1
|
Islam S, Dembowski M, Schemitsch EH, Bougherara H, Bagheri ZS, Zdero R. Biomechanical design of a new proximal humerus fracture plate using alternative materials. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3868. [PMID: 39243184 DOI: 10.1002/cnm.3868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Comminuted proximal humerus fractures are often repaired by metal plates, but potentially still experience bone refracture, bone "stress shielding," screw perforation, delayed healing, and so forth. This "proof of principle" investigation is the initial step towards the design of a new plate using alternative materials to address some of these problems. Finite element modeling was used to create design graphs for bone stress, plate stress, screw stress, and interfragmentary motion via three different fixations (no, 1, or 2 "kickstand" [KS] screws across the fracture) using a wide range of plate elastic moduli (EP = 5-200 GPa). Well-known design optimization criteria were used that could minimize bone, plate, and screw failure (i.e., peak stress < ultimate tensile strength), reduce bone "stress shielding" (i.e., bone stress under the new plate ≥ bone stress for an intact humerus, titanium plate, and/or steel plate "control"), and encourage callus growth leading to early healing (i.e., 0.2 mm ≤ axial interfragmentary motion ≤ 1 mm; shear/axial interfragmentary motion ratio <1.6). The findings suggest that a potentially optimal configuration involves the new plate being manufactured from a material with an EP of 5-41.5 GPa with 1 KS screw; but, using no KS screws would cause immediate bone fracture and 2 KS screws would almost certainly lead to delayed healing. A prototype plate might be fabricated using alternative materials suggested for orthopedics and other industries, like fiber-metal laminates, fiber-reinforced polymers, metal foams, pure polymers, shape memory alloys, or 3D-printed porous metals.
Collapse
Affiliation(s)
- Sabrina Islam
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia, USA
| | - Mitchell Dembowski
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Emil H Schemitsch
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, Ontario, Canada
- Division of Orthopaedic Surgery, Western University, London, Ontario, Canada
| | - Habiba Bougherara
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Z Shaghayegh Bagheri
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia, USA
- Kite Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Radovan Zdero
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, Ontario, Canada
| |
Collapse
|
2
|
Effective Treatment of Femur Diaphyseal Fracture with Compression Plate - A Finite Element and In Vivo Study Comparing the Healing Outcomes of Nailing and Plating. Indian J Orthop 2022; 57:146-158. [PMID: 36660487 PMCID: PMC9789296 DOI: 10.1007/s43465-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The rigidity in osteosynthesis causes primary healing, and it takes longer to heal. The flexibility provided to the fixation allows micromotion between fragments which accelerates secondary healing. METHODS In this study, the healing outcomes of nailing and plating in different fixation stabilities were investigated and compared by using a finite element tool. The clinical observational study was also performed to verify the results of the finite element analysis. The nonlinear contact analysis was performed on 5 different fixation configurations capturing nail and plate in immediate post-surgery. RESULTS The finite element analysis results showed that flexibility instead of rigidity in interlock nail implantation increases the axial and shear micromotion near the fracture site by 47.4% (P < 0.05) and 12.4% (P < 0.05), respectively. For LCDCP implantation, the flexible fixation increases the axial and shear micromotion near fracture site by 75.7% (P < 0.05) and 25.3% (P < 0.05), respectively. CONCLUSION Our findings suggest that flexible fixations of interlock nail and LCDCP provide a preferred mechanical environment for healing, and hence, the LCDCP in flexible mode can be an effective alternative to interlock nail for the femur diaphyseal fracture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00795-1.
