1
|
He X, Sun W, Song R, Xu W. Wavelet Coherence Analysis of Post-Stroke Intermuscular Coupling Modulated by Myoelectric-Controlled Interfaces. Bioengineering (Basel) 2024; 11:802. [PMID: 39199760 PMCID: PMC11351678 DOI: 10.3390/bioengineering11080802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Intermuscular coupling reflects the corticospinal interaction associated with the control of muscles. Nevertheless, the deterioration of intermuscular coupling caused by stroke has not received much attention. The purpose of this study was to investigate the effect of myoelectric-controlled interface (MCI) dimensionality on the intermuscular coupling after stroke. In total, ten age-matched controls and eight stroke patients were recruited and executed elbow tracking tasks within 1D or 2D MCI. Movement performance was quantified using the root mean square error (RMSE). Wavelet coherence was used to analyze the intermuscular coupling in alpha band (8-12 Hz) and beta band (15-35 Hz). The results found that smaller RMSE of antagonist muscles was observed in both groups within 2D MCI compared to 1D MCI. The alpha-band wavelet coherence was significantly lower in the patients compared to the controls during elbow extension. Furthermore, a decreased alpha-band and beta-band wavelet coherence was observed in the controls and stroke patients, as the dimensionality of MCI increased. These results may suggest that stroke-related neural impairments deteriorate the motor performance and intermuscular coordination pattern, and, further, that MCI holds promise as a novel effective tool for rehabilitation through the direct modulation of muscle activation pattern.
Collapse
Affiliation(s)
- Xinyi He
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
| | - Wenbo Sun
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
| | - Rong Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
- Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518107, China
| | - Weiling Xu
- School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
2
|
Louey MGY, Harvey A, Passmore E, Grayden D, Sangeux M. Kinematic upper limb analysis outperforms electromyography at grading the severity of dystonia in children with cerebral palsy. Clin Biomech (Bristol, Avon) 2024; 117:106295. [PMID: 38954886 DOI: 10.1016/j.clinbiomech.2024.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Severity of dyskinesia in children with cerebral palsy is often assessed using observation-based clinical tools. Instrumented methods to objectively measure dyskinesia have been proposed to improve assessment accuracy and reliability. Here, we investigated the technique and movement features that were most suitable to objectively measure the severity of dystonia in children with cerebral palsy. METHODS A prospective observational study was conducted with 12 participants with cerebral palsy with a predominant motor type of dyskinesia, spasticity, or mixed dyskinesia/spasticity who had upper limb involvement (mean age: 12.6 years, range: 6.7-18.2 years). Kinematic and electromyography data were collected bilaterally during three upper limb tasks. Spearman rank correlations of kinematic or electromyography features were calculated against dystonia severity, quantified by the Dyskinesia Impairment Scale. FINDINGS Kinematic features were more influential compared to electromyography features at grading the severity of dystonia in children with cerebral palsy. Kinematic measures quantifying jerkiness of volitional movement during an upper limb task with a reaching component performed best (|rs| = 0.78-0.9, p < 0.001). INTERPRETATION This study provides guidance on the types of data, features of movement, and activity protocols that instrumented methods should focus on when objectively measuring the severity of dystonia in children with cerebral palsy.
Collapse
Affiliation(s)
- Melissa Gar Yee Louey
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Hugh Williamson Gait Analysis Laboratory, Royal Children's Hospital, Parkville, Victoria, Australia; Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Adrienne Harvey
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Elyse Passmore
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Hugh Williamson Gait Analysis Laboratory, Royal Children's Hospital, Parkville, Victoria, Australia; Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, Australia.
| | - David Grayden
- Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, Australia.
| | - Morgan Sangeux
- Centre for Clinical Motion Analysis, University Children's Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Switzerland.
| |
Collapse
|
3
|
Furuya S, Oku T. Sensorimotor Incoordination in Musicians' Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:61-70. [PMID: 37338696 DOI: 10.1007/978-3-031-26220-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
To acquire and maintain outstanding sensorimotor skills for playing musical instruments inevitably requires extensive training from childhood. However, on the way toward musical excellence, musicians sometimes develop serious disorders, such as tendinitis, carpal tunnel syndrome, and task-specific focal dystonia. Particularly, task-specific focal dystonia in musicians, which is referred to as musician's dystonia (MD), has no perfect cure and therefore often terminates professional careers of musicians. To better understand its pathological and pathophysiological mechanisms, the present article focuses on malfunctions of the sensorimotor system at the behavioral and neurophysiological levels. Based on emerging empirical evidence, we propose that the aberrant sensorimotor integration, possibly which occurs in both cortical and subcortical systems, underlies not only movement incoordination between the fingers (i.e., maladaptive synergy) but also failure of long-term retention of intervention effects in the patients with MD.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan.
