1
|
Glänzel NM, da Rosa-Junior NT, Signori MF, de Andrade Silveira J, Pinheiro CV, Marcuzzo MB, Campos-Carraro C, da Rosa Araujo AS, Schiöth HB, Wajner M, Leipnitz G. Increased ROS levels, antioxidant defense disturbances and bioenergetic disruption induced by thiosulfate administration in the brain of neonatal rats. Metab Brain Dis 2024; 40:73. [PMID: 39704910 DOI: 10.1007/s11011-024-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats. Thiosulfate (0.5 µmol/g) or PBS (vehicle) was injected into the fourth ventricle of rat pups. Thirty minutes after the injection, animals were euthanized and the brain structures were utilized for the experiments. Our data showed that thiosulfate decreased the reduced glutathione (GSH) concentrations, and superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in the cortical structure. Thiosulfate also increased DCFH oxidation, hydrogen peroxide generation and glutathione reductase activity. In the cerebellum, thiosulfate reduced SOD and glutathione peroxidase activities but increased GST and CAT activities as well as DCFH oxidation. Regarding energy metabolism, thiosulfate specifically decreased complex IV activity in the cortex, whereas it increased cerebellar complex I and creatine kinase activities, indicating bioenergetic disturbances. The results suggest that the accumulation of thiosulfate causing redox disruption and bioenergetic alterations has a prominent role in the pathogenesis of sulfur metabolism deficiencies.
Collapse
Affiliation(s)
- Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Nevton Teixeira da Rosa-Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Marian F Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Cristina Campos-Carraro
- Laboratório de Fisiologia Cardiovascular, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, 75124, Sweden
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, 2350, 90035-903, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, 75124, Sweden.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
| |
Collapse
|
2
|
Schwahn BC, van Spronsen F, Misko A, Pavaine J, Holmes V, Spiegel R, Schwarz G, Wong F, Horman A, Pitt J, Sass JO, Lubout C. Consensus guidelines for the diagnosis and management of isolated sulfite oxidase deficiency and molybdenum cofactor deficiencies. J Inherit Metab Dis 2024; 47:598-623. [PMID: 38627985 DOI: 10.1002/jimd.12730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/18/2024]
Abstract
Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Francjan van Spronsen
- Department of Metabolic Diseases, Beatrix Children's, University Medical Center (UMC) Groningen, Groningen, Netherlands
| | - Albert Misko
- Massachusetts General Hospital Department of Neurology, Boston, Massachusetts, USA
| | - Julija Pavaine
- Department of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Victoria Holmes
- Willink Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ronen Spiegel
- Department of Pediatrics Unit B, Emek Medical Center, Afula, Israel
| | | | - Flora Wong
- Monash Children's Hospital/Hudson Institute of Medical Research/Monash University, Melbourne, Victoria, Australia
| | | | - James Pitt
- Victorian Clinical Genetics Services, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jörn Oliver Sass
- RG Inborn Error of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Charlotte Lubout
- Department of Metabolic Diseases, Beatrix Children's, University Medical Center (UMC) Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Ferreira EA, Hofstede FC, Haijes-Siepel HA, Lichtenbelt KD, Pistorius L, de Sain-van der Velden MG, Nikkels PG, Lequin MH, de Vries LS, van der Crabben SN, van Hasselt PM. Timing of cerebral damage in molybdenum cofactor deficiency: A meta-analysis of case reports. GENETICS IN MEDICINE OPEN 2024; 2:101853. [PMID: 39669634 PMCID: PMC11613691 DOI: 10.1016/j.gimo.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 12/14/2024]
Abstract
Purpose Molybdenum cofactor deficiency (MoCD) classically presents shortly after birth, with neurological symptoms ascribed to postnatal toxicity of accumulating sulphite. Case reports suggest that cerebral damage associated with MoCD may have a prenatal onset. Methods A meta-analysis of case reports was performed on individuals with genetically proven MoCD retrieved through a systematic review and in-house search. Cases were categorized as classical or late-onset, based on the time of onset of symptoms. Available cerebral images were scored for the presence of restricted diffusion, pathological signal, subcortical cysts, and atrophy. Estimated onset of each event and the minimal number of events needed to explain the observed imaging abnormalities were deduced by combining age at imaging, type of imaging abnormality, and known natural evolution of the imaging abnormalities. Results Of a total of 30 retrieved cases, 21 were classical. Prenatal origin of damage was possible in all classical cases and certain in 11 of 21 (52%). Multiple events were deduced in 5/21 classical cases based on imaging data alone and in 11 of 21 cases when presuming that a postnatal onset of symptoms signifies a recent event. Multiple, but postnatal, events were also described in 3 of 9 late-onset cases. Conclusion Prenatal onset of cerebral damage in patients with classical MoCD is more frequently encountered than anticipated. It may have been overlooked by the overwhelming postnatal symptoms erroneously pointing to a single culprit. This insight is important when counseling for prognosis, particularly in the context of considering the timing and anticipated prospects of therapeutic intervention.
