
|
15
|
Dallérac G, Moulard J, Benoist JF, Rouach S, Auvin S, Guilbot A, Lenoir L, Rouach N. Non-ketogenic combination of nutritional strategies provides robust protection against seizures. Sci Rep 2017; 7:5496. [PMID: 28710408 PMCID: PMC5511156 DOI: 10.1038/s41598-017-05542-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/31/2017] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a neurological condition that affects 1% of the world population. Conventional treatments of epilepsy use drugs targeting neuronal excitability, inhibitory or excitatory transmission. Yet, one third of patients presents an intractable form of epilepsy and fails to respond to pharmacological anti-epileptic strategies. The ketogenic diet is a well-established non-pharmacological treatment that has been proven to be effective in reducing seizure frequency in the pharmaco-resistant patients. This dietary solution is however extremely restrictive and can be associated with complications caused by the high [fat]:[carbohydrate + protein] ratio. Recent advances suggest that the traditional 4:1 ratio of the ketogenic diet is not a requisite for its therapeutic effect. We show here that combining nutritional strategies targeting specific amino-acids, carbohydrates and fatty acids with a low [fat]:[proteins + carbohydrates] ratio also reduces excitatory drive and protects against seizures to the same extent as the ketogenic diet. Similarly, the morphological and molecular correlates of temporal lobe seizures were reduced in animals fed with the combined diet. These results provide evidence that low-fat dietary strategies more palatable than the ketogenic diet could be useful in epilepsy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France.
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | | | - Stefan Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | - Stéphane Auvin
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Angèle Guilbot
- PILEJE Laboratoire, 37 quai de Grenelle, 75015, Paris, France
| | - Loïc Lenoir
- PILEJE Laboratoire, 37 quai de Grenelle, 75015, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France.
| |
Collapse
|
16
|
Yudkoff M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 2017; 42:10-18. [PMID: 27696119 PMCID: PMC5285401 DOI: 10.1007/s11064-016-2057-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Evaluation of the Effects of Charged Amino Acids on Uncontrolled Seizures. Neurol Res Int 2015; 2015:124507. [PMID: 26240759 PMCID: PMC4512581 DOI: 10.1155/2015/124507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 11/28/2022] Open
Abstract
Introduction. Epilepsy is one of the most common diseases of the central nervous system. The prevalence of epilepsy throughout the world is 0.5 to 1%, and the same rate is 7.8 per 1000 in Kerman. Almost 20 to 30% of epileptic patients do not respond properly to common medications. The present study investigated patients who did not respond to common and, even in some cases, adjuvant therapies, with two seizures or more per week, regardless of the type of the inflicted epilepsy. Methodology. The participants of the present double-blind study were randomly selected into three 10-member groups of uncontrolled epileptic patients (arginine, glutamic acid, and lysine). The patients used amino acid powder dissolved in water (three times the daily need) every day for two weeks before breakfast. The number of seizures was recorded one week prior to commencing amino acid use, as well as the first and the second weeks subsequent to use. Results. A total of 32 patients were studied in three groups. The decline rates of seizures were 53%, 41%, and 13%, and the P value was 0.013, 0.027, and 0.720, respectively. Conclusion. Administration of the charged amino acids, arginine, and glutamic acid can decrease the seizures of patients suffering from uncontrolled epilepsy.
Collapse
|
18
|
Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using (1)H- and (13)C-NMR spectroscopy. J Cereb Blood Flow Metab 2015; 35:1154-62. [PMID: 25785828 PMCID: PMC4640267 DOI: 10.1038/jcbfm.2015.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/11/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-(13)C]glucose (Glc) or [2,4-(13)C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by (1)H- and (13)C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-(13)C]Glc infusion whereas they were higher in KD rats after [2,4-(13)C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control.
Collapse
|
19
|
Selter JH, Turner Z, Doerrer SC, Kossoff EH. Dietary and medication adjustments to improve seizure control in patients treated with the ketogenic diet. J Child Neurol 2015; 30:53-7. [PMID: 24859788 PMCID: PMC4241191 DOI: 10.1177/0883073814535498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unlike anticonvulsant drugs and vagus nerve stimulation, there are no guidelines regarding adjustments to ketogenic diet regimens to improve seizure efficacy once the diet has been started. A retrospective chart review was performed of 200 consecutive patients treated with the ketogenic diet at Johns Hopkins Hospital from 2007 to 2013. Ten dietary and supplement changes were identified, along with anticonvulsant adjustments. A total of 391 distinct interventions occurred, of which 265 were made specifically to improve seizure control. Adjustments led to >50% further seizure reduction in 18%, but only 3% became seizure-free. The benefits of interventions did not decrease over time. There was a trend towards medication adjustments being more successful than dietary modifications (24% vs 15%, P = .08). No single dietary change stood out as the most effective, but calorie changes were largely unhelpful (10% with additional benefit).
Collapse
Affiliation(s)
| | - Zahava Turner
- Division of Nutrition, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sarah C Doerrer
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric H Kossoff
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Varlamis S, Vavatsi N, Pavlou E, Kotsis V, Spilioti M, Kavga M, Varlamis G, Sotiriadou F, Agakidou E, Voutoufianakis S, Evangeliou AE. Evaluation of Oral Glucose Tolerance Test in Children With Epilepsy. J Child Neurol 2013; 28:1437-1442. [PMID: 23071070 DOI: 10.1177/0883073812460919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glucose metabolism of children with drug-resistant epilepsy, controlled by antiepileptic drugs epilepsy, and first-time nonfebrile seizures was studied through the performance of an oral glucose tolerance test and through insulin, C-peptide, and glycosylated hemoglobin measurements. In the refractory epilepsy group, there were more abnormal oral glucose tolerance test results (62.07%) in comparison to the controlled epilepsy group (25%) and the group of first-time seizures (21.21%). There was a significant difference between the group of refractory epilepsy and every other group concerning the abnormality of the oral glucose tolerance test (P < .05). The mean values of insulin, HbA1c, and C-peptide levels were normal for all groups. The results of the present study suggest that there is a distinction of refractory epilepsies from the drug-controlled ones and the first-induced seizures relating to their metabolic profile, regardless of the type of seizures.
Collapse
Affiliation(s)
- Sotirios Varlamis
- 1Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kessler SK, Neal EG, Camfield CS, Kossoff EH. Dietary therapies for epilepsy: future research. Epilepsy Behav 2011; 22:17-22. [PMID: 21441072 PMCID: PMC5776748 DOI: 10.1016/j.yebeh.2011.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023]
Abstract
Since 1921, dietary therapies have remained valuable options in the treatment of intractable childhood epilepsy. The traditional ketogenic diet has been well demonstrated, including in a recent randomized, controlled trial, as being highly effective. More recent alternative diets such as the medium-chain triglyceride diet, modified Atkins diet, and low-glycemic-index treatment have expanded the use of this modality to more children as well as adults. In this review, we discuss our top 10 most pressing research topics related to the ketogenic diet that warrant future study. As well, two promising ketogenic diet clinical researchers discuss their past and current research to help answer some of these questions.
Collapse
Affiliation(s)
- Sudha K. Kessler
- The John M. Freeman Pediatric Epilepsy Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Elizabeth G. Neal
- The John M. Freeman Pediatric Epilepsy Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Carol S. Camfield
- The John M. Freeman Pediatric Epilepsy Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eric H. Kossoff
- The John M. Freeman Pediatric Epilepsy Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|