Collapse
|
3
|
Zhang S, Patel D, Brady M, Gambill S, Theivendran K, Deshmukh S, Swadener J, Junaid S, Leslie LJ. Experimental testing of fracture fixation plates: A review. Proc Inst Mech Eng H 2022; 236:1253-1272. [PMID: 35920401 PMCID: PMC9449446 DOI: 10.1177/09544119221108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metal and its alloys have been predominantly used in fracture fixation for
centuries, but new materials such as composites and polymers have begun to see
clinical use for fracture fixation during the past couple of decades. Along with
the emerging of new materials, tribological issues, especially debris, have
become a growing concern for fracture fixation plates. This article for the
first time systematically reviews the most recent biomechanical research, with a
focus on experimental testing, of those plates within ScienceDirect and PubMed
databases. Based on the search criteria, a total of 5449 papers were retrieved,
which were then further filtered to exclude nonrelevant, duplicate or
non-accessible full article papers. In the end, a total of 83 papers were
reviewed. In experimental testing plates, screws and simulated bones or cadaver
bones are employed to build a fixation construct in order to test the strength
and stability of different plate and screw configurations. The test set-up
conditions and conclusions are well documented and summarised here, including
fracture gap size, types of bones deployed, as well as the applied load, test
speed and test ending criteria. However, research on long term plate usage was
very limited. It is also discovered that there is very limited experimental
research around the tribological behaviour particularly on the debris’
generation, collection and characterisation. In addition, there is no identified
standard studying debris of fracture fixation plate. Therefore, the authors
suggested the generation of a suite of tribological testing standards on
fracture fixation plate and screws in the aim to answer key questions around the
debris from fracture fixation plate of new materials or new design and
ultimately to provide an insight on how to reduce the risks of debris-related
osteolysis, inflammation and aseptic loosening.
Collapse
Affiliation(s)
- Shiling Zhang
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Dharmesh Patel
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Mark Brady
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Sherri Gambill
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | | | - Subodh Deshmukh
- Sandwell and West Birmingham Hospital NHS Trust, Birmingham, UK
| | - John Swadener
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Sarah Junaid
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Laura Jane Leslie
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| |
Collapse
|
4
|
Dhason R, Roy S, Datta S. Metal and composite bone plates for B1 periprosthetic femoral fracture in healthy and osteoporotic condition: A comparative biomechanical study. Int J Artif Organs 2022; 45:704-714. [DOI: 10.1177/03913988221108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The major concern after total hip arthroplasty (THA) is the incidence of periprosthetic fracture in the weaker bone, which can lead to subsequent revision surgery. Achieving the suitable fixation without affecting the stability of the well-fixed prosthesis remains controversial. Most of the studies examined the behavior of the Periprosthetic Fracture (PF) fixation (Vancouver “B1” type) through computational and experimentation on healthy bone condition with metal plates. The aim of the present study is to analyze the influences of the metal and composite bone plate PF fixation on the axial and shear movement at the fracture site. The PF fixation constructs were modeled with medical graded stainless-steel plate (construct A), titanium plate (construct B) and carbon/epoxy composite bone plate (construct C) with 12 holes and a 4 mm fracture gap. Analysis was carried out for all the stages (stage 1—Normal bone, stage 2—THA, stage 3—Immediate Post-Operative (IPO), stage 4—Post-Operative (PO) and, stage 5—Healed Bone (HB)) under various loadings for intact and osteoporosis conditions. The results showed higher stress in cortical bone for stage 3, whereas in all the other stages lower stresses were experienced in the cortical and cancelous bone under peak load in construct C for osteoporosis model compared with other constructs. The present study suggested the construct C may be suitable for osteoporosis bone conditions.