Collapse
Affiliation(s)
- Elise A. Ferreira
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases (UMD), The Netherlands
| | - Floris C. Hofstede
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke A. Haijes-Siepel
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Lou Pistorius
- Department of Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands, currently Mediclinic Panorama, Cape Town, South Africa
| | | | - Peter G.J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Peter M. van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Hierro F, Tomé ML, Grenha J, Santos H, Santos F, Nunes J. Molybdenum Cofactor Deficiency in the Neonate: Expanding the Phenotype. Pediatr Neurol 2024; 153:113-115. [PMID: 38367485 DOI: 10.1016/j.pediatrneurol.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/24/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Affiliation(s)
- Fátima Hierro
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.
| | - Maria Luís Tomé
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Joana Grenha
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Helena Santos
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Fátima Santos
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Joana Nunes
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| |
Collapse
|
5
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
6
|
Pramio J, Grings M, da Rosa AG, Ribeiro RT, Glanzel NM, Signori MF, Marcuzzo MB, Bobermin LD, Wyse ATS, Quincozes-Santos A, Wajner M, Leipnitz G. Sulfite Impairs Bioenergetics and Redox Status in Neonatal Rat Brain: Insights into the Early Neuropathophysiology of Isolated Sulfite Oxidase and Molybdenum Cofactor Deficiencies. Cell Mol Neurobiol 2023; 43:2895-2907. [PMID: 36862242 PMCID: PMC11410132 DOI: 10.1007/s10571-023-01328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.
Collapse
Affiliation(s)
- Júlia Pramio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Amanda Gasparin da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Nícolas Manzke Glanzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marian Flores Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
7
|
Zhang R, Hao Y, Xu Y, Qin J, Wang Y, Kumar Dey S, Li C, Wang H, Banerjee S. Whole exome sequencing identified a homozygous novel mutation in SUOX gene causes extremely rare autosomal recessive isolated sulfite oxidase deficiency. Clin Chim Acta 2022; 532:115-122. [PMID: 35679912 DOI: 10.1016/j.cca.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Isolated sulfite oxidase deficiency (ISOD) is a rare type of life-threatening neurometabolic disorders characterized by neonatal intractable seizures and severe developmental delay with an autosomal recessive mode of inheritance. Germline mutation in SUOX gene causes ISOD. Till date, only 32 mutations of SUOX gene have been identified and reported to be associated with ISOD. METHODS Here, we investigated a 5-days old Chinese female child, presented with intermittent tremor or seizures of limbs, neonatal encephalopathy, subarachnoid cyst and haemorrhage, dysplasia of corpus callosum, neonatal convulsion, hyperlactatemia, severe metabolic acidosis, hyperglycemia, and hyperkalemia. RESULTS Whole exome sequencing identified a novel homozygous transition (c.1227G > A) in exon 6 of the SUOX gene in the proband. This novel homozygous variant leads to the formation of a truncated sulfite oxidase (p.Trp409*) of 408 amino acids. This variant causes partial loss of the dimerization domain of sulfite oxidase. Hence, it is a loss-of-function variant. Proband's father and mother is carrying this novel variant in a heterozygous state. This variant was not found in 200 ethnically matched normal healthy control individuals. CONCLUSIONS Our study not only expanded the mutational spectrum of SUOX gene associated with ISOD, but also strongly suggested the significance of whole exome sequencing for identifying candidate genes and novel disease-causing variants.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Maternal-Fetal Medicine, Jinan University-affiliated Shenzhen Bao'an Women's and Children's Hospital, Shenzhen 518102, China
| | - Yajing Hao
- Department of Radiology, Jinan University-affiliated Shenzhen Bao'an Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Ying Xu
- Department of Ultrasound, Jinan University-affiliated Shenzhen Bao'an Women's and Children's Hospital, Shenzhen 518102, China
| | - Jiale Qin
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanfang Wang
- Department of Ultrasound, Jinan University-affiliated Shenzhen Bao'an Women's and Children's Hospital, Shenzhen 518102, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Salt Lake City, Kolkata, India
| | - Chen Li
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huilin Wang
- Division of Maternal-Fetal Medicine, Jinan University-affiliated Shenzhen Bao'an Women's and Children's Hospital, Shenzhen 518102, China.
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Spiegel R, Schwahn BC, Squires L, Confer N. Molybdenum cofactor deficiency: A natural history. J Inherit Metab Dis 2022; 45:456-469. [PMID: 35192225 PMCID: PMC9313850 DOI: 10.1002/jimd.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Molybdenum cofactor deficiency (MoCD) includes three ultrarare autosomal recessive inborn errors of metabolism (MoCD type A [MoCD-A], MoCD-B, and MoCD-C) that cause sulfite intoxication disorders. This natural history study analyzed retrospective data for 58 living or deceased patients (MoCD-A, n = 41; MoCD-B, n = 17). MoCD genotype, survival, neuroimaging, and medical history were assessed retrospectively. Prospective biomarker data were collected for 21 living MoCD patients. The primary endpoint was survival to 1 year of age in MoCD-A patients. Of the 58 MoCD patients, 49 (MoCD-A, n = 36; MoCD-B, n = 13) had first presenting symptoms by Day 28 (neonatal onset; median: 2 and 4 days, respectively). One-year survival rates were 77.4% (overall), 71.8% (neonatal onset MoCD-A), and 76.9% (neonatal onset MoCD-B); median ages at death were 2.4, 2.4, and 2.2 years, respectively. The most common presenting symptoms in the overall population were seizures (60.3%) and feeding difficulties (53.4%). Sequelae included profound developmental delay, truncal hypotonia, limb hypertonia that evolved to spastic quadriplegia or diplegia, dysmorphic features, and acquired microcephaly. In MoCD-A and MoCD-B, plasma and urinary xanthine and S-sulfocysteine concentrations were high; urate remained below the normal reference range. MOCS1 mutation homozygosity was common. Six novel mutations were identified. MoCD is a severe neurodegenerative disorder that often manifests during the neonatal period with intractable seizures and feeding difficulties, with rapidly progressive significant neurologic disabilities and high 1-year mortality rates. Delineation of MoCD natural history supports evaluations of emerging replacement therapy with cPMP for MoCD-A, which may modify disease course for affected individuals.
