1
|
Giram P, Nimma R, Bulbule A, Yadav AS, Gorain M, Venkata Radharani NN, Kundu GC, Garnaik B. Poly(d,l-lactide- co-glycolide) Surface-Anchored Biotin-Loaded Irinotecan Nanoparticles for Active Targeting of Colon Cancer. ACS OMEGA 2024; 9:3807-3826. [PMID: 38284072 PMCID: PMC10809773 DOI: 10.1021/acsomega.3c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
A poly(d,l-lactide-co-glycolide) (PLGA) copolymer was synthesized using the ring-opening polymerization of d,l-lactide and glycolide monomers in the presence of zinc proline complex in bulk through the green route and was well characterized using attenuated total reflectance-Fourier transform infrared, 1H and 13C nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, X-ray diffraction, matrix-assisted laser desorption/ionization time-of-flight, etc. Furthermore, PLGA-conjugated biotin (PLGA-B) was synthesized using the synthesized PLGA and was employed to fabricate nanoparticles for irinotecan (Ir) delivery. These nanoparticles (PLGA-NP-Ir and PLGA-B-NP-Ir) were tested for physicochemical and biological characteristics. PLGA-B-NP-Ir exhibited a stronger cellular uptake and anticancer activity as compared to PLGA-NP-Ir in CT-26 cancer cells (log p < 0.05). The accumulation and retention of fluorescence-labeled nanoparticles were observed to be better in CT-26-inoculated solid tumors in Balb/c mice. The PLGA-B-NP-Ir-treated group inhibited tumor growth significantly more (log p < 0.001) than the untreated control, PLGA-NP-Ir, and Ir-treated groups. Furthermore, no body weight loss, hematological, and blood biochemical tests demonstrated the nanocarriers' nontoxic nature. This work presents the use of safe PLGA and the demonstration of a proof-of-concept of biotin surface attached PLGA nanoparticle-mediated active targeted Ir administration to combat colon cancer. To treat colon cancer, PLGA-B-NP-Ir performed better due to specific active tumor targeting and greater cellular uptake due to biotin.
Collapse
Affiliation(s)
- Prabhanjan
S. Giram
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla
Nehru Nagar, Ghaziabad, Uttar
Pradesh 201 002, India
| | - Ramakrishna Nimma
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Anuradha Bulbule
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Amit Singh Yadav
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Mahadeo Gorain
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | | | - Gopal C. Kundu
- School
of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar 751 024, India
| | - Baijayantimala Garnaik
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla
Nehru Nagar, Ghaziabad, Uttar
Pradesh 201 002, India
| |
Collapse
|
2
|
Reid CH, Cooke SJ. Tensile strength and knot security of five suture materials exposed to natural summer conditions of a temperate lake. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:143-153. [PMID: 36934298 DOI: 10.1002/aah.10182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Wild fish and other aquatic ectotherms are often subjected to procedures during field research that require wound closure using sutures. A variety of absorbable sutures are available for such purposes, yet degradation processes are highly dependent on temperature, and the environments in which wild ectotherms are released are almost always colder than the conditions for which absorbable sutures are typically designed (i.e., ~37°C). We therefore studied the degradation of various suture materials under a set of biologically relevant conditions for temperate freshwater fish. METHODS Using a force gauge, we tested the tensile strengths and knot securities of loops tied with five different absorbable suture materials (PDS-II, dyed coated Vicryl, undyed coated Vicryl, plain gut, and chromic gut) prior to and during submersion in a temperate lake over an 8-week period. RESULT The naturally derived collagen-based suture materials (i.e., plain gut and chromic gut) exhibited major decreases in tensile strength within 2 weeks of submersion but maintained relatively high knot security throughout the study period. The synthetic suture loops had poorer initial knot securities that increased following submersion and showed little to no evidence of degradation after 8 weeks. CONCLUSION Variable rates of absorbable suture degradation, or lack thereof, were observed. We discuss the implications of these trends for fish welfare considerations such as suture retention, wound healing, inflammation, and infection under natural conditions.