Collapse
Affiliation(s)
- Raja Dhason
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sandipan Roy
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shubhabrata Datta
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
5
|
Djuricic A, Gee A, Schemitsch EH, Quenneville CE, Zdero R. Biomechanical design of a new percutaneous locked plate for comminuted proximal tibia fractures. Med Eng Phys 2022; 104:103801. [DOI: 10.1016/j.medengphy.2022.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
|
6
|
Takahashi D, Noyama Y, Shimizu T, Terkawi MA, Iwasaki N. Finite Element Analysis of Optimal Positioning of Femoral Osteotomy in Total Hip Arthroplasty With Subtrochanteric Shortening. Arthroplast Today 2022; 14:105-109. [PMID: 35252515 PMCID: PMC8891993 DOI: 10.1016/j.artd.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background Total hip arthroplasty with femoral shortening is frequently recommended for patients with high hip dislocation. However, the possibility of postoperative rotational deviation of the stem presents a challenge for surgeons. We aimed to determine the optimal position for osteotomy in total hip arthroplasty under full weight-bearing and turning torque by using finite element analysis. Methods Four models of femoral osteotomy with 30-mm transverse shortening at 30% (model 30), 40% (model 40), 50% (model 50), and 60% (model 60) from the proximal end of the full length of the Exeter stem were constructed. Using finite element analysis, the constructs were first analyzed under an axial load of 1500 N and then with an added torsional load of 10°. Results The analyses under torsional loading conditions revealed that the maximum von Mises stress on the stem in each model occurred at the proximal end of the distal fragment and the distal side of the stem. The maximum stress values at the stem were 819 MPa (model 30), 825 MPa (model 40), 916 MPa (model 50), and 944 MPa (model 60). The maximum stress values at the osteotomy site of the medullary cavity side of the distal bone fragment were 761 MPa (model 30), 165 MPa (model 40), 187 MPa (model 50), and 414 MPa (model 60). Conclusions The osteotomy level should be around the proximal 40% of the full length of the Exeter stem, which is most suitable for rotation stability in the early postoperative period.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Noyama
- Department of Pharmaceutical Affairs Division, Teijin Nakashima Medical Company Limited, Okayama, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Inacio JV, Schwarzenberg P, Yoon R, Kantzos A, Malige A, Nwachuku C, Dailey H. Boundary Conditions Matter - Impact of Test Setup On Inferred Construct Mechanics in Plated Distal Femur Osteotomies. J Biomech Eng 2022; 144:1136733. [PMID: 35171212 DOI: 10.1115/1.4053875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/08/2022]
Abstract
The mechanics of distal femur fracture fixation has been widely studied in bench tests that employ a variety of approaches for holding and constraining femurs to apply loads. No standard test methods have been adopted for these tests and the impact of test setup on inferred construct mechanics has not been reported. Accordingly, the purpose of this study was to use finite element models to compare the mechanical performance of a supracondylar osteotomy with lateral plating under conditions that replicate several common bench test methods. A literature review was used to define a parameterized virtual model of a plated distal femur osteotomy in axial compression loading with four boundary condition sets ranging from minimally to highly constrained. Axial stiffness, longitudinal motion, and shear motion at the fracture line were recorded for a range of applied loads and bridge spans. The results showed that construct mechanical performance was highly sensitive to boundary conditions imposed by the mechanical test fixtures. Increasing the degrees of constraint, for example by potting and rigidly clamping one or more ends of the specimen, caused up to a 25x increase in axial stiffness of the construct. Shear motion and longitudinal motion at the fracture line, which is an important driver of interfragmentary strain, was also largely influenced by the constraint test setup. These results suggest that caution should be used when comparing reported results between bench tests that use different fixtures and that standardization of testing methods is needed in this field.
Collapse
Affiliation(s)
- Jordan V Inacio
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| | - Peter Schwarzenberg
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| | - Richard Yoon
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, Jersey City Medical Center - RWJBarnabas Health, 377 Jersey Ave, Suite 130, Jersey City, NJ 07302, USA
| | - Andrew Kantzos
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Ajith Malige
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Chinenye Nwachuku
- Department of Orthopaedic Surgery, St. Luke's University Health Network, 801 Ostrum, 12 Street, Bethlehem, PA 18015, USA
| | - Hannah Dailey
- Department of Mechanical Engineering & Mechanics, Lehigh University, Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Takahashi D, Noyama Y, Asano T, Shimizu T, Irie T, Terkawi MA, Iwasaki N. Finite element analysis of double-plate fixation using reversed locking compression-distal femoral plates for Vancouver B1 periprosthetic femoral fractures. BMC Musculoskelet Disord 2021; 22:276. [PMID: 33714273 PMCID: PMC7956136 DOI: 10.1186/s12891-021-04152-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Internal fixation is recommended for treating Vancouver B1 periprosthetic femoral fractures. Although several fixation procedures have been developed with high fixation stability and union rates, long-term weight-bearing constructs are still lacking. Therefore, the aim of the present study was to evaluate the stability of a double-plate procedure using reversed contralateral locking compression-distal femoral plates for fixation of Vancouver B1 periprosthetic femoral fractures under full weight-bearing. Methods Single- and double-plate fixation procedures for locking compression-distal femoral plates were analysed under an axial load of 1,500 N by finite element analysis and biomechanical loading tests. A vertical loading test was performed to the prosthetic head, and the displacements and strains were calculated based on load-displacement and load-strain curves generated by the static compression tests. Results The finite element analysis revealed that double-plate fixation significantly reduced stress concentration at the lateral plate place on the fracture site. Under full weight-bearing, the maximum von Mises stress in the lateral plate was 268 MPa. On the other hand, the maximum stress in the single-plating method occurred at the defect level of the femur with a maximum stress value of 1,303 MPa. The principal strains of single- and double-plate fixation were 0.63 % and 0.058 %, respectively. Consistently, in the axial loading test, the strain values at a 1,500 N loading of the single- and double-plate fixation methods were 1,274.60 ± 11.53 and 317.33 ± 8.03 (× 10− 6), respectively. Conclusions The present study suggests that dual-plate fixation with reversed locking compression-distal femoral plates may be an excellent treatment procedure for patients with Vancouver B1 fractures, allowing for full weight-bearing in the early postoperative period.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan.