- NeuroPiano Institute, Kyoto, Japan.
| | - Takanori Oku
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| |
Collapse
|
4
|
Butchereit K, Manzini M, Polatajko HJ, Lin JP, McClelland VM, Gimeno H. Harnessing cognitive strategy use for functional problems and proposed underlying mechanisms in childhood-onset dystonia. Eur J Paediatr Neurol 2022; 41:1-7. [PMID: 36108454 DOI: 10.1016/j.ejpn.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND There is a significant gap in knowledge about rehabilitation techniques and strategies that can help children and young people with hyperkinetic movement disorders (HMD) including dystonia to successfully perform daily activities and improve overall participation. A promising approach to support skill acquisition is the Cognitive Orientation to daily Occupational Performance (CO-OP) intervention. CO-OP uses cognitive strategies to help patients generate their own solutions to overcome self-identified problems encountered in everyday living. PURPOSE 1. To identify and categorize strategies used by children with HMD to support skill acquisition during CO-OP; 2. To review the possible underlying mechanisms that might contribute to the cognitive strategies, in order to facilitate further studies for developing focused rehabilitation approaches. METHODS A secondary analysis was performed on video-recorded data from a previous study exploring the efficacy of CO-OP for childhood onset HMD, in which CO-OP therapy sessions were delivered by a single occupational therapist. For the purpose of this study, we reviewed a total of 40 randomly selected hours of video footage of CO-OP sessions delivered to six participants (age 6-19 years) over ten intervention sessions. An observational recording sheet was applied to identify systematically the participants' or therapist's verbalizations of cognitive strategies during the therapy. The strategies were classified into six categories in line with published literature. RESULTS Strategies used by HMD participants included distraction, externally focussed attention, internally focussed attention, emotion self-regulation, motor imagery and mental self-guidance. We postulate different underlying working mechanisms for these strategies, which have implications for the therapeutic management of children and young people with HMD including dystonia. CONCLUSIONS Cognitive strategy training can fundamentally change and improve motor performance. On-going work will address both the underlying neural mechanisms of therapeutic change and the mediators and moderators that influence how change unfolds.
Collapse
Affiliation(s)
- Kailee Butchereit
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Michael Manzini
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Helene J Polatajko
- University of Toronto, Department of Occupational Science and Occupational Therapy, Toronto, Canada
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Women and Children's Institute, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Verity M McClelland
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Women and Children's Institute, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Barts Health NHS Trust, Royal London Hospital and Tower Hamlets Community Therapy Services, London, UK; Wolfson Institute of Population Medicine, Preventive Neurology Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Jian C, Liu H, Deng L, Wang X, Yan T, Song R. Stroke-induced alteration in multi-layer information transmission of cortico-motor system during elbow isometric contraction modulated by myoelectric-controlled interfaces. J Neural Eng 2021; 18. [PMID: 34320485 DOI: 10.1088/1741-2552/ac18ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Objective. Human movement is a complex process requiring information transmission in inter-cortical, cortico-muscular and inter-muscular networks. Though motor deficits after stroke are associated with impaired networks in the cortico-motor system, the mechanisms underlying these networks are to date not fully understood. The purpose of this study is to investigate the changes in information transmission of the inter-cortical, cortico-muscular and inter-muscular networks after stroke and the effect of myoelectric-controlled interface (MCI) dimensionality on such information transmission in each network.Approach. Fifteen healthy control subjects and 11 post-stroke patients were recruited to perform elbow tracking tasks within different dimensional MCIs in this study. Their electromyography (EMG) and functional near-infrared spectroscopy (fNIRS) signals were recorded simultaneously. Transfer entropy was used to analyse the functional connection that represented the information transmission in each network based on the fNIRS and EMG signals.Main results.The results found that post-stroke patients showed the increased inter-cortical connection versus healthy control subjects, which might be attributed to cortical reorganisation to compensate for motor deficits. Compared to healthy control subjects, a lower strength cortico-muscular connection was found in post-stroke patients due to the reduction of information transmission following a stroke. Moreover, the increased MCI dimensionality strengthened inter-cortical, cortico-muscular and inter-muscular connections because of higher visual information processing demands.Significance. These findings not only provide a comprehensive overview to evaluate changes in the cortico-motor system due to stroke, but also suggest that increased MCI dimensionality may serve as a useful rehabilitation tool for boosting information transmission in the cortico-motor system of post-stroke patients.