Collapse
Affiliation(s)
- Connor H Reid
- Fish Ecology and Conservation Physiology Lab, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Lab, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
3
|
Anwer AH, Ahtesham A, Shoeb M, Mashkoor F, Ansari MZ, Zhu S, Jeong C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv Colloid Interface Sci 2023; 318:102955. [PMID: 37467558 DOI: 10.1016/j.cis.2023.102955] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
The modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them. There are several types of fillers that can be added to polymers to enhance their quality, such as cellulose-based fillers, clay nanomaterials, carbon black, talc, carbon quantum dots, and many others. Biopolymer-based nanocomposites are considered a superior alternative to traditional materials as they reduce reliance on fossil fuels and promote the use of renewable resources. This review covers the current state-of-the-art in nanocomposite and bio-nanocomposite materials, focusing on ways to improve their features and the various applications they can be used for. The review article also investigates the utilization of diverse nanocomposites as a viable approach for developing bio-nanocomposites. It delves into the underlying principles that govern the synthesis of these materials and explores their prospective applications in the biomedical field, food packaging, sensing (Immunosensors), and energy storage devices. Lastly, the review discusses the future outlook and current challenges of these materials, with a focus on sustainability.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Afreen Ahtesham
- School of Chemical Sciences University Sains Malaysia, Penang, Malaysia
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shushuai Zhu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Bioresorbable polylactic acid (PLA) and bioactive glasses (BG) composite: Influence of gold coated of BG powder on mechanical properties and chemical reactivity. J Mech Behav Biomed Mater 2023; 138:105571. [PMID: 36495707 DOI: 10.1016/j.jmbbm.2022.105571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
Due to the ageing of the population, the synthesis of biomaterials and the optimization of their physico-chemical characteristics are at the heart of many research projects in regenerative medicine. The emergence of 3D printing techniques has rapidly led to the manufacture PLA-BG composite scaffolds using the FFF (Fused Filament Fabrication) technique. However, this composite presents some problems including a lower mechanical strength than the two compounds alone, probably due to the ionic salting-out induced by the BG. This study aims to counter this phenomenon by coating the BG particles with a thin layer of gold. The 3D composite objects will then be characterized mechanically and biologically to ensure that the bioactive character of the composite is preserved.
Collapse
|
5
|
Wu J, Chen X, Hu J, Yan S, Zhang J. Temperature-Dependent Polymorphism and Phase Transformation of Friction Transferred PLLA Thin Films. Polymers (Basel) 2022; 14:polym14235300. [PMID: 36501694 PMCID: PMC9741441 DOI: 10.3390/polym14235300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Poly(L-lactic acid) (PLLA) thin films with a highly oriented structure, successfully prepared by a fast friction transfer technique, were investigated mainly on the basis of synchrotron radiation wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). The crystalline structure of the highly oriented PLLA film was remarkably affected by friction transfer temperatures, which exhibited various crystal forms in different friction temperature regions. Interestingly, metastable β-form was generated at all friction transfer temperatures (70-140 °C) between Tg and Tm, indicating that fast friction transfer rate was propitious to the formation of β-form. Furthermore, the relative content among β-, α'-, and α-forms at different friction temperatures was estimated by WAXD as well as FTIR spectroscopy. In situ temperature-dependent WAXD was applied to reveal the complicated phase transition behavior of PLLA at a friction transfer temperature of 100 °C. The results illustrated that the contents of β- and α'-forms decreased in turn, whereas the α-form increased in content due to partially melt-recrystallization or crystal perfection. Moreover, by immersing into a solvent of acetone, β-, α'-form were transformed into stable α-crystalline form directly as a consequence. The highly oriented structure was maintained with the chain perfectly parallel to friction transfer direction after acetone treatment, evidenced by polarized FTIR and polarized optical microscopy (POM) measurements.
Collapse
Affiliation(s)
- Jinghua Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xing Chen
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Hu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
- Correspondence:
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect. SUSTAINABILITY 2022. [DOI: 10.3390/su14116469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The meat processing industry produces a huge quantity of by-products, approximately 150 million tonnes per year. The live weight of the animals is distinguished as edible, inedible, and discardable by-products, with the discardable parts equating to 66%, 52%, and 80% of the overall live weight of cattle, lamb, and pigs, respectively. Only a small percentage of those by-products are nowadays exploited for the production of high added value products such as animal feed, glue, fertilizers, etc., whereas the main management method is direct disposal to landfills. As such, the current disposal methodologies of these by-products are problematic, contributing to environmental contamination, soil degradation, air pollution, and possible health problems. Nevertheless, these by-products are rich in collagen, keratin, and minerals, being thus promising sources of high-value materials such as bioenergy, biochemical and other biomaterials that could be exploited in various industrial applications. In this paper, the possible utilization of slaughterhouse by-products for the production of various high added value materials is discussed. In this context, the various processes presented provide solutions to more sustainable management of the slaughterhouse industry, contributing to the reduction of environmental degradation via soil and water pollution, the avoidance of space depletion due to landfills, and the development of a green economy.