| | - Yoshihiro Noyama
- Department of Pharmaceutical Affairs Division, Teijin Nakashima Medical Company Limited, 688-1, Joto-Kitagata, Higashi-ku, Okayama, Japan
| | - Tsuyoshi Asano
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Tohru Irie
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| |
Collapse
|
9
|
Sarwar A, Gee A, Bougherara H, Kuzyk PRT, Schemitsch EH, Zdero R. Biomechanical optimization of the far cortical locking technique for early healing of distal femur fractures. Med Eng Phys 2021; 89:63-72. [PMID: 33608126 DOI: 10.1016/j.medengphy.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
This finite element study optimized far cortical locking (FCL) technology for early callus formation in distal femur fracture fixation with a 9-hole plate using FCL screws proximal to, and standard locking screws distal to, the fracture. Analyses were done for 120 possible FCL screw configurations by varying FCL screw distribution and number. A hip joint force of 700 N (i.e. 100% x body weight) was used, which corresponds to a typical 140 N "toe-touch" foot-to-ground force (i.e. 20% x body weight) suggested to patients immediately after surgery. Increased FCL screw distribution (i.e. shorter plate working length) caused a decrease at the medial side and an increase at the lateral side of the axial interfragmentary motion (AIM), mildly affected shaft and condylar cortex Von Mises max stress (σMAX), increased plate σMAX, and decreased shaft FCL screw and condylar locking screw σMAX. Increased FCL screw number decreased AIM and σMAX on the shaft cortex, condylar cortex, plate, and FCL screws, but not condylar screws. The optimal FCL screw configuration had 3 FCL screws in plate holes #1, 5, and 6 (proximal to distal) for optimal AIM of 0.2 - 1 mm and reduce shear fracture motion, thereby encouraging early callus formation.
Collapse
Affiliation(s)
- Ahmed Sarwar
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Aaron Gee
- Orthopaedic Biomechanics Lab, Victoria Hospital, (Room A6-144), 800 Commissioners Road, London, ON N6A-5W9, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Paul R T Kuzyk
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Emil H Schemitsch
- Orthopaedic Biomechanics Lab, Victoria Hospital, (Room A6-144), 800 Commissioners Road, London, ON N6A-5W9, Canada; Department of Surgery, Western University, London, ON, Canada
| | - Radovan Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada; Orthopaedic Biomechanics Lab, Victoria Hospital, (Room A6-144), 800 Commissioners Road, London, ON N6A-5W9, Canada; Department of Surgery, Western University, London, ON, Canada; Department of Mechanical and Materials Engineering, Western University, London, ON, Canada.