Collapse
Affiliation(s)
- Ronen Spiegel
- Emek Medical CenterAfulaIsrael
- Rappaport school of MedicineTechnionHaifaIsrael
| | - Bernd C. Schwahn
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation Trust, Health Innovation ManchesterManchesterUK
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
9
|
Schwahn B. Fosdenopterin: a First-in-class Synthetic Cyclic Pyranopterin Monophosphate for the Treatment of Molybdenum Cofactor Deficiency Type A. Neurology 2021. [DOI: 10.17925/usn.2021.17.2.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Chen Y, Wu X, Chen T, Yang G. Hot Carriers and Photothermal Effects of Monolayer MoO x for Promoting Sulfite Oxidase Mimetic Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19357-19368. [PMID: 32275133 DOI: 10.1021/acsami.0c04987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Local surface plasmon resonance (LSPR)-enhanced catalysis has brought a substantial amount of opportunities across various disciplines such as photocatalysis, photodetection, and photothermal therapeutics. Plasmon-induced photothermal and hot carriers effects have also been utilized to activate the enzyme-like reactions. Compared with natural enzymes, the relatively low catalytic performance of nanozymes severely hampered the potential applications in the field of biomedicine. For these issues mentioned above, herein, we demonstrate a highly efficient sulfite oxidase (SuOx) mimetic performance of plasmonic monolayer MoOx (ML-MoOx) upon LSPR excitation. We also established that the considerable photothermal effect and the injection of hot carriers induced by LSPR are responsible for promoting the SuOx activity of ML-MoOx. The high transient local temperature on the surface of ML-MoOx generated by the photothermal effect facilitates to impact the reaction velocity and feed the SuOx-like activity, while the generation of hot carriers which are suggested as predominant effects catalyzes the oxidation of sulfite to sulfate through significantly decreasing the activation energy for the SuOx-like reaction. These investigations present a contribution to the basic understanding of plasmon-enhanced enzyme-like reaction and provided an insight into the optimization of the SuOx mimetic performance of nanomaterials.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-Sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-Sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Tongming Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-Sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-Sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
11
|
Alonzo Martínez MC, Cazorla E, Cánovas E, Anniuk K, Cores AE, Serrano AM. Molybdenum Cofactor Deficiency: Mega Cisterna Magna in Two Consecutive Pregnancies and Review of the Literature. APPLICATION OF CLINICAL GENETICS 2020; 13:49-55. [PMID: 32099439 PMCID: PMC6999763 DOI: 10.2147/tacg.s239917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022]
Abstract
The molybdenum cofactor deficiency is an autosomal recessive disease, characterized by rapidly progressive and severe neurological damage that mimics a hypoxic-ischemic encephalopathy due to the accumulation of toxic metabolites that cause rapid neurodegeneration after the delivery. It is eventually lethal, in a similar way to the rare isolated sulfite oxidase deficiency. This serious pathology usually causes death in the immediate neonatal period in the more severe variants. We report a case of two consecutive pregnancies with enlarged cisterna magna as the only prenatal pathological finding since 26 weeks of gestation (WG) and the subsequent death of the newborns in the first week after birth. After the second pregnancy, we reached the diagnosis of molybdenum cofactor deficiency due to MOCS1 gene mutation. According to the cases reported in the literature, this is the case with the earliest neuroimage prenatal findings.
Collapse
Affiliation(s)
- M C Alonzo Martínez
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - E Cazorla
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - E Cánovas
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - K Anniuk
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - A E Cores
- Department of Radiology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - A M Serrano
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| |
Collapse
|
12
|
Puri R, Mishra R, Verma J, Sheth S, Verma IC. Hypoxic Ischemic Encephalopathy or Metabolic Etiology—MRI as a Clue to Diagnosis. Neurol India 2020; 68:941-942. [DOI: 10.4103/0028-3886.293478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Ramin M, Li Y, Chang WT, Shaw H, Rao Y. The peacefulness gene promotes aggression in Drosophila. Mol Brain 2019; 12:1. [PMID: 30606245 PMCID: PMC6318936 DOI: 10.1186/s13041-018-0417-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Natural aggressiveness is commonly observed in all animal species, and is displayed frequently when animals compete for food, territory and mating. Aggression is an innate behaviour, and is influenced by both environmental and genetic factors. However, the genetics of aggression remains largely unclear. In this study, we identify the peacefulness (pfs) gene as a novel player in the control of male-male aggression in Drosophila. Mutations in pfs decreased intermale aggressiveness, but did not affect locomotor activity, olfactory avoidance response and sexual behaviours. pfs encodes for the evolutionarily conserved molybdenum cofactor (MoCo) synthesis 1 protein (Mocs1), which catalyzes the first step in the MoCo biosynthesis pathway. Neuronal-specific knockdown of pfs decreased aggressiveness. By contrast, overexpression of pfs greatly increased aggressiveness. Knocking down Cinnamon (Cin) catalyzing the final step in the MoCo synthesis pathway, caused a pfs-like aggression phenotype. In humans, inhibition of MoCo-dependent enzymes displays anti-aggressive effects. Thus, the control of aggression by Pfs-dependent MoCo pathways may be conserved throughout evolution.