Collapse
|
7
|
Fabrication and Characterization of Superhydrophobic Graphene/Titanium Dioxide Nanoparticles Composite. Polymers (Basel) 2021; 14:polym14010122. [PMID: 35012144 PMCID: PMC8747427 DOI: 10.3390/polym14010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Materials with superhydrophobic surfaces have received vast attention in various industries due to their valuable properties, such as their self-cleaning and antifouling effects. These promising superhydrophobic properties are taken into high priority, particularly for medical devices and applications. The development of an ideal superhydrophobic surface is a challenging task and is constantly progressing. Various strategies have been introduced; however, a minority of them are cost-effective. This work presents a facile fabrication of the superhydrophobic surface by using graphene and titanium dioxide (TiO2) nanoparticles. The graphene and TiO2 hybrid nanoparticles are dip-coated on a biodegradable thermoplastic poly(lactic acid) (PLA) substrate. The thermoplastic PLA is approved by the Food and Drug Administration (FDA), and is widely utilized in medical devices. The graphene/TiO2 coating is substantiated to transform the hydrophilic PLA film into superhydrophobic biomaterials that can help to reduce hazardous medical-device complications. The surface wettability of the graphene/TiO2 nanoparticle-coated PLA surface was evaluated by measuring the apparent water contact angle. The surface chemical composition and surface morphology were analyzed via Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The graphene/TiO2-coated PLA film achieved superhydrophobic properties by demonstrating a water contact angle greater than 150°. The water contact angle of the graphene/TiO2 coating increased along with the concentration of the nanoparticles and the ratio of TiO2 to graphene. Moreover, the graphene/TiO2 coating exhibited excellent durability, whereby the contact angle of the coated surface remained unchanged after water immersion for 24 h. The duration of the effectiveness of the superhydrophobic coating suggests its suitability for medical devices, for which a short duration of administration is involved. This study reports an easy-to-replicate and cost-effective method for fabricating superhydrophobic graphene/TiO2-coated surfaces, which additionally substantiates a potential solution for the manufacturing of biomaterials in the future.
Collapse
|
8
|
Brézulier D, Chaigneau L, Jeanne S, Lebullenger R. The Challenge of 3D Bioprinting of Composite Natural Polymers PLA/Bioglass: Trends and Benefits in Cleft Palate Surgery. Biomedicines 2021; 9:1553. [PMID: 34829782 PMCID: PMC8615666 DOI: 10.3390/biomedicines9111553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Cleft lip and palate is the fourth most common congenital malformation. Its prevalence is about 1 in 750 to 1 in 2000 live births. The consequences of this malformation are major: maxillary growth deficit, unaesthetic appearance, phonation disorders, difficulty in eating, and psycho-social disorders. Cleft palate repair establishes the division between the oral and nasal cavities. The alveolar bone graft is a key step. Different sites of autogenous bone harvesting are used, the most common being the iliac crest. Nevertheless, the large number of complications associated with harvesting has led to the use of substitute biomaterials. Bioactive glasses, discovered in 1969, are a group of synthetic silica-based materials with bone-bonding properties. Although 45S5 granular composition is commonly used in bone surgery to repair critical defects, it is only rarely used in the repair of cleft palates because this galenic form is only moderately adapted. However, advances in bone tissue engineering allow the shaping of three-dimensional scaffolds, which support colonization by host cells. Recent advances in computer-aided design/computer-aided manufacturing (CAD/CAM) have even led to the 3D printing of scaffolds combining 45S5 bioglass with a natural and biocompatible poly-lactic acid matrix. The shape of the parts is customized and adapted to the particular shape of the critical bone defects. The objective of this literature review is to highlight the particularities of alveolar defects subsequent to facial clefts, then to detail the characteristics of the materials and technologies used to elaborate 3D matrices by bioprinting. Finally, we will explore research directions regarding their use in reconstructive surgery of cleft palates.
Collapse
Affiliation(s)
- Damien Brézulier
- CNRS, University of Rennes, ISCR-UMR 6226, 35000 Rennes, France; (L.C.); (S.J.); (R.L.)