| |
Collapse
|
10
|
Gee A, Bougherara H, Schemitsch EH, Zdero R. Biomechanical design using in-vitro finite element modeling of distal femur fracture plates made from semi-rigid materials versus traditional metals for post-operative toe-touch weight-bearing. Med Eng Phys 2020; 87:95-103. [PMID: 33461680 DOI: 10.1016/j.medengphy.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/19/2023]
Abstract
This proof-of-concept study designs distal femur fracture plates from semi-rigid materials vs. traditional metals for toe-touch weight-bearing recommended to patients immediately after surgery. The two-fold goal was to (a) reduce stress shielding (SS) by increasing cortical bone stress thereby reducing the risk of bone absorption and plate loosening, and (b) reduce delayed healing (DH) via early callus formation by optimizing axial interfragmentary motion (AIM). Finite element analysis was used to design semi-rigid plates whose elastic moduli E ensured plates permitted AIM of 0.2 - 1 mm for early callus formation. A low hip joint force of 700 N (i.e. 100% x body weight) was applied, which corresponds to a typical 140 N toe-touch foot-to-ground force (i.e. 20% x body weight) recommended to patients after surgery. Analysis was done using 2 screw materials (steel or titanium) and types (locked or non-locked). Steel and titanium plates were also analyzed. Semi-rigid plates (vs. metal plates) had lower overall femur/plate construct stiffnesses of 508 - 1482 N/mm, higher cortical bone stresses under the plate by 2.02x - 3.27x thereby reducing SS, and lower E values of 414 - 2302 MPa to permit AIM of 0.2 - 1 mm thereby reducing DH.
Collapse
Affiliation(s)
- Aaron Gee
- Orthopaedic Biomechanics Lab, Room A6-144, Victoria Hospital, 800 Commissioners Road, London N6A5W9, Canada.
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada.
| | - Emil H Schemitsch
- Orthopaedic Biomechanics Lab, Room A6-144, Victoria Hospital, 800 Commissioners Road, London N6A5W9, Canada; Department of Surgery (Division of Orthopaedic Surgery), Western University, London, Canada.
| | - Radovan Zdero
- Orthopaedic Biomechanics Lab, Room A6-144, Victoria Hospital, 800 Commissioners Road, London N6A5W9, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada; Department of Surgery (Division of Orthopaedic Surgery), Western University, London, Canada; Department of Mechanical and Materials Engineering, Western University, London, Canada.
| |
Collapse
|
11
|
Zajonz D, Pönick C, Edel M, Möbius R, Pfeifle C, Prietzel T, Roth A, Fakler JKM. Results after surgical treatment of periprosthetic proximal femoral fractures. Osteosynthesis with prosthesis preservation vs. prosthesis change. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2020; 9:Doc02. [PMID: 33214984 PMCID: PMC7656975 DOI: 10.3205/iprs000146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Periprosthetic fractures (PPF) of the femur close to the hip joint have serious consequences for most geriatric affected patients. In principle, apart from the highly uncommon conservative therapy, there are two therapeutic options. On the one hand, the prosthesis-preserving treatment by means of osteosynthesis using plates and/or cerclages in general is available. On the other hand, a (partial) change of the prosthesis with optionally additive osteosynthesis or a proximal femoral replacement can be performed because of prosthesis loosening or non-reconstructable comminuted fractures as well as most cemented stem variations. The aim of this retrospective study is the analysis of periprosthetic proximal femoral fractures in the presence of a total hip arthroplasty (THA). The outcome of the operated patients is to be investigated depending on the type of care (osteosynthesis with prosthesis preservation vs. prosthesis change). Material and methods: In a retrospective case analysis, 80 patients with THA and PPF were included. They were divided into two groups. Group I represents the osteosynthetic treatment to preserve the implanted THA (n=42). Group II (n=38) includes those patients who were treated by a change of their endoprosthesis with or without additional osteosynthesis. Specifics of all patients, like gender, age at fracture, interval between fracture and implantation, length of in-patient stay, body mass index, osteoporosis, corticomedullary index and complications such as infections, re-fracture, loosening, material failure or other complications, were recorded and compared. Furthermore, the patients were re-examined by a questionnaire and the score according to Merle d’Aubigné and Postel. Results: In group I the mean follow-up time was 48.5±23 months (4 years) whereas group II amounted 32.5±24.5 months (2.7 years) (p=0.029). Besides, there were significant differences in age (81± 11 years vs. 76±10 years, p=0.047) and length of in-patient stay (14.5±8.6 days vs. 18.0±16.7 days, p=0.014). According to the score of Merle d’Aubigné and Postel, there were significantly better values for the pain in group II with comparable values for mobility and walking ability. Conclusion: The treatment of periprosthetic proximal fractures of the femur is dependent on the classification (Vancouver and Johannsen) and in particular on the prosthetic anchoring as well as the extent of the comminution zone. Older patients and patients with osteoporosis are more frequently treated with an endoprosthesis revision. Patients, who have been treated with an osteosynthesis for preserving their endoprosthesis, showed a shorter length of in-patient stay and fewer complications than people with replacement surgery. In contrast to that, patients with prosthesis revision had better outcomes concerning the score of Merle d’Aubigné and Postel.