Collapse
Affiliation(s)
- Chuyao Jian
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Huihua Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Linchuan Deng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, People's Republic of China
| | - Tiebin Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Hung NT, Paul V, Prakash P, Kovach T, Tacy G, Tomic G, Park S, Jacobson T, Jampol A, Patel P, Chappel A, King E, Slutzky MW. Wearable myoelectric interface enables high-dose, home-based training in severely impaired chronic stroke survivors. Ann Clin Transl Neurol 2021; 8:1895-1905. [PMID: 34415114 PMCID: PMC8419406 DOI: 10.1002/acn3.51442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Background High‐intensity occupational therapy can improve arm function after stroke, but many people lack access to such therapy. Home‐based therapies could address this need, but they don’t typically address abnormal muscle co‐activation, an important aspect of arm impairment. An earlier study using lab‐based, myoelectric computer interface game training enabled chronic stroke survivors to reduce abnormal co‐activation and improve arm function. Here, we assess feasibility of doing this training at home using a novel, wearable, myoelectric interface for neurorehabilitation training (MINT) paradigm. Objective Assess tolerability and feasibility of home‐based, high‐dose MINT therapy in severely impaired chronic stroke survivors. Methods Twenty‐three participants were instructed to train with the MINT and game for 90 min/day, 36 days over 6 weeks. We assessed feasibility using amount of time trained and game performance. We assessed tolerability (enjoyment and effort) using a customized version of the Intrinsic Motivation Inventory at the conclusion of training. Results Participants displayed high adherence to near‐daily therapy at home (mean of 82 min/day of training; 96% trained at least 60 min/day) and enjoyed the therapy. Training performance improved and co‐activation decreased with training. Although a substantial number of participants stopped training, most dropouts were due to reasons unrelated to the training paradigm itself. Interpretation Home‐based therapy with MINT is feasible and tolerable in severely impaired stroke survivors. This affordable, enjoyable, and mobile health paradigm has potential to improve recovery from stroke in a variety of settings. Clinicaltrials.gov: NCT03401762.
Collapse
Affiliation(s)
- Na-Teng Hung
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Vivek Paul
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Prashanth Prakash
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Torin Kovach
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Gene Tacy
- Myomo, Inc., Cambridge, Massachusetts, 02142, USA
| | - Goran Tomic
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Sangsoo Park
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Tyler Jacobson
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA
| | - Alix Jampol
- Department of Occupational Therapy, Northwestern Medicine, Chicago, Illinois, 60611, USA
| | - Pooja Patel
- Department of Occupational Therapy, Northwestern Medicine, Chicago, Illinois, 60611, USA
| | - Anya Chappel
- Department of Occupational Therapy, Northwestern Medicine, Chicago, Illinois, 60611, USA
| | - Erin King
- Department of Occupational Therapy, Northwestern Medicine, Chicago, Illinois, 60611, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois, 60611, USA.,Departments of Physiology, Northwestern University, Chicago, Illinois, 60611, USA.,Departments of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, 60611, USA.,Departments of Biomedical Engineering, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
7
|
Borish CN, Bertucco M, Berger DJ, d’Avella A, Sanger TD. Can spatial filtering separate voluntary and involuntary components in children with dyskinetic cerebral palsy? PLoS One 2021; 16:e0250001. [PMID: 33852638 PMCID: PMC8046213 DOI: 10.1371/journal.pone.0250001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The design of myocontrolled devices faces particular challenges in children with dyskinetic cerebral palsy because the electromyographic signal for control contains both voluntary and involuntary components. We hypothesized that voluntary and involuntary components of movements would be uncorrelated and thus detectable as different synergistic patterns of muscle activity, and that removal of the involuntary components would improve online EMG-based control. Therefore, we performed a synergy-based decomposition of EMG-guided movements, and evaluated which components were most controllable using a Fitts' Law task. Similarly, we also tested which muscles were most controllable. We then tested whether removing the uncontrollable components or muscles improved overall function in terms of movement time, success rate, and throughput. We found that removal of less controllable components or muscles did not improve EMG control performance, and in many cases worsened performance. These results suggest that abnormal movement in dyskinetic CP is consistent with a pervasive distortion of voluntary movement rather than a superposition of separable voluntary and involuntary components of movement.