- Pôle Odontologie, CHU Rennes, University of Rennes, 35043 Rennes, France
| | - Louis Chaigneau
- CNRS, University of Rennes, ISCR-UMR 6226, 35000 Rennes, France; (L.C.); (S.J.); (R.L.)
| | - Sylvie Jeanne
- CNRS, University of Rennes, ISCR-UMR 6226, 35000 Rennes, France; (L.C.); (S.J.); (R.L.)
- Pôle Odontologie, CHU Rennes, University of Rennes, 35043 Rennes, France
| | - Ronan Lebullenger
- CNRS, University of Rennes, ISCR-UMR 6226, 35000 Rennes, France; (L.C.); (S.J.); (R.L.)
| |
Collapse
|
9
|
Giram PS, Garnaik B. Evaluation of biocompatibility of synthesized low molecular weight
PLGA
copolymers using zinc L‐proline through green route for biomedical application. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prabhanjan S. Giram
- Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
10
|
Marquez-Bravo S, Doench I, Molina P, Bentley FE, Tamo AK, Passieux R, Lossada F, David L, Osorio-Madrazo A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers (Basel) 2021; 13:polym13101563. [PMID: 34068136 PMCID: PMC8152965 DOI: 10.3390/polym13101563] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.
Collapse
Affiliation(s)
- Sofia Marquez-Bravo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Pamela Molina
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Flor Estefany Bentley
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Renaud Passieux
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | | | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-67363
| |
Collapse
|
11
|
|
12
|
Houacine C, Yousaf SS, Khan I, Khurana RK, Singh KK. Potential of Natural Biomaterials in Nano-scale Drug Delivery. Curr Pharm Des 2019; 24:5188-5206. [PMID: 30657035 DOI: 10.2174/1381612825666190118153057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The usage of natural biomaterials or naturally derived materials intended for interface with biological systems has steadily increased in response to the high demand of amenable materials, which are suitable for purpose, biocompatible and biodegradable. There are many naturally derived polymers which overlap in terms of purpose as biomaterials but are equally diverse in their applications. METHODS This review examines the applications of the following naturally derived polymers; hyaluronic acid, silk fibroin, chitosan, collagen and tamarind polysaccharide (TSP); further focusing on the biomedical applications of each as well as emphasising on individual novel applications. RESULTS Each of the polymers was found to demonstrate a wide variety of successful biomedical applications fabricated as wound dressings, scaffolds, matrices, films, sponges, implants or hydrogels to suit the therapeutic need. Interestingly, blending and amelioration of polymer structures were the two selection strategies to modify the functionality of the polymers to suit the purpose. Further, these polymers have shown promise to deliver small molecule drugs, proteins and genes as nano-scale delivery systems. CONCLUSION The review highlights the range of applications of the aforementioned polymers as biomaterials. Hyaluronic acid, silk fibroin, chitosan, collagen and TSP have been successfully utilised as biomaterials in the subfields of implant enhancement, wound management, drug delivery, tissue engineering and nanotechnology. Whilst there are a number of associated advantages (i.e. biodegradability, biocompatibility, non-toxic, nonantigenic as well as amenability) the selected disadvantages of each individual polymer provide significant scope for their further exploration and overcoming challenges like feasibility of mass production at a relatively low cost.
Collapse
Affiliation(s)
- Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sakib Saleem Yousaf
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool, United Kingdom
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
13
|
Visco A, Scolaro C, Giamporcaro A, De Caro S, Tranquillo E, Catauro M. Threads Made with Blended Biopolymers: Mechanical, Physical and Biological Features. Polymers (Basel) 2019; 11:polym11050901. [PMID: 31108907 PMCID: PMC6572296 DOI: 10.3390/polym11050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Poly (Lactic Acid), PLA, and Poly (ε-CaproLactone), PCL, compatibilized with Ethyl Ester l-Lysine Triisocyanate (LTI) can be employed as biomaterials. We mixed PLA with PCL and LTI in a twin extruder and by a melt spinning process obtained threads with an average diameter of about 0.3 mm. In order to study the possible application of these threads, mechanical tensile (with the calorimetric and morphological investigations) and biological tests were performed. The results highlighted these biopolymers as promising materials for sutures since they can be rigid and elastic (especially by increasing the PCL amount in the blend), and they are bioactive, able to inhibit bacterial growth. This paper represents a starting point to optimize the blend composition for biomedical suture application.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
- Institute for Chemical-Physical Processes CNR ⁻IPCF, Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Italy.
| | - Cristina Scolaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Alberto Giamporcaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Elisabetta Tranquillo
- Department of Engineering, University of Campania Luigi Vanvitelli, VialeAbramo Lincoln 5, 81100 Caserta, Italy.