Collapse
Affiliation(s)
- Dirk Zajonz
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.,ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany.,Clinic for Orthopaedics, Trauma and Reconstructive Surgery, Zeisigwald Hospital Bethania, Chemnitz, Germany
| | - Cathleen Pönick
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Melanie Edel
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.,ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany
| | - Robert Möbius
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.,ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany
| | - Christian Pfeifle
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.,ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany
| | - Torsten Prietzel
- ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany.,Clinic for Orthopaedics, Trauma and Reconstructive Surgery, Zeisigwald Hospital Bethania, Chemnitz, Germany
| | - Andreas Roth
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.,ZESBO - Center for research on musculoskeletal systems, Leipzig, Germany
| | - Johannes K M Fakler
- Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Application of Fibre Bragg Grating Sensors in Strain Monitoring and Fracture Recovery of Human Femur Bone. Bioengineering (Basel) 2020; 7:bioengineering7030098. [PMID: 32825200 PMCID: PMC7552668 DOI: 10.3390/bioengineering7030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Fibre Bragg Grating (FBG) sensors are gaining popularity in biomedical engineering. However, specific standards for in vivo testing for their use are absolutely limited. In this study, in vitro experimental tests were performed to investigate the behaviors and applications of gratings attached to intact and fractured thighbone for a range of compression loading (<300 N) based around some usual daily activities. The wavelength shifts and the corresponding strain sensitivities of the FBG sensors were measured to determine their effectiveness in monitoring the femoral fracture healing process. Four different arrangements of FBG sensors were selected to measure strains at different critical locations on the femoral sawbones surface. Data obtained for intact and plated sawbones were compared using both embedded longitudinal and coiled FBG arrays. Strains were measured close to the fracture, posterior linea aspera and popliteal surface areas, as well as at the proximal and distal ends of the synthetic femur; their responses are discussed herein. The gratings on the longitudinally secured FBG arrays were found to provide high levels of sensitivity and precise measurements, even for relatively small loads (<100 N). Nevertheless, embedding angled FBG sensors is essential to measure the strain generated by applied torque on the femur bone. The maximum recorded strain of the plated femur was 503.97 µε for longitudinal and -274.97 µε for coiled FBG arrays, respectively. These project results are important to configure effective arrangements and orientations of FBG sensors with respect to fracture position and fixation implant for future in vivo experiments.
Collapse
|
13
|
Özkal FM, Cakir F, Sensoz E. Schematization of Cannulated Screw Fixations in Femoral Neck Fractures Using Genetic Algorithm and Finite Element Method. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00528-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Wang K, Kenanidis E, Miodownik M, Tsiridis E, Moazen M. Periprosthetic fracture fixation of the femur following total hip arthroplasty: A review of biomechanical testing - Part II. Clin Biomech (Bristol, Avon) 2019; 61:144-162. [PMID: 30579137 DOI: 10.1016/j.clinbiomech.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Periprosthetic femoral fracture is a severe complication of total hip arthroplasty. A previous review published in 2011 summarised the biomechanical studies regarding periprosthetic femoral fracture and its fixation techniques. Since then, there have been several commercially available fracture plates designed specifically for the treatment of these fractures. However, several clinical studies still report failure of fixation treatments used for these fractures. METHODS The current literature on biomechanical models of periprosthetic femoral fracture fixation since 2010 to present is reviewed. The methodologies involved in the experimental and computational studies of periprosthetic femoral fracture fixation are described and compared with particular focus on the recent developments. FINDINGS Several issues raised in the previous review paper have been addressed by current studies; such as validating computational results with experimental data. Current experimental studies are more sophisticated in design. Computational studies have been useful in studying fixation methods or conditions (such as bone healing) that are difficult to study in vivo or in vitro. However, a few issues still remain and are highlighted. INTERPRETATION The increased use of computational studies in investigating periprosthetic femoral fracture fixation techniques has proven valuable. Existing protocols for testing periprosthetic femoral fracture fixation need to be standardised in order to make more direct and conclusive comparisons between studies. A consensus on the 'optimum' treatment method for periprosthetic femoral fracture fixation needs to be achieved.