Collapse
Affiliation(s)
- Mahmoudreza Ramin
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yueyang Li
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Wen-Tzu Chang
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Hunter Shaw
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yong Rao
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Integrated Program in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Department of Medicine, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
14
|
Skalny AV, Tinkov AA, Bohan TG, Shabalovskaya MB, Terekhina O, Leshchinskaia SB, Agarkova LA, Notova SV, Skalnaya MG, Kovas Y. Toxicological and nutritional status of trace elements in hair of women with in vitro fertilization (IVF) pregnancy and their 9-month-old children. Reprod Toxicol 2018; 82:50-56. [PMID: 30316928 DOI: 10.1016/j.reprotox.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The objective of the present study was to assess toxic and nutritional trace element and mineral status in hair of women with IVF pregnancy and their children. Inductively-coupled plasma mass-spectrometry was used to assess hair trace element levels of 50 women with IVF pregnancy and 158 controls with spontaneous pregnancy and their children. Women with IVF pregnancy were characterized by significantly elevated hair As, Hg, Li, K, Na, and reduced Fe, Si, and Zn contents. Children from IVF pregnancy had significantly lower values of hair Cr, Fe, Mg, Sr, and Al content when compared to the control values, whereas hair Hg and Mo levels were higher. Hair trace element levels were associated with pregnancy complications and infertility, but not newborn characteristics. The results suggest the need for preconceptional monitoring and correction of the levels of toxic and essential elements in women in order to improve the course pregnancy and child development.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia.
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia
| | - Tatiana G Bohan
- Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| | - Marina B Shabalovskaya
- Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| | - Olga Terekhina
- Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| | - Svetlana B Leshchinskaia
- Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| | - Lyubov A Agarkova
- Research Institute of Obstetrics, Gynecology and Perinatology, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Svetlana V Notova
- Orenburg State University, Orenburg, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Yulia Kovas
- Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia; Goldsmiths, University of London, London, UK
| |
Collapse
|
15
|
Mankad K, Talenti G, Tan AP, Gonçalves FG, Robles C, Kan EYL, Siddiqui A. Neurometabolic Disorders of the Newborn. Top Magn Reson Imaging 2018; 27:179-196. [PMID: 30086107 DOI: 10.1097/rmr.0000000000000176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an extensive and diverse set of medical conditions affecting the neonatal brain within the spectrum of neurometabolic disorders. As such, their clinical presentations can be rather nonspecific, and can often mimic acquired entities such as hypoxic-ischemic encephalopathy and sepsis. Similarly, the radiological findings in these entities can also be frequently nonspecific, but a more detailed analysis of imaging findings (especially magnetic resonance imaging) alongside the relevant clinical details can be a rewarding experience, thus enabling a timely and targeted diagnosis. Early diagnosis of an underlying neurometabolic disorder is vital, as some of these entities are potentially treatable, and laboratory and genetic testing can be precisely targeted. Further, their detection helps with counselling families for future pregnancies. We present a review of neurometabolic disorders specific to the newborns with a focus on how neuroimaging findings match their clinical presentation patterns.
Collapse
Affiliation(s)
- Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | | | - Carlos Robles
- Department of Radiology, Hospital Clinico Universidad de Chile, Región Metropolitana, Chile
| | - Elaine Y L Kan
- Department of Radiology, Hong Kong Children's Hospital, Kai Tak, Hong Kong
| | - Ata Siddiqui
- Department of Neuroradiology, King's College Hospital, London, UK
| |
Collapse
|
16
|
Grings M, Parmeggiani B, Moura AP, de Moura Alvorcem L, Wyse ATS, Wajner M, Leipnitz G. Evidence that Thiosulfate Inhibits Creatine Kinase Activity in Rat Striatum via Thiol Group Oxidation. Neurotox Res 2018; 34:693-705. [DOI: 10.1007/s12640-018-9934-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
|
17
|
Molybdenum cofactor deficiency type A: Prenatal monitoring using MRI. Eur J Paediatr Neurol 2018; 22:536-540. [PMID: 29274890 DOI: 10.1016/j.ejpn.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022]
Abstract
Molybdenum cofactor deficiency type A (MoCD-A) is an inborn error of metabolism presenting early after birth with severe seizures. Recently, experimental substitution treatment with cyclic pyranopterin monophosphate (cPMP) has become available. Because prenatal data is scarce, we report data of prenatal Magnetic Resonance Imaging (MRI) in two cases with MoCD-A demonstrating signs of possible early brain injury. Prenatal MRI can be used for monitoring in MoCD-A to guide decision-making in timing of delivery.
Collapse
|
18
|
Hinderhofer K, Mechler K, Hoffmann GF, Lampert A, Mountford WK, Ries M. Critical appraisal of genotype assessment in molybdenum cofactor deficiency. J Inherit Metab Dis 2017; 40:801-811. [PMID: 28900816 DOI: 10.1007/s10545-017-0077-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Molybdenum cofactor deficiency (MoCD) is an ultra-orphan, life-threatening disease. Substrate substitution therapy has successfully been performed in single cases of MoCD type A and clinical trials are underway for drug registration. We present an innovative approach for classification of genotype severity to test the hypothesis that milder sequence variants in MoCD result in a less severe disease phenotype quantitated by patient survival. METHODS All available worldwide published cases with clinical and genetic data were included (n = 40). We stratified the already published disease causing sequence variants as mild or severe with the use of in silico prediction programs, where possible and assessed the possible impact of the variants on the expression of the gene or function of the expressed protein. In a compound heterozygous situation the mildest sequence variant determined the genotype. Subsequently, clinical manifestations and outcomes of both groups were compared. RESULTS Patients with a severe genotype showed a median survival of 15 months and had a lower probability of survival compared to patients with mild genotypes who were all alive at last reported follow-up (p = 0.0203, Log-rank test). DISCUSSION The severity of the genotype assessed by in silico prediction and further classification explained survival in molybdenum cofactor deficiency and may therefore be considered a confounder for the outcome of therapeutic clinical trials requiring adjustment in the clinical trial design or analysis. These results should further be investigated by future in vitro or in vivo functional studies. Caution should be taken with this approach for the classification of variants in molecular genetic diagnostics or genetic counseling.