| | - Michelina Catauro
- Department of Engineering, University of Campania Luigi Vanvitelli, VialeAbramo Lincoln 5, 81100 Caserta, Italy.
| |
Collapse
|
14
|
Zhang W, Yin B, Xin Y, Li L, Ye G, Wang J, Shen J, Cui X, Yang Q. Preparation, Mechanical Properties, and Biocompatibility of Graphene Oxide-Reinforced Chitin Monofilament Absorbable Surgical Sutures. Mar Drugs 2019; 17:E210. [PMID: 30987286 PMCID: PMC6520968 DOI: 10.3390/md17040210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Chitin (CT) is a good material to prepare surgical sutures due to its conspicuous biological characteristics. However, the poor mechanical strength of pure CT sutures limits its application. In order to improve its strength, a composite monofilament absorbable suture was prepared in this study using graphene oxide and chitin (GO-CT) using a green method. FT-IR spectra showed that GO-CT contained the characteristic functional groups of GO and CT, indicating that a GO-CT suture was successfully obtained. With the addition of a small amount of GO (1.6wt% solution) in chitin, the breaking tensile strength, knot strength, and knot-pull strength of the GO-CT suture were significantly improved compared to the CT suture. The biocompatibility of the GO-CT suture in vitro was checked by tetrazolium-based colorimetric assays and no cytotoxicity to L929 cells was found. In vivo, the subcutaneous implantation of GO-CT sutures in the dorsal skin of rats found no abnormalities by hematoxylin-eosin staining. Furthermore, there were no significant changes in the gene expression of the inflammatory mediators, interleukin 1β (IL-1β), tumor necrosis factor-α, IL-6, IL-17A, interferon-γ, or IL-10; however, the expression of transforming growth factor β was significantly increased in the first week. In summary, GO-CT sutures may have potential as a suture material in the clinic.
Collapse
Affiliation(s)
- Wei Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Bin Yin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Yu Xin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Lei Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Guanlin Ye
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Junxian Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Jianfei Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Xiao Cui
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China.
| |
Collapse
|
15
|
Effect of Cross-Linking Density on the Structures and Properties of Carbodiimide-Treated Gelatin Matrices as Limbal Stem Cell Niches. Int J Mol Sci 2018; 19:ijms19113294. [PMID: 30360558 PMCID: PMC6274912 DOI: 10.3390/ijms19113294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Given that human amniotic membrane is a valuable biological material not readily available for corneal epithelial tissue engineering, gelatin is considered as a potential alternative to construct a cellular microenvironment. This study investigates, for the first time, the influence of cross-linking density of carbodiimide-treated gelatin matrices on the structures and properties of artificial limbal stem cell niches. Our results showed that an increase in the carbodiimide concentration from 1.5 to 15 mM leads to an upward trend in the structural and suture strength of biopolymers. Furthermore, increasing number of cross-linking bridges capable of linking protein molecules together may reduce their crystallinity. For the samples treated with 50 mM of cross-linker (i.e., the presence of excess N-substituted carbodiimide), abundant N-acylurea was detected, which was detrimental to the in vitro and in vivo ocular biocompatibility of gelatin matrices. Surface roughness and stiffness of biopolymer substrates were found to be positively correlated with carbodiimide-induced cross-link formation. Significant increases of integrin β1 expression, metabolic activity, and ABCG2 expression were noted as the cross-linker concentration increased, suggesting that the bulk crystalline structure and surface roughness/stiffness of niche attributed to the number of cross-linking bridges may have profound effects on a variety of limbal epithelial cell behaviors, including adhesion, proliferation, and stemness maintenance. In summary, taking the advantages of carbodiimide cross-linking-mediated development of gelatin matrices, new niches with tunable cross-linking densities can provide a significant boost to maintain the limbal stem cells during ex vivo expansion.