Collapse
Affiliation(s)
- Katherine Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Eustathios Kenanidis
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Academic Orthopaedics Department, Papageorgiou General Hospital & CORE Lab at CIRI AUTH, Aristotle University Medical School, University Campus 54 124, Thessaloniki, Greece
| | - Mark Miodownik
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedics Department, Papageorgiou General Hospital & CORE Lab at CIRI AUTH, Aristotle University Medical School, University Campus 54 124, Thessaloniki, Greece
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
15
|
Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4650308. [PMID: 30420962 PMCID: PMC6211160 DOI: 10.1155/2018/4650308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022]
Abstract
This investigation assessed the biomechanical performance of the metal plate and bone strut technique for fixing recalcitrant nonunions of femur midshaft segmental defects, which has not been systematically done before. A finite element (FE) model was developed and then validated by experiments with the femur in 15 deg of adduction at a subclinical hip force of 1 kN. Then, FE analysis was done with the femur in 15 deg of adduction at a hip force of 3 kN representing about 4 x body weight for a 75 kg person to examine clinically relevant cases, such as an intact femur plus 8 different combinations of a lateral metal plate of fixed length, a medial bone strut of varying length, and varying numbers and locations of screws to secure the plate and strut around a midshaft defect. Using the traditional “high stiffness” femur-implant construct criterion, the repair technique using both a lateral plate and a medial strut fixed with the maximum possible number of screws would be the most desirable since it had the highest stiffness (1948 N/mm); moreover, this produced a peak femur cortical Von Mises stress (92 MPa) which was below the ultimate tensile strength of cortical bone. Conversely, using the more modern “low stiffness” femur-implant construct criterion, the repair technique using only a lateral plate but no medial strut provided the lowest stiffness (606 N/mm), which could potentially permit more in-line interfragmentary motion (i.e., perpendicular to the fracture gap, but in the direction of the femur shaft long axis) to enhance callus formation for secondary-type fracture healing; however, this also generated a peak femur cortical Von Mises stress (171 MPa) which was above the ultimate tensile strength of cortical bone.
Collapse
|
16
|
Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone. Symmetry (Basel) 2018. [DOI: 10.3390/sym10080335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This paper studies the stress state of a threaded fastening by using Finite Element (FE) models, applied to surgical screws in cortical bone. There is a general interest in studying the stress states induced in the different elements of a joint caused by the thread contact. Analytical models were an initial approach, and later FE models allowed detailed studies of the complex phenomena related to these joints. Different studies have evaluated standard threaded joints in machinery and structures, being the thread symmetric. However, surgical screws employ asymmetric thread geometry, selected to improve the stress level generated in the bone. Despite the interest and widespread use, there is scarce documentation on the actual effect of this thread type. In this work, we discuss the results provided by FE models with detailed descriptions of the contacts comparing differences caused by the materials of the joint, the thread geometry and the thread’s three-dimensional helical effects. The complex contacts at the threaded surfaces cause intense demand on computational resources that often limits the studies including these joints. We analyze the results provided by one commercial software package to simplify the threaded joints. The comparison with detailed FE models allows a definition of the level of uncertainty and possible limitations of this type of simplifications, and helps in making suitable choices for complex applications.