Collapse
Affiliation(s)
- Cassie N. Borish
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Denise J. Berger
- Laboratory of Neuromotor Physiology, Foundation Santa Lucia, Rome, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, Foundation Santa Lucia, Rome, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Terence D. Sanger
- School of Engineering, University of California, Irvine, California, United States of America
- School of Medicine, University of California, Irvine, California, United States of America
- Children’s Hospital of Orange County, Orange, California, United States of America
| |
Collapse
|
8
|
Jian C, Deng L, Liu H, Yan T, Wang X, Song R. Modulating and restoring inter-muscular coordination in stroke patients using two-dimensional myoelectric computer interface: a cross-sectional and longitudinal study. J Neural Eng 2021; 18. [DOI: 10.1088/1741-2552/abc29a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
|
9
|
Haberfehlner H, Goudriaan M, Bonouvrié LA, Jansma EP, Harlaar J, Vermeulen RJ, van der Krogt MM, Buizer AI. Instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. J Neuroeng Rehabil 2020; 17:39. [PMID: 32138731 PMCID: PMC7057465 DOI: 10.1186/s12984-020-00658-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In this systematic review we investigate which instrumented measurements are available to assess motor impairments, related activity limitations and participation restrictions in children and young adults with dyskinetic cerebral palsy. We aim to classify these instrumented measurements using the categories of the international classification of functioning, disability and health for children and youth (ICF-CY) and provide an overview of the outcome parameters. METHODS A systematic literature search was performed in November 2019. We electronically searched Pubmed, Embase and Scopus databases. Search blocks included (a) cerebral palsy, (b) athetosis, dystonia and/or dyskinesia, (c) age 2-24 years and (d) instrumented measurements (using keywords such as biomechanics, sensors, smartphone, and robot). RESULTS Our search yielded 4537 articles. After inspection of titles and abstracts, a full text of 245 of those articles were included and assessed for further eligibility. A total of 49 articles met our inclusion criteria. A broad spectrum of instruments and technologies are used to assess motor function in dyskinetic cerebral palsy, with the majority using 3D motion capture and surface electromyography. Only for a small number of instruments methodological quality was assessed, with only one study showing an adequate assessment of test-retest reliability. The majority of studies was at ICF-CY function and structure level and assessed control of voluntary movement (29 of 49) mainly in the upper extremity, followed by assessment of involuntary movements (15 of 49), muscle tone/motor reflex (6 of 49), gait pattern (5 of 49) and muscle power (2 of 49). At ICF-CY level of activities and participation hand and arm use (9 of 49), fine hand use (5 of 49), lifting and carrying objects (3 of 49), maintaining a body position (2 of 49), walking (1 of 49) and moving around using equipment (1 of 49) was assessed. Only a few methods are potentially suitable outside the clinical environment (e.g. inertial sensors, accelerometers). CONCLUSION Although the current review shows the potential of several instrumented methods to be used as objective outcome measures in dyskinetic cerebral palsy, their methodological quality is still unknown. Future development should focus on evaluating clinimetrics, including validating against clinical meaningfulness. New technological developments should aim for measurements that can be applied outside the laboratory.
Collapse
Affiliation(s)
- Helga Haberfehlner
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands.
| | - Marije Goudriaan
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Laura A Bonouvrié
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| | - Elise P Jansma
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Public Health research institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Section of Pediatric Neurology, Maastricht UMC+, Maastricht, The Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, PO Box 7057, Amsterdam, 1007MB, The Netherlands
| |
Collapse
|
10
|
EMG-based vibro-tactile biofeedback training: effective learning accelerator for children and adolescents with dystonia? A pilot crossover trial. J Neuroeng Rehabil 2019; 16:150. [PMID: 31775780 PMCID: PMC6882366 DOI: 10.1186/s12984-019-0620-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background This study is aimed at better understanding the role of a wearable and silent ElectroMyoGraphy-based biofeedback on motor learning in children and adolescents with primary and secondary dystonia. Methods A crossover study with a wash-out period of at least 1 week was designed; the device provides the patient with a vibration proportional to the activation of an impaired target muscle. The protocol consisted of two 5-day blocks during which subjects were trained and tested on a figure-8 writing task: their performances (at different levels of difficulty) were evaluated in terms of both kinematics and muscular activations on day 1 and day 5, while the other 3 days were purely used as training sessions. The training was performed with and without using the biofeedback device: the week of use was randomized. Data were collected on 14 subjects with primary and secondary (acquired) dystonia (age: 6–19 years). Results Results comparing kinematic-based and EMG-based outcome measures pre- and post-training showed learning due to practice for both subjects with primary and secondary dystonia. On top of said learning, an improvement in terms of inter-joint coordination and muscular pattern functionality was recorded only for secondary dystonia subjects, when trained with the aid of the EMG-based biofeedback device. Conclusions Our results support the hypothesis that children and adolescents with primary dystonia in which there is intact sensory processing do not benefit from feedback augmentation, whereas children with secondary dystonia, in which sensory deficits are often present, exhibit a higher learning capacity when augmented movement-related sensory information is provided. This study represents a fundamental investigation to address the scarcity of noninvasive therapeutic interventions for young subjects with dystonia.