Collapse
|
16
|
Botvin V, Pozdniakov M, Filimoshkin A. Intermolecular “zipper” type depolymerization of oligomeric molecules of lactic and glycolic acids prepacked as paired associates. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Liberski A, Ayad N, Wojciechowska D, Kot R, Vo DM, Aibibu D, Hoffmann G, Cherif C, Grobelny-Mayer K, Snycerski M, Goldmann H. Weaving for heart valve tissue engineering. Biotechnol Adv 2017; 35:633-656. [DOI: 10.1016/j.biotechadv.2017.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
18
|
Rabelo R, Silva L, Borges N, Vulcani V, Oliveira R, Santos G, Queiroz P. Novas perspectivas no diagnóstico e tratamento da acropostite-fimose em touros. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO A acropostite-fimose é um processo inflamatório da extremidade do prepúcio, diagnosticada com frequência em touros. O presente estudo objetivou avaliar o exame ultrassonográfico na definição da viabilidade do folheto prepucial interno (FPI) e na evolução clínica do pós-operatório, após o emprego de fios de categute ou poliglactina na hemostasia e de algodão ou poliglactina na confecção de sutura padrão Donatti empregada para fixar o FPI à pele prepucial no transoperatório da acropostite-fimose em touros. A sutura utilizada foi captonada ou não captonada, e os animais submetidos ao procedimento cirúrgico apresentavam no mínimo dois terços do FPI viável. Os touros foram alocados, aleatoriamente, em quatro grupos contendo nove animais cada, de acordo com o fio empregado na hemostasia e na confecção da sutura padrão Donatti. O exame ultrassonográfico mostrou-se importante na indicação ou não do tratamento cirúrgico da acropostite-fimose e possibilitou localizar lesões, mensurar a área de reação tecidual e identificar lesões profundas e pontos de estreitamento do FPI. Os animais de GII apresentaram edema mais discreto, observando-se diferença significativa (P<0,05) entre GII e os grupos GI, GIII e GIV. A ocorrência de hiperemia no sétimo dia de pós-operatório também foi menor nos touros do grupo GII, ocorrendo diferença significativa (P<0,05) entre GII e os grupos GI e GIII. A sutura empregando o dispositivo de látex (cápton) e o emprego do fio de poliglactina apresentaram-se como medidas benéficas, resultando em menor número de complicações pós-operatórias.
Collapse
|
19
|
Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication 2017; 9:012002. [DOI: 10.1088/1758-5090/aa5766] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Shimizu N, Tarlton J, Friend E, Doran I, Parsons K. Tensile Comparison of Polydioxanone, Polyglyconate, and Barbed Glycolide-Trimethylene Carbonate Suture in Canine Cadaveric Tensor Fascia Lata. Vet Surg 2016; 46:89-94. [DOI: 10.1111/vsu.12580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Naomi Shimizu
- Department of Clinical Sciences (Companion Animals), College of Veterinary Medicine; University of Liège; Liège Belgium
| | - John Tarlton
- School of Veterinary Sciences; University of Bristol; Bristol United Kingdom
| | - Ed Friend
- School of Veterinary Sciences; University of Bristol; Bristol United Kingdom
| | - Ivan Doran
- School of Veterinary Sciences; University of Bristol; Bristol United Kingdom
| | - Kevin Parsons
- School of Veterinary Sciences; University of Bristol; Bristol United Kingdom
| |
Collapse
|
21
|
Küng F, Schubert DW, Stafiej P, Kruse FE, Fuchsluger TA. A novel suture retention test for scaffold strength characterization in ophthalmology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:941-6. [PMID: 27612789 DOI: 10.1016/j.msec.2016.07.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
Sutures are a common way to attach scaffolds in patients. For tubular cardiac scaffolds, the 'suture retention strength' is commonly used to evaluate the resistance of a scaffold against the pull-out of a suture. In order to make this quantity accessible for ophthalmological scaffolds the test procedure has been modified in a novel way. Polycaprolactone (PCL) films of different thicknesses and an amniotic membrane (AM) were used for the experiments. Circular samples with a radius of 7mm were taken and a suture was passed through each sample and tied to a loop. The sample was clamped in a tensile tester and a bolt was passed through the loop. The suture was then pulled with a constant deformation rate until pull-out occurred. The suture retention strength, the deformation at the suture retention strength, and the deformation at rupture were determined for each sample. The presented modified suture retention test allows to measure the relevant parameters of samples on the scale of ophthalmological scaffolds in a reproducible way. A comparison between the first data on PCL and AM has been made.