Collapse
Affiliation(s)
| | - Konstantin Mechler
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany.
| | - Georg F Hoffmann
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, and Center for Rare Disorders, Heidelberg University Hospital, Heidelberg, Germany
| | - Anette Lampert
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- Cooperation Unit Clinical Pharmacy, Heidelberg University Hospital, Heidelberg, Germany
| | - William K Mountford
- University of North Carolina Wilmington, Wilmington, NC, USA
- Quintiles Inc., Smyrna, GA, USA
| | - Markus Ries
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, and Center for Rare Disorders, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Lee HF, Chi CS, Tsai CR, Chen HC, Lee IC. Prenatal brain disruption in isolated sulfite oxidase deficiency. Orphanet J Rare Dis 2017. [PMID: 28629418 PMCID: PMC5477159 DOI: 10.1186/s13023-017-0668-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Isolated sulfite oxidase deficiency (ISOD) is a very rare autosomal recessive inherited neurometabolic disease. The most striking postnatal neuroimaging finding is multicystic encephalomalacia, which occurs rapidly within days to weeks after birth and mimics severe hypoxic-ischemic encephalopathy. The aim of this study was to describe the prenatal neuroimaging features in a neonate and a fetus diagnosed with ISOD. Results We report an 11-day-old female neonate who presented with feeding difficulties, decreased activity, neonatal seizures, and movement disorders within a few days after birth. Brain MRI at 9 days of age showed cystic lesions over the left frontal and temporal areas, diffuse and evident T2 high signal intensity of bilateral cerebral cortex, and increased T2 signal intensity of the globus pallidi. A pronounced low level of plasma cysteine and normal level of plasma uric acid were noted. Mutation analysis of SUOX revealed homozygous c.1200C > G mutations, resulting in an amino acid substitution of tyrosine to a stop codon (Y400X). The diagnosis of ISOD was made. The brain MRI of a prenatally diagnosed ISOD fetus of the second pregnancy of the mother of the index case showed poor gyration and differentiation of cortical layers without formation of cystic lesions at gestational age 21 weeks. Conclusion Cystic brain destruction might occur prenatally and neurodevelopment of gyration and differentiation of the cortical layers in the developing brain could be affected by sulfite accumulation early during the second trimester in ISOD patients. This is the first description of the prenatal neurodevelopment of brain disruption in ISOD.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Division of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen Hu Xi-Zhou Li Hou-Loung Town, Miaoli, Taiwan. .,Department of Pediatrics, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan. .,School of Medicine, Chung Shan Medical University, 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan.
| | - Ching-Shiang Chi
- School of Medicine, Chung Shan Medical University, 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan.,Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, 699, Taiwan Boulevard Sec. 8, Wuchi, Taichung, 435, Taiwan
| | - Chi-Ren Tsai
- Department of Pediatrics, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan.,Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Hung-Chieh Chen
- Department of Radiology, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan
| | - I-Chun Lee
- Department of Pediatrics, Taichung Tzu Chi Hospital, 88, Sec. 1, Fengxing Rd, Tanzi Dist, Taichung, 427, Taiwan
| |
Collapse
|
20
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Guibaud L, Collardeau-Frachon S, Lacalm A, Massoud M, Rossi M, Cordier MP, Vianey-Saban C. Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 2017; 40:103-112. [PMID: 27853988 DOI: 10.1007/s10545-016-9992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
Prenatal manifestations of inborn errors of metabolism (IEM) are related to severe disorders involving metabolic pathways active in the fetal period and not compensated by maternal or placental metabolism. Some prenatal imaging findings can be suggestive of such conditions-especially in cases of consanguinity and/or recurrence of symptoms-after exclusion of the most frequent nonmetabolic etiologies. Most of these prenatal imaging findings are nonspecific. They include mainly ascites and hydrops fetalis, intrauterine growth restriction (IUGR), central nervous system (CNS) anomalies, echogenic kidneys, epiphyseal stippling, craniosynostosis, and a wide spectrum of dysostoses. These anomalies can be isolated, but in most cases, an IEM is suggested by an association of features. It must be stressed that the diagnosis of an IEM in the prenatal period is based on a close collaboration between specialists in fetal imaging, medicine, genetics, biology, and pathology.
Collapse
Affiliation(s)
- Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Université Claude Bernard Lyon I, Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, 59, Boulevard Pinel, 69677, Lyon-Bron, France.
| | | | - Audrey Lacalm
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Mona Massoud
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Marie Pierre Cordier
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie, Groupement Hospitalier Est, Lyon Bron, France
| |
Collapse
|
22
|
Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39:611-624. [PMID: 27393412 DOI: 10.1007/s10545-016-9947-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %).
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France.
