1
|
Lynch DR, Rojsajjakul T, Subramony SH, Perlman SL, Keita M, Mesaros C, Blair IA. Frataxin analysis using triple quadrupole mass spectrometry: application to a large heterogeneous clinical cohort. J Neurol 2024; 271:1844-1849. [PMID: 38063871 DOI: 10.1007/s00415-023-12118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Friedreich ataxia is a progressive multisystem disorder caused by deficiency of the protein frataxin; a small mitochondrial protein involved in iron sulfur cluster synthesis. Two types of frataxin exist: FXN-M, found in most cells, and FXN-E, found almost exclusively in red blood cells. Treatments in clinical trials include frataxin restoration by gene therapy, protein replacement, and epigenetic therapies, all of which necessitate sensitive assays for assessing frataxin levels. METHODS In the present study, we have used a triple quadrupole mass spectrometry-based assay to examine the features of both types of frataxin levels in blood in a large heterogenous cohort of 106 patients with FRDA. RESULTS Frataxin levels (FXN-E and FXN M) were predicted by GAA repeat length in regression models (R2 values = 0.51 and 0.27, respectively), and conversely frataxin levels predicted clinical status as determined by modified Friedreich Ataxia Rating scale scores and by disability status (R2 values = 0.13-0.16). There was no significant change in frataxin levels in individual subjects over time, and apart from start codon mutations, FXN-E and FXN-M levels were roughly equal. Accounting for hemoglobin levels in a smaller sub-cohort improved prediction of both FXN-E and FXN-M levels from R2 values of (0.3-0.38 to 0.20-0.51). CONCLUSION The present data show that assay of FXN-M and FXN-E levels in blood provides an appropriate biofluid for assessing their repletion in particular clinical contexts.
Collapse
Affiliation(s)
- David R Lynch
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 502F Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA, 19104-4318, USA.
| | - Teerapat Rojsajjakul
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S H Subramony
- Department of Neurology, University of Florida, Gainesville, FL, 32608, USA
| | - Susan L Perlman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Medina Keita
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian A Blair
- Penn/CHOP Friedreich Ataxia Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J Multidiscip Healthc 2021; 14:1645-1658. [PMID: 34234452 PMCID: PMC8253929 DOI: 10.2147/jmdh.s292945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem disorder affecting 1 in 50,000-100,000 person in the United States. Traditionally viewed as a neurodegenerative disease, FRDA patients also develop cardiomyopathy, scoliosis, diabetes and other manifestation. Although it usually presents in childhood, it continues throughout life, thus requiring expertise from both pediatric and adult subspecialist in order to provide optimal management. The phenotype of FRDA is unique, giving rise to specific loss of neuronal pathways, a unique form of cardiomyopathy with early hypertrophy and later fibrosis, and diabetes incorporating components of both type I and type II disease. Vision loss, hearing loss, urinary dysfunction and depression also occur in FRDA. Many agents are reaching Phase III trials; if successful, these will provide a variety of new treatments for FRDA that will require many specialists who are not familiar with FRDA to provide clinical therapy. This review provides a summary of the diverse manifestation of FRDA, existing symptomatic therapies, and approaches for integrative care for future therapy in FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kim Schadt
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Petrosino M, Pasquo A, Novak L, Toto A, Gianni S, Mantuano E, Veneziano L, Minicozzi V, Pastore A, Puglisi R, Capriotti E, Chiaraluce R, Consalvi V. Characterization of human frataxin missense variants in cancer tissues. Hum Mutat 2019; 40:1400-1413. [PMID: 31074541 PMCID: PMC6744310 DOI: 10.1002/humu.23789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Human frataxin is an iron-binding protein involved in the mitochondrial iron-sulfur (Fe-S) clusters assembly, a process fundamental for the functional activity of mitochondrial proteins. Decreased level of frataxin expression is associated with the neurodegenerative disease Friedreich ataxia. Defective function of frataxin may cause defects in mitochondria, leading to increased tumorigenesis. Tumor-initiating cells show higher iron uptake, a decrease in iron storage and a reduced Fe-S clusters synthesis and utilization. In this study, we selected, from COSMIC database, the somatic human frataxin missense variants found in cancer tissues p.D104G, p.A107V, p.F109L, p.Y123S, p.S161I, p.W173C, p.S181F, and p.S202F to analyze the effect of the single amino acid substitutions on frataxin structure, function, and stability. The spectral properties, the thermodynamic and the kinetic stability, as well as the molecular dynamics of the frataxin missense variants found in cancer tissues point to local changes confined to the environment of the mutated residues. The global fold of the variants is not altered by the amino acid substitutions; however, some of the variants show a decreased stability and a decreased functional activity in comparison with that of the wild-type protein.
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Current address: IRCCS Istituto Neurologico Carlo Besta, Milano, Italia
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Roma, Italia
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory,FSN-TECFIS-DIM, Frascati, Italy
| | - Leonore Novak
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Elide Mantuano
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | - Velia Minicozzi
- INFN and Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Pastore
- The Wohl Institute, King’s College London, London, United Kingdom
| | - Rita Puglisi
- The Wohl Institute, King’s College London, London, United Kingdom
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| |
Collapse
|