Collapse
|
11
|
Castagna A, Caronni A, Crippa A, Sciumè L, Giacobbi G, Corrini C, Montesano A, Ramella M. Sensorimotor Perceptive Rehabilitation Integrated (SPRInt) program: exercises with augmented movement feedback associated to botulinum neurotoxin in idiopathic cervical dystonia-an observational study. Neurol Sci 2019; 41:131-138. [PMID: 31478151 DOI: 10.1007/s10072-019-04061-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Idiopathic cervical dystonia (ICD) is a focal dystonia affecting neck muscles. Botulinum neurotoxin (BoNT) is the first-line treatment of ICD and different physical therapies (including exercise) are often proposed as adjunct treatments. However, the actual effectiveness of exercise in ICD is unclear. The aim of the current work is to assess the potential effectiveness of the Sensorimotor Perceptive Rehabilitation Integrated (SPRInt) exercise program as adjunct therapy for ICD. METHODS Fifteen ICD patients received BoNT injections in the neck muscles and, 12 weeks later, received BoNT a second time and SPRInt started. SPRInt consists in 18 exercise sessions in which augmented feedback of movement (including visual and acoustic feedback) is extensively used. Dystonia burden was measured by the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Patients were evaluated immediately before, 6 and 12 weeks after each BoNT injection. RESULTS Six weeks after the first BoNT injection (i.e., at BoNT peak effect), TWSTRS total score was better than baseline and remained improved at 12 weeks. TWSTRS disability domain slightly improved 6 weeks after the first BoNT injection, but after 6 more weeks returned to its baseline level. Disability improved more at SPRInt end (i.e., 6 weeks after the second BoNT injection), being even lower than after toxin alone. With a single-subject analysis, 4/10 patients who did not improve disability after BoNT improved after SPRInt plus BoNT. CONCLUSIONS SPRInt plus BoNT can be more effective than BoNT alone in improving cervical dystonia patients' difficulties in the activities of daily living. TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03247868 (https://register.clinicaltrials.gov).
Collapse
Affiliation(s)
- Anna Castagna
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Antonio Caronni
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy.
| | - Alessandro Crippa
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Luciana Sciumè
- U. O. di Medicina riabilitativa e neuroriabilitazione, Ospedale Niguarda, Milan, Italy
| | - Giulia Giacobbi
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Chiara Corrini
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Angelo Montesano
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Marina Ramella
- U. O. di Recupero e Rieducazione Funzionale, I.R.C.C.S. Fondazione Don Carlo Gnocchi Onlus, via Alfonso Capecelatro 66, 20148, Milan, Italy
| |
Collapse
|
12
|
Neuromuscular incoordination in musician's dystonia. Parkinsonism Relat Disord 2019; 65:97-104. [DOI: 10.1016/j.parkreldis.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022]
|
13
|
Luo J, Sun W, Wu Y, Liu H, Wang X, Yan T, Song R. Characterization of the coordination of agonist and antagonist muscles among stroke patients, healthy late middle-aged and young controls using a myoelectric-controlled interface. J Neural Eng 2018; 15:056015. [PMID: 30010089 DOI: 10.1088/1741-2552/aad387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Sanger TD. Basic and Translational Neuroscience of Childhood-Onset Dystonia: A Control-Theory Perspective. Annu Rev Neurosci 2018; 41:41-59. [PMID: 29490197 DOI: 10.1146/annurev-neuro-080317-061504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystonia is a collection of symptoms with involuntary muscle activation causing hypertonia, hyperkinetic movements, and overflow. In children, dystonia can have numerous etiologies with varying neuroanatomic distribution. The semiology of dystonia can be explained by gain-of-function failure of a feedback controller that is responsible for stabilizing posture and movement. Because postural control is maintained by a widely distributed network, many different anatomic regions may be responsible for symptoms of dystonia, although all features of dystonia can be explained by uncontrolled activation or hypersensitivity of motor cortical regions that can cause increased reflex gain, inserted postures, or sensitivity to irrelevant sensory variables. Effective treatment of dystonia in children requires an understanding of the relationship between etiology, anatomy, and the specific mechanism of failure of postural stabilization.
Collapse
Affiliation(s)
- Terence D Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
15
|
Sadnicka A, Stevenson A, Bhatia KP, Rothwell JC, Edwards MJ, Galea JM. High motor variability in DYT1 dystonia is associated with impaired visuomotor adaptation. Sci Rep 2018; 8:3653. [PMID: 29483592 PMCID: PMC5826938 DOI: 10.1038/s41598-018-21545-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/06/2018] [Indexed: 11/29/2022] Open
Abstract
For the healthy motor control system, an essential regulatory role is maintaining the equilibrium between keeping unwanted motor variability in check whilst allowing informative elements of motor variability. Kinematic studies in children with generalised dystonia (due to mixed aetiologies) show that movements are characterised by increased motor variability. In this study, the mechanisms by which high motor variability may influence movement generation in dystonia were investigated. Reaching movements in the symptomatic arm of 10 patients with DYT1 dystonia and 12 age-matched controls were captured using a robotic manipulandum and features of motor variability were extracted. Given that task-relevant variability and sensorimotor adaptation are related in health, markers of variability were then examined for any co-variance with performance indicators during an error-based learning visuomotor adaptation task. First, we confirmed that motor variability on a trial-by-trial basis was selectively increased in the homogenous and prototypical dystonic disorder DYT1 dystonia. Second, high baseline variability predicted poor performance in the subsequent visuomotor adaptation task offering insight into the rules which appear to govern dystonic motor control. The potential mechanisms behind increased motor variability and its corresponding implications for the rehabilitation of patients with DYT1 dystonia are highlighted.