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| | - David Cheillan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
| | - Sophie Collardeau-Frachon
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
- Département de Pathologie, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant CHU de Lyon, Lyon, France
| | - Cécile Pagan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Lyon Neuroscience Research Center, CNRS UMR5292; INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Magali Pettazzoni
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Monique Piraud
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Antonin Lamazière
- Département PM2, Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, APHP, Hôpital Saint Antoine, Paris, France, Laboratoire de spectrométrie de masse, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités-UPMC, Paris, France
| | - Roseline Froissart
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| |
Collapse
|
23
|
Jakubiczka-Smorag J, Santamaria-Araujo JA, Metz I, Kumar A, Hakroush S, Brueck W, Schwarz G, Burfeind P, Reiss J, Smorag L. Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients. Hum Genet 2016; 135:813-26. [DOI: 10.1007/s00439-016-1676-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023]
|
24
|
Neuropädiatrische Differenzialdiagnostik der Mikrozephalie im Kindesalter. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zusammenfassung
Eine Mikrozephalie betrifft 2–3 % der Bevölkerung und geht oftmals mit einer Intelligenzminderung einher. Die zugrunde liegende Reduktion des Gehirnvolumens kann sowohl durch exogene Faktoren als auch durch genetische Ursachen bedingt sein. Problematisch sind sowohl die uneinheitliche Klassifikation als auch die große Heterogenität der hinter dem klinischen Zeichen Mikrozephalie stehenden Erkrankungen. Im vorliegenden Artikel stellen wir unseren Vorschlag für die diagnostische Herangehensweise an ein Kind mit Mikrozephalie aus neuropädiatrischer Sicht vor.
Collapse
|
25
|
Velayutham M, Hemann CF, Cardounel AJ, Zweier JL. Sulfite Oxidase Activity of Cytochrome c: Role of Hydrogen Peroxide. Biochem Biophys Rep 2016; 5:96-104. [PMID: 26709389 PMCID: PMC4689149 DOI: 10.1016/j.bbrep.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c) is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c) in the absence and presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3-) was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which occur to humans born with molybdenum cofactor and sulfite oxidase deficiencies. Cytochrome c oxidizes sulfite to sulfite radical. In the presence of H2O2, sulfite radical generation from cyt c increases. The formation of sulfite radical is sulfite concentration dependent. This mechanism of sulfite radical formation may be important in sulfite toxicity.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210 ; Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Craig F Hemann
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Arturo J Cardounel
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
26
|
Schwahn BC, Van Spronsen FJ, Belaidi AA, Bowhay S, Christodoulou J, Derks TG, Hennermann JB, Jameson E, König K, McGregor TL, Font-Montgomery E, Santamaria-Araujo JA, Santra S, Vaidya M, Vierzig A, Wassmer E, Weis I, Wong FY, Veldman A, Schwarz G. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 2015; 386:1955-1963. [PMID: 26343839 DOI: 10.1016/s0140-6736(15)00124-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Molybdenum cofactor deficiency (MoCD) is characterised by early, rapidly progressive postnatal encephalopathy and intractable seizures, leading to severe disability and early death. Previous treatment attempts have been unsuccessful. After a pioneering single treatment we now report the outcome of the complete first cohort of patients receiving substitution treatment with cyclic pyranopterin monophosphate (cPMP), a biosynthetic precursor of the cofactor. METHODS In this observational prospective cohort study, newborn babies with clinical and biochemical evidence of MoCD were admitted to a compassionate-use programme at the request of their treating physicians. Intravenous cPMP (80-320 μg/kg per day) was started in neonates diagnosed with MoCD (type A and type B) following a standardised protocol. We prospectively monitored safety and efficacy in all patients exposed to cPMP. FINDINGS Between June 6, 2008, and Jan 9, 2013, intravenous cPMP was started in 16 neonates diagnosed with MoCD (11 type A and five type B) and continued in eight type A patients for up to 5 years. We observed no drug-related serious adverse events after more than 6000 doses. The disease biomarkers urinary S-sulphocysteine, xanthine, and urate returned to almost normal concentrations in all type A patients within 2 days, and remained normal for up to 5 years on continued cPMP substitution. Eight patients with type A disease rapidly improved under treatment and convulsions were either completely suppressed or substantially reduced. Three patients treated early remain seizure free and show near-normal long-term development. We detected no biochemical or clinical response in patients with type B disease. INTERPRETATION cPMP substitution is the first effective therapy for patients with MoCD type A and has a favourable safety profile. Restoration of molybdenum cofactor-dependent enzyme activities results in a greatly improved neurodevelopmental outcome when started sufficiently early. The possibility of MoCD type A needs to be urgently explored in every encephalopathic neonate to avoid any delay in appropriate cPMP substitution, and to maximise treatment benefit. FUNDING German Ministry of Education and Research; Orphatec/Colbourne Pharmaceuticals.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Royal Hospital for Sick Children, NHS Greater Glasgow and Clyde, Glasgow, UK; Willink Biochemical Genetics Unit, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Francjan J Van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands
| | - Abdel A Belaidi
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne, CECAD Cologne, University of Cologne, Cologne, Germany; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Bowhay
- Royal Hospital for Sick Children, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - John Christodoulou
- Western Sydney Genetics Program, Children's Hospital at Westmead, and Disciplines of Paediatrics & Child Health and Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Terry G Derks
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Kai König
- Department of Pediatrics, Mercy Hospital for Women, Melbourne, VIC, Australia