Collapse
Affiliation(s)
- Florian Küng
- Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen, Germany; Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen, Germany
| | - Piotr Stafiej
- Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Thomas A Fuchsluger
- Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
22
|
|
23
|
Scott Taylor M, Shalaby SW. Sutures. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wan WK, Yang L, Padavan DT. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine (Lond) 2007; 2:483-509. [PMID: 17716133 DOI: 10.2217/17435889.2.4.483] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-delivery devices are fundamentally important in improving the pharmacological profiles of therapeutic molecules. Nanocontrolled-release systems are attracting a lot of attention currently owing to their large surface area and their ability to target delivery to specific sites in the human body. In addition, they can penetrate the cell membrane for gene, nucleic acid and bioactive peptide/protein delivery. Representative applications of nanodrug-delivery systems include controlled-release wound dressings, controlled-release scaffolds for tissue regeneration and implantable biodegradable nanomaterial-based medical devices integrated with drug-delivery functions. We review the present status and future perspectives of various types of nanocontrolled-release systems. Although many of the well-established degradable and nondegradable controlled-release vehicles are being investigated for their processing into nanocarriers, several new emerging nanomaterials are being studied for their controlled-release properties. The release of multiple bioactive agents, each with its own kinetic profile, is becoming possible. In addition, integration of the nanocontrolled-release systems with other desirable functions to create new, cross-discipline applications can also be realized.
Collapse
Affiliation(s)
- W K Wan
- University of Western Ontario, Biomedical Engineering Graduate Program, London, Ontario, Canada.
| | | | | |
Collapse
|
25
|
Degradable Polymer Microspheres for Controlled Drug Delivery. ADVANCES IN POLYMER SCIENCE 2007. [DOI: 10.1007/3-540-45734-8_3] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
|
27
|
Tognana E, Padera RF, Chen F, Vunjak-Novakovic G, Freed LE. Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthritis Cartilage 2005; 13:896-905. [PMID: 16019238 DOI: 10.1016/j.joca.2005.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 05/04/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Development and remodeling of engineered cartilage-explant composites were studied in vitro and in vivo. DESIGN Individual and interactive effects of cell chondrogenic potential (primary or fifth passage bovine calf chondrocytes), scaffold degradation rate (hyaluronan benzyl ester or polyglycolic acid), and adjacent tissue cell activity and architecture (vital trabecular bone (VB), articular cartilage (AC), devitalized bone (DB) or digested cartilage (DC)) were evaluated over 8 weeks in vitro (bioreactor cultures) and in vivo (ectopic implants). RESULTS In vitro, significant effects of cell type on construct adhesive strength (P<0.001) and scaffold type on adhesive strength (P<0.001), modulus (P=0.014), glycosaminoglycans (GAG) (P<0.001), and collagen (P=0.039) were observed. Chondrogenesis was best when the scaffold degradation rate matched the extracellular matrix deposition rate. In vivo, adjacent tissue type affected adhesive strength (P<0.001), modulus (P<0.001), and GAG (P<0.001) such that 8-week values obtained for bone (VB and DB) were higher than for cartilage (AC). In the AC/construct group, chondrogenesis appeared attenuated in the region of the construct close to the AC. In contrast, in the VB/construct group, a 500 microm thick zone of mature hyaline-like cartilage formed at the interface, and signs of active remodeling were present in the bone that included osteoclastic and osteoblastic activity and trabecular rebuttressing; these features were not present in the DB group or in vitro. CONCLUSIONS Development and remodeling of composites based on engineered cartilage were mediated in vitro by cell chondrogenic potential and scaffold degradation rate, and in vivo by type of adjacent tissue and time.
Collapse
Affiliation(s)
- Enrico Tognana
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
28
|
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 2005; 104:6147-76. [PMID: 15584698 DOI: 10.1021/cr040002s] [Citation(s) in RCA: 1804] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Odile Dechy-Cabaret
- Laboratoire Hétérochimie Fondamentale et Appliquée du CNRS (UMR 5069), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | |
Collapse
|
29
|
Ribeiro AR, Graziano KU. [Surgical suture threads and the operating room nurse: forecasting and provision criteria according to the nature of hospital institutions]. Rev Esc Enferm USP 2004; 37:61-8. [PMID: 14727445 DOI: 10.1590/s0080-62342003000400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study has identified and described criteria adopted by the nurses in selecting and calculating quantities of surgical sutures to supply the Surgical Center, according to the public or private nature of the surgical centers. The data were collected using structured questionnaires in 74 hospitals within the municipality of São Paulo. The majority of hospitals are medium in size and privately owned with a general Operation Room and up to 500 surgical procedures performed per month. The procedures, the type and the variety of surgical sutures are related to the nature of hospital management. However, there are no criteria to select surgical sutures and their distribution in the operation rooms. The nurses participate on the procedures for purchasing, distribution and use of the surgical sutures.