Collapse
Affiliation(s)
- Anna Sadnicka
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 33 Queen Square, London, WC1N 3BG, UK. .,Motor Control and Movement Disorder Group, Institute of Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Anna Stevenson
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 33 Queen Square, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 33 Queen Square, London, WC1N 3BG, UK
| | - John C Rothwell
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 33 Queen Square, London, WC1N 3BG, UK
| | - Mark J Edwards
- Motor Control and Movement Disorder Group, Institute of Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Joseph M Galea
- Galea Lab, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Dimensionality effect of myoelectric-controlled interface on the coordination of agonist and antagonist muscles during voluntary isometric elbow flexion and extension. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Borish CN, Feinman A, Bertucco M, Ramsy NG, Sanger TD. Comparison of speed-accuracy tradeoff between linear and nonlinear filtering algorithms for myocontrol. J Neurophysiol 2018; 119:2030-2035. [PMID: 29384451 DOI: 10.1152/jn.00188.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonlinear Bayesian filtering of surface electromyography (EMG) can provide a stable output signal with little delay and the ability to change rapidly, making it a potential control input for prosthetic or communication devices. We hypothesized that myocontrol follows Fitts' Law, and that Bayesian filtered EMG would improve movement times and success rates when compared with linearly filtered EMG. We tested the two filters using a Fitts' Law speed-accuracy paradigm in a one-muscle myocontrol task with EMG captured from the dominant first dorsal interosseous muscle. Cursor position in one dimension was proportional to EMG. Six indices of difficulty were tested, varying the target size and distance. We examined two performance measures: movement time (MT) and success rate. The filter had a significant effect on both MT and success. MT followed Fitts' Law and the speed-accuracy relationship exhibited a significantly higher channel capacity when using the Bayesian filter. Subjects seemed to be less cautious using the Bayesian filter due to its lower error rate and smoother control. These findings suggest that Bayesian filtering may be a useful component for myoelectrically controlled prosthetics or communication devices. NEW & NOTEWORTHY Whereas previous work has focused on assessing the Bayesian algorithm as a signal processing algorithm for EMG, this study assesses the use of the Bayesian algorithm for online EMG control. In other words, the subjects see the output of the filter and can adapt their own behavior to use the filter optimally as a tool. This study compares how subjects adapt EMG behavior using the Bayesian algorithm vs. a linear algorithm.
Collapse
Affiliation(s)
- Cassie N Borish
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Adam Feinman
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Matteo Bertucco
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Natalie G Ramsy
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Terence D Sanger
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,Department of Neurology, University of Southern California , Los Angeles, California.,Department of Biokinesiology and Physical Therapy, University of Southern California , Los Angeles, California
| |
Collapse
|
18
|
Chambers C, Sokhey T, Gaebler-Spira D, Kording KP. The integration of probabilistic information during sensorimotor estimation is unimpaired in children with Cerebral Palsy. PLoS One 2017; 12:e0188741. [PMID: 29186196 PMCID: PMC5706703 DOI: 10.1371/journal.pone.0188741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
Background It is important to understand the motor deficits of children with Cerebral Palsy (CP). Our understanding of this motor disorder can be enriched by computational models of motor control. One crucial stage in generating movement involves combining uncertain information from different sources, and deficits in this process could contribute to reduced motor function in children with CP. Healthy adults can integrate previously-learned information (prior) with incoming sensory information (likelihood) in a close-to-optimal way when estimating object location, consistent with the use of Bayesian statistics. However, there are few studies investigating how children with CP perform sensorimotor integration. We compare sensorimotor estimation in children with CP and age-matched controls using a model-based analysis to understand the process. Methods and findings We examined Bayesian sensorimotor integration in children with CP, aged between 5 and 12 years old, with Gross Motor Function Classification System (GMFCS) levels 1–3 and compared their estimation behavior with age-matched typically-developing (TD) children. We used a simple sensorimotor estimation task which requires participants to combine probabilistic information from different sources: a likelihood distribution (current sensory information) with a prior distribution (learned target information). In order to examine sensorimotor integration, we quantified how participants weighed statistical information from the two sources (prior and likelihood) and compared this to the statistical optimal weighting. We found that the weighing of statistical information in children with CP was as statistically efficient as that of TD children. Conclusions We conclude that Bayesian sensorimotor integration is not impaired in children with CP and therefore, does not contribute to their motor deficits. Future research has the potential to enrich our understanding of motor disorders by investigating the stages of motor processing set out by computational models. Therapeutic interventions should exploit the ability of children with CP to use statistical information.