| | - Tracy L McGregor
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN, USA
| | | | | | | | - Mamta Vaidya
- Paediatric Intensive Care, Bart's Health NHS Trust, Royal London Hospital, London, UK
| | - Anne Vierzig
- Paediatric Intensive Care, University Children's Hospital, University of Cologne, Cologne, Germany
| | | | - Ilona Weis
- Children's Hospital, Gemeinschaftsklinikum Koblenz-Mayen, Kemperhof, Koblenz, Germany
| | - Flora Y Wong
- Monash Newborn, Monash Medical Centre, The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alex Veldman
- Orphatec/Colbourne Pharmaceuticals, Niederkassel, Germany; Monash Newborn, Monash Medical Centre, The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne, CECAD Cologne, University of Cologne, Cologne, Germany; Orphatec/Colbourne Pharmaceuticals, Niederkassel, Germany
| |
Collapse
|
27
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
28
|
von der Hagen M, Pivarcsi M, Liebe J, von Bernuth H, Didonato N, Hennermann JB, Bührer C, Wieczorek D, Kaindl AM. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 2014; 56:732-41. [PMID: 24617602 DOI: 10.1111/dmcn.12425] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
AIM The aim of this study was to assess the diagnostic approach to microcephaly in childhood and to identify the prevalence of the various underlying causes/disease entities. METHOD We conducted a retrospective study on a cohort of 680 children with microcephaly (399 males, 281 females; mean age at presentation 7-8mo, range 1mo-5y) from patients presenting to Charité - University Medicine Berlin (n=474) and University Hospital Dresden (n=206). Patient discharge letters were searched electronically to identify cases of microcephaly, and then the medical records of these patients were used to analyze parameters for distribution. RESULTS The putative aetiology for microcephaly was ascertained in 59% of all patients, leaving 41% without a definite diagnosis. In the cohort of pathogenetically defined microcephaly, genetic causes were identified in about half of the patients, perinatal brain damage accounted for 45%, and postnatal brain damage for 3% of the cases. Microcephaly was associated with intellectual impairment in 65% of participants, epilepsy was diagnosed in 43%, and ophthalmological disorders were found in 30%. Brain magnetic resonance imaging revealed abnormalities in 76% of participants. INTERPRETATION Microcephaly remains a poorly defined condition, and a uniform diagnostic approach is urgently needed. A definite aetiological diagnosis is important in order to predict the prognosis and offer genetic counselling. Identifying gene mutations as causes of microcephaly increases our knowledge of brain development and the clinical spectrum of microcephaly. We therefore propose a standardized initial diagnostic approach to microcephaly.
Collapse
Affiliation(s)
- Maja von der Hagen
- Abteilung Neuropaediatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: Differential diagnosis and diagnostic approach. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:211-26. [DOI: 10.1002/ajmg.c.31398] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Higuchi R, Sugimoto T, Tamura A, Kioka N, Tsuno Y, Higa A, Yoshikawa N. Early features in neuroimaging of two siblings with molybdenum cofactor deficiency. Pediatrics 2014; 133:e267-71. [PMID: 24379235 DOI: 10.1542/peds.2013-0935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report the features of neuroimaging within 24 hours after birth in 2 siblings with molybdenum cofactor deficiency. The first sibling was delivered by emergency cesarean section because of fetal distress and showed pedaling and crawling seizures soon after birth. Brain ultrasound revealed subcortical multicystic lesions in the frontal white matter, and brain MRI at 4 hours after birth showed restricted diffusion in the entire cortex, except for the area adjacent to the subcortical cysts. The second sibling was delivered by elective cesarean section. Cystic lesions were seen in the frontal white matter on ultrasound, and brain MRI showed low signal intensity on T1-weighted image and high signal intensity on T2-weighted image in bifrontal white matter within 24 hours after birth, at which time the infant sucked sluggishly. Clonic spasm appeared at 29 hours after birth. The corpus callosum could not be seen clearly on ultrasound or MRI in both infants. Cortical atrophy and white matter cystic lesions spread to the entire hemisphere and resulted in severe brain atrophy within ~1 month in both infants. Subcortical multicystic lesions on ultrasound and a cortex with nonuniform, widespread, restricted diffusion on diffusion-weighted images are early features of neuroimaging in patients with molybdenum cofactor deficiency type A.
Collapse
Affiliation(s)
- Ryuzo Higuchi
- Department of Perinatal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
McCormick SP, Chakrabarti M, Cockrell AL, Park J, Lindahl LS, Lindahl PA. Low-molecular-mass metal complexes in the mouse brain. Metallomics 2013; 5:232-41. [PMID: 23443205 DOI: 10.1039/c3mt00009e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of labile low-molecular-mass (LMM, defined as <10 kDa) metal complexes in cells and super-cellular structures such as the brain has been inferred from chelation studies, but direct evidence is lacking. To evaluate the presence of LMM metal complexes in the brain, supernatant fractions of fresh mouse brain homogenates were passed through a 10 kDa cutoff membrane and subjected to size-exclusion liquid chromatography under anaerobic refrigerated conditions. Fractions were monitored for Mn, Fe, Co, Cu, Zn, Mo, S and P using an on-line ICP-MS. At least 30 different LMM metal complexes were detected along with numerous P- and S- containing species. Reproducibility was assessed by performing the experiment 13 times, using different buffers, and by examining whether complexes changed with time. Eleven Co, 2 Cu, 5 Mn, 4 Mo, 3 Fe and 2 Zn complexes with molecular masses <4 kDa were detected. One LMM Mo complex comigrated with the molybdopterin cofactor. Most Cu and Zn complexes appeared to be protein-bound with masses ranging from 4-20 kDa. Co was the only metal for which the "free" or aqueous complex was reproducibly observed. Aqueous Co may be sufficiently stable in this environment due to its relatively slow water-exchange kinetics. Attempts were made to assign some of these complexes, but further efforts will be required to identify them unambiguously and to determine their functions. This is among the first studies to detect low-molecular-mass transition metal complexes in the mouse brain using LC-ICP-MS.