Collapse
|
30
|
Auras R, Harte B, Selke S. Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. J Appl Polym Sci 2004. [DOI: 10.1002/app.20148] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Albertsson AC, Varma IK. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003; 4:1466-86. [PMID: 14606869 DOI: 10.1021/bm034247a] [Citation(s) in RCA: 1194] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aliphatic polyesters prepared by ring-opening polymerization of lactones are now used worldwide as bioresorbable devices in surgery (orthopaedic devices, sutures, stents, tissue engineering, and adhesion barriers) and in pharmacology (control drug delivery). This review presents the various methods of the synthesis of polyesters and tailoring the properties by proper control of molecular weight, composition, and architecture so as to meet the stringent requirements of devices in the medical field. The effect of structure on properties and degradation has been discussed. The applications of these polymers in the biomedical field are described in detail.
Collapse
Affiliation(s)
- Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, The Royal Institute of Technology, S-10044 Stockholm, Sweden
| | | |
Collapse
|
32
|
Aliphatic Polyesters: Synthesis, Properties and Applications. ADVANCES IN POLYMER SCIENCE 2002. [DOI: 10.1007/3-540-45734-8_1] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
GRUVEGÅRD M, LINDBERG T, ALBERTSSON* AC. Random Copolymers of 1,5-Dioxepan-2-one. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 1998. [DOI: 10.1080/10601329808002019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Abstract
The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The biotechnological applications focus on the aspects of cellular growth or delivery of proteins capable of stimulating cellular response. However, basic knowledge about collagen biochemistry and the processing technology in combination with understanding of the physico-chemical properties is necessary for an adequate application of collagen for carrier systems. The purpose of this review article is to summarize information available on collagen dosage forms for drug delivery as well as to impart an overview of the chemical structures and the galenical properties including detailed description of the processing steps - extraction, purification, chemical crosslinking and sterilization. The most successful and stimulating applications are shields in ophthalmology, injectable dispersions for local tumor treatment, sponges carrying antibiotics and minipellets loaded with protein drugs. However, the scientific information about manipulating release properties or mechanistic studies is not as abundant as for some synthetic polymers.
Collapse
Affiliation(s)
- W Friess
- University of Erlangen, Germany.
| |
Collapse
|
35
|
Borovetz HS, Burke JF, Chang TMS, Colas A, Cranin AN, Curtis J, Gemmell CH, Griffith BP, Hallab NJ, Heller J, Hoffman AS, Jacobs JJ, Ideker R, Katz JL, Kennedy J, Lemons JE, Malchesky PS, Morgan JR, Padera RE, Patel AS, Reffojo MF, Roby MS, Rohr TE, Schoen FJ, Sefton MV, Sheridan RT, Smith DC, Spelman FA, Tarcha PJ, Tomapkins RG, Venugopalan R, Wagner WR, Yager P, Yarmush ML. Application of Materials in Medicine, Biology, and Artificial Organs. Biomater Sci 1996. [DOI: 10.1016/b978-012582460-6/50010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Albertsson AC, Gruvegård M. Degradable high-molecular-weight random copolymers, based on ε-caprolactone and 1,5-dioxepan-2-one, with non-crystallizable units inserted in the crystalline structure. POLYMER 1995. [DOI: 10.1016/0032-3861(95)93601-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R. Biodegradable polymer scaffolds for tissue engineering. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:689-93. [PMID: 7764913 DOI: 10.1038/nbt0794-689] [Citation(s) in RCA: 555] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthetic polymer scaffolds designed for cell transplantation were reproducibly made on a large scale and studied with respect to biocompatibility, structure and biodegradation rate. Polyglycolic acid (PGA) was extruded and oriented to form 13 microns diameter fibers with desired tenacity. Textile processing techniques were used to produce fibrous scaffolds with a porosity of 97% and sufficient structural integrity to maintain their dimensions when seeded with isolated cartilage cells (chondrocytes) and cultured in vitro at 37 degrees C for 8 weeks. Cartilaginous tissue consisting of glycosaminoglycan and collagen was regenerated in the shape of the original PGA scaffold. The resulting cell-polymer constructs were the largest grown in vitro to date (1 cm diameter x 0.35 cm thick). Construct mass was accurately predicted by accounting for accumulation of tissue components and scaffold degradation. The scaffold induced chondrocyte differentiation with respect to morphology and phenotype and represents a model cell culture substrate that may be useful for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- L E Freed
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | | | |
Collapse
|