Collapse
Affiliation(s)
- Claire Chambers
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| | - Taegh Sokhey
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Department of Biological Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Deborah Gaebler-Spira
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Konrad P. Kording
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Liyanagamage SA, Bertucco M, Bhanpuri NH, Sanger TD. Scaled Vibratory Feedback Can Bias Muscle Use in Children With Dystonia During a Redundant, 1-Dimensional Myocontrol Task. J Child Neurol 2017; 32:161-169. [PMID: 27798370 PMCID: PMC5258677 DOI: 10.1177/0883073816671830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vibratory feedback can be a useful tool for rehabilitation. We examined its use in children with dystonia to understand how it affects muscle activity in a population that does not respond well to standard rehabilitation. We predicted scaled vibration (ie, vibration that was directly or inversely proportional to muscle activity) would increase use of the vibrated muscle because of task-relevant sensory information, whereas nonscaled vibration would not change muscle use. The study was conducted on 11 subjects with dystonia and 14 controls. Each subject underwent 4 different types of vibration on the more dystonic biceps muscle (or nondominant arm in controls) in a 1-dimensional, bimanual myocontrol task. Our results showed that only scaled vibratory feedback could bias muscle use without changing overall performance in children with dystonia. We believe there may be a role in rehabilitation for scaled vibratory feedback to retrain abnormal muscle patterns.
Collapse
Affiliation(s)
- Shanie A Liyanagamage
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Matteo Bertucco
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nasir H Bhanpuri
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Terence D Sanger
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,2 Department of Neurology, University of Southern California, Los Angeles, CA, USA.,3 Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA.,4 Children's Hospital of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Bertucco M, Sanger TD. Current and emerging strategies for treatment of childhood dystonia. J Hand Ther 2015; 28:185-93; quiz 194. [PMID: 25835254 PMCID: PMC4424089 DOI: 10.1016/j.jht.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
Childhood dystonia is a movement disorder characterized by involuntary sustained or intermittent muscle contractions causing twisting and repetitive movements, abnormal postures, or both (Sanger et al, 2003). Dystonia is a devastating neurological condition that prevents the acquisition of normal motor skills during critical periods of development in children. Moreover, it is particularly debilitating in children when dystonia affects the upper extremities such that learning and consolidation of common daily motor actions are impeded. Thus, the treatment and rehabilitation of dystonia is a challenge that continuously requires exploration of novel interventions. This review will initially describe the underlying neurophysiological mechanisms of the motor impairments found in childhood dystonia followed by the clinical measurement tools that are available to document the presence and severity of symptoms. Finally, we will discuss the state-of-the-art of therapeutic options for childhood dystonia, with particular emphasis on emergent and innovative strategies.
Collapse
Affiliation(s)
- Matteo Bertucco
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Terence D Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Child Neurology, University of Southern California, Los Angeles, CA, USA; Department of Biokinesiology, University of Southern California, Los Angeles, CA, USA; Children's Hospital of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Niu CM, Lee K, Houde JF, Sanger TD. Vowel generation for children with cerebral palsy using myocontrol of a speech synthesizer. Front Hum Neurosci 2015; 8:1077. [PMID: 25657622 PMCID: PMC4302943 DOI: 10.3389/fnhum.2014.01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 12/31/2014] [Indexed: 11/13/2022] Open
Abstract
For children with severe cerebral palsy (CP), social and emotional interactions can be significantly limited due to impaired speech motor function. However, if it is possible to extract continuous voluntary control signals from the electromyograph (EMG) of limb muscles, then EMG may be used to drive the synthesis of intelligible speech with controllable speed, intonation and articulation. We report an important first step: the feasibility of controlling a vowel synthesizer using non-speech muscles. A classic formant-based speech synthesizer is adapted to allow the lowest two formants to be controlled by surface EMG from skeletal muscles. EMG signals are filtered using a non-linear Bayesian filtering algorithm that provides the high bandwidth and accuracy required for speech tasks. The frequencies of the first two formants determine points in a 2D plane, and vowels are targets on this plane. We focus on testing the overall feasibility of producing intelligible English vowels with myocontrol using two straightforward EMG-formant mappings. More mappings can be tested in the future to optimize the intelligibility. Vowel generation was tested on 10 healthy adults and 4 patients with dyskinetic CP. Five English vowels were generated by subjects in pseudo-random order, after only 10 min of device familiarization. The fraction of vowels correctly identified by 4 naive listeners exceeded 80% for the vowels generated by healthy adults and 57% for vowels generated by patients with CP. Our goal is a continuous “virtual voice” with personalized intonation and articulation that will restore not only the intellectual content but also the social and emotional content of speech for children and adults with severe movement disorders.