Collapse
Affiliation(s)
- Sean P McCormick
- Texas A&M University, Department of Chemistry, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bayram E, Topcu Y, Karakaya P, Yis U, Cakmakci H, Ichida K, Kurul SH. Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol 2013; 17:1-6. [PMID: 23122324 DOI: 10.1016/j.ejpn.2012.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/07/2012] [Accepted: 10/13/2012] [Indexed: 11/19/2022]
Abstract
Molybdenum cofactor deficiency is a rare inborn error of metabolism. The major clinical symptoms are intractable neonatal seizures, progressive encephalopathy, facial dysmorphic features and feeding difficulties. Most of the patients are misdiagnosed as hypoxic ischemic encephalopathy. The majority of patients have mutations in the MOCS1 and MOCS2 genes. Although the therapeutic treatment strategies have not been improved, genetic analysis is essential to elucidate the disease. Here, we report a review of 12 patients with Molybdenum cofactor deficiency reported from Turkey.
Collapse
Affiliation(s)
- Erhan Bayram
- Dokuz Eylul University Hospital, Department of Pediatrics, Division of Pediatric Neurology, 35340 Balcova, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
33
|
Poretti A, Blaser SI, Lequin MH, Fatemi A, Meoded A, Northington FJ, Boltshauser E, Huisman TAGM. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2012; 37:294-312. [PMID: 22566357 DOI: 10.1002/jmri.23693] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/03/2012] [Indexed: 12/22/2022] Open
Abstract
Individually, metabolic disorders are rare, but overall they account for a significant number of neonatal disorders affecting the central nervous system. The neonatal clinical manifestations of inborn errors of metabolism (IEMs) are characterized by nonspecific systemic symptoms that may mimic more common acute neonatal disorders like sepsis, severe heart insufficiency, or neonatal hypoxic-ischemic encephalopathy. Certain IEMs presenting in the neonatal period may also be complicated by sepsis and cardiomyopathy. Early diagnosis is mandatory to prevent death and permanent long-term neurological impairments. Although neuroimaging findings are rarely specific, they play a key role in suggesting the correct diagnosis, limiting the differential diagnosis, and may consequently allow early initiation of targeted metabolic and genetic laboratory investigations and treatment. Neuroimaging may be especially helpful to distinguish metabolic disorders from other more common causes of neonatal encephalopathy, as a newborn may present with an IEM prior to the availability of the newborn screening results. It is therefore important that neonatologists, pediatric neurologists, and pediatric neuroradiologists are familiar with the neuroimaging findings of metabolic disorders presenting in the neonatal time period.
Collapse
Affiliation(s)
- Andrea Poretti
- Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol 2011; 45:246-52. [PMID: 21907887 DOI: 10.1016/j.pediatrneurol.2011.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/10/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Molybdenum cofactor deficiency predominantly affects the central nervous system. There are limited data on long-term outcome or brain magnetic resonance imaging (MRI) features. We examined the clinical, brain MRI, biochemical, genetic, and electroencephalographic features and outcome in 8 children with a diagnosis of molybdenum cofactor deficiency observed in our institution over 10 years. Two modes of presentation were identified: early (classical) onset with predominantly epileptic encephalopathy in 6 neonates, and late (atypical) with global developmental impairment in 2 children. Children in both groups had varying degrees of motor, language, and visual impairment. There were no deaths. Brain MRI demonstrated cerebral infarction in all but one child in the atypical group. Distinctive features were best observed on early brain MRI: acute symmetrical involvement of the globus pallidi and subthalamic regions coexisting with older cerebral hemisphere infarction, chronic lesions suggestive of a prenatal insult, pontocerebellar hypoplasia with retrocerebellar cyst, and presence of a distinctive band at the cortical/subcortical white matter. Sequential imaging revealed progressive pontine atrophy and enlargement of retrocerebellar cyst. The brain MRI of one child with atypical presentation (verbal dyspraxia, lens dislocation) showed symmetrical cerebellar deep nuclei signal abnormality without cerebral infarction. Imaging pattern on early brain MRI (<1 week) may prompt the diagnosis, potentially allowing early treatment and disease modifications.
Collapse
|
35
|
Veldman A, Hennermann JB, Schwarz G, van Spronsen F, Weis I, Wong FY, Schwahn BC. Timing of cerebral developmental disruption in molybdenum cofactor deficiency. J Child Neurol 2011; 26:1059-60; author reply 1061. [PMID: 21775622 DOI: 10.1177/0883073811415851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alex Veldman
- Monash Newborn, Monash Medical Centre, Department of Paediatrics, and The Ritchie Centre, Monash Institute for Medical Research, Monash University, Melbourne, Australia
| | | | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Francjan van Spronsen
- Beatrix Children’s Hospital, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands
| | - Ilona Weis
- Gemeinschaftsklinikum Koblenz-Mayen, Kemperhof Koblenz, Germany
| | - Flora Y. Wong
- Monash Newborn, Monash Medical Centre, Department of Paediatrics, and The Ritchie Centre, Monash Institute for Medical Research, Monash University, Melbourne, Australia
| | - Bernd C. Schwahn
- Metabolic Department, Royal Hospital for Sick Children, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| |
Collapse
|