Collapse
Affiliation(s)
- Chuanxin M Niu
- Department of Rehabilitation, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Kangwoo Lee
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - John F Houde
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Terence D Sanger
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA ; Biokinesiology, University of Southern California Los Angeles, CA, USA ; Neurology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
22
|
Wright ZA, Rymer WZ, Slutzky MW. Reducing Abnormal Muscle Coactivation After Stroke Using a Myoelectric-Computer Interface: A Pilot Study. Neurorehabil Neural Repair 2013; 28:443-51. [PMID: 24376069 DOI: 10.1177/1545968313517751] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background A significant factor in impaired movement caused by stroke is the inability to activate muscles independently. Although the pathophysiology behind this abnormal coactivation is not clear, reducing the coactivation could improve overall arm function. A myoelectric computer interface (MCI), which maps electromyographic signals to cursor movement, could be used as a treatment to help retrain muscle activation patterns. Objective To investigate the use of MCI training to reduce abnormal muscle coactivation in chronic stroke survivors. Methods A total of 5 healthy participants and 5 stroke survivors with hemiparesis participated in multiple sessions of MCI training. The level of arm impairment in stroke survivors was assessed using the upper-extremity portion of the Fugl-Meyer Motor Assessment (FMA-UE). Participants performed isometric activations of up to 5 muscles. Activation of each muscle was mapped to different directions of cursor movement. The MCI specifically targeted 1 pair of muscles in each participant for reduction of coactivation. Results Both healthy participants and stroke survivors learned to reduce abnormal coactivation of the targeted muscles with MCI training. Out of 5 stroke survivors, 3 exhibited objective reduction in arm impairment as well (improvement in FMA-UE of 3 points in each of these patients). Conclusions These results suggest that the MCI was an effective tool in directly retraining muscle activation patterns following stroke.
Collapse
Affiliation(s)
- Zachary A Wright
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - W Zev Rymer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Marc W Slutzky
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Rios DC, Gilbertson T, McCoy SW, Price R, Gutman K, Miller KEF, Fechko A, Moritz CT. NeuroGame Therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil 2013; 16:398-409. [PMID: 23617243 DOI: 10.3109/17518423.2013.766818] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This case series examines the feasibility, specificity, and preliminary effectiveness of NeuroGame Therapy (NGT) for improving wrist control in four children with cerebral palsy (CP). NGT uses surface electromyographic (sEMG) signals routed through motivating computer games to improve motor control. METHODS Primary outcomes of NGT included feasibility (hours of play) and specificity (changes in sEMG activity during game play). Secondary outcomes included changes in co-contraction, range of motion, segmental alignment, and spontaneous upper extremity function following intervention. RESULTS Participants completed a mean of 8.8 hours of NGT over 5-6 weeks. Participants demonstrated dramatic improvement of the sEMG activity during game play. Several participants also showed improvements in range of motion, co-contraction, and spontaneous upper extremity function following NGT. CONCLUSION This case series provides evidence for the feasibility, specificity, and effectiveness of NGT. Future studies will pair NGT with functional practice to improve transfer of learning to daily activities.
Collapse
Affiliation(s)
- D C Rios
- Department of Rehabilitation Medicine, University of Washington , Seattle, WA , USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Casellato C, Pedrocchi A, Zorzi G, Vernisse L, Ferrigno G, Nardocci N. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia. IEEE Trans Neural Syst Rehabil Eng 2012; 21:474-80. [PMID: 23060345 DOI: 10.1109/tnsre.2012.2222445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.
Collapse
Affiliation(s)
- Claudia Casellato
- Bioengineering Department, Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Zariffa J, Steeves JD, Pai DK. Muscle tension estimation in the presence of neuromuscular impairment. J Biomech Eng 2012; 133:121009. [PMID: 22206426 DOI: 10.1115/1.4005483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Static optimization approaches to estimating muscle tensions rely on the assumption that the muscle activity pattern is in some sense optimal. However, in the case of individuals with a neuromuscular impairment, this assumption is likely not to hold true. We present an approach to muscle tension estimation that does not rely on any optimality assumptions. First, the nature of the impairment is estimated by reformulating the relationship between the muscle tensions and the external forces produced in terms of the deviation from the expected activation in the unimpaired case. This formulation allows the information from several force production tasks to be treated as a single coupled system. In a second step, the identified impairments are used to obtain a novel cost function for the muscle tension estimation task. In a simulation study of the index finger, the proposed method resulted in muscle tension errors with a mean norm of 23.3 ± 26.8% (percentage of the true solution norm), compared to 52.6 ± 24.8% when solving the estimation task using a cost function consisting of the sum of squared muscle stresses. Performance was also examined as a function of the amount of error in the kinematic and muscle Jacobians and found to remain superior to the performance of the squared muscle stress cost function throughout the range examined.
Collapse
Affiliation(s)
- José Zariffa
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | | | | |
Collapse
|
26
|
Young SJ, van Doornik J, Sanger TD. Finger muscle control in children with dystonia. Mov Disord 2011; 26:1290-6. [PMID: 21449015 PMCID: PMC3119776 DOI: 10.1002/mds.23534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/27/2010] [Accepted: 10/24/2010] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. METHODS In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. RESULTS Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. DISCUSSION We conclude that two of the motor deficits in childhood dystonia--motor overflow and difficulties in actively controlling muscles--can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual's level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms.
Collapse
Affiliation(s)
- Scott J. Young
- Department of Biomedical Engineering, University of Southern California, USA
| | | | - Terence D. Sanger
- Departments of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, USA
| |
Collapse
|