Collapse
|
17
|
Biomechanical Testing of a 3-Hole Versus a 4-Hole Sliding Hip Screw in the Presence of a Retrograde Intramedullary Nail for Ipsilateral Intertrochanteric and Femur Shaft Fractures. J Orthop Trauma 2018; 32:419-424. [PMID: 29664884 DOI: 10.1097/bot.0000000000001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The goal of this study was to compare a 3-hole versus a 4-hole sliding hip screw (SHS) in the presence of a retrograde intramedullary (RIM) nail for fixing intertrochanteric and comminuted midshaft femur fractures. METHODS Mechanical tests were performed on 10 matched pairs of human cadaveric femurs that were osteotomized and then fixed using a 3-hole SHS versus the traditional "gold standard" 4-hole SHS in the presence of an RIM nail. RESULTS Data showed no differences between the 3-hole SHS with RIM nail versus 4-hole SHS with RIM nail for stiffness (281 ± 127 vs. 260 ± 118 N/mm, P = 0.76), clinical failure at 10 mm of hip displacement (2014 ± 363 vs. 2134 ± 614 N, P = 0.52), or ultimate mechanical failure (3476 ± 776 vs. 3669 ± 755 N, P = 0.12). CONCLUSIONS For this fracture pattern, a 3-hole SHS with RIM nail may be a suitable surgical alternative to the traditional "gold standard" method because it provides the same biomechanical properties while potentially reducing surgical time, blood loss, and hardware used.
Collapse
|
18
|
Biomechanical analysis using FEA and experiments of a standard plate method versus three cable methods for fixing acetabular fractures with simultaneous THA. Med Eng Phys 2017. [DOI: 10.1016/j.medengphy.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Do Transcortical Screws in a Locking Plate Construct Improve the Stiffness in the Fixation of Vancouver B1 Periprosthetic Femur Fractures? A Biomechanical Analysis of 2 Different Plating Constructs. J Orthop Trauma 2017; 31:15-20. [PMID: 28002219 DOI: 10.1097/bot.0000000000000704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This biomechanical study compared Vancouver B1 periprosthetic femur fractures fixed with either a locking plate and anterior allograft strut construct or an equivalent locking plate with locking attachment plates construct in paired cadaveric specimens. METHODS After 9 pairs of cadaveric femora were implanted with a cemented primary total hip arthroplasty, an oblique osteotomy was created distal to the cement mantle. Femora underwent fixation with either: (1) a locking plate with anterior strut allograft (locking compression plating (LCP)-Allograft) or (2) a locking plate with 2 locking attachment plates (LAPs) (LCP-LAP). Construct stiffness was compared in nondestructive mechanical testing for 2 modes of compression (20 degrees abduction and 20 degrees flexion), 2 four-point bending directions (anterior-posterior and medial-lateral), and torsion. A final load to failure test evaluated the axial compression required to achieve fracture gap closure or construct yield. Fixation was compared through paired t tests (α = 0.05). RESULTS The LCP-Allograft construct demonstrated higher stiffness values in compressive abduction (207 ± 57 vs.151 ± 40 N/mm), torsion (1666 ± 445 vs. 1125 ± 160 N mm/degree) and medial-lateral four-point bending (413 ± 135 vs. 167 ± 68 N/mm) compared with the LCP-LAP construct (P < 0.05). No differences were identified between the 2 constructs in compressive flexion, anterior-posterior bending, or the load to failure test (P > 0.05). CONCLUSION Use of the anterior allograft strut created a stiffer construct compared with the LCP-LAP for the treatment of a Vancouver B1 periprosthetic femur fracture only in loading modes with increased medial-lateral bending. Although these static load results are indicative of the early postoperative environment, further fatigue testing is required to better understand the importance of the reduced medial-lateral stiffness over a longer period.
Collapse
|
20
|
Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:6183679. [PMID: 27051460 PMCID: PMC4808658 DOI: 10.1155/2016/6183679] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/07/2016] [Indexed: 11/18/2022]
Abstract
Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.
Collapse
|
21
|
Goshulak P, Samiezadeh S, Aziz MS, Bougherara H, Zdero R, Schemitsch EH. The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants. Med Eng Phys 2016; 38:232-40. [DOI: 10.1016/j.medengphy.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/22/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022]
|
22
|
Long-term response of femoral density to hip implant and bone fracture plate: Computational study using a mechano-biochemical model. Med Eng Phys 2016; 38:171-80. [PMID: 26751582 DOI: 10.1016/j.medengphy.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022]
Abstract
Although bone fracture plates can provide appropriate stability at the fracture site and lead to early patient mobilization, they significantly change the loading pattern in the bone after union (Stress shielding). This phenomenon results in a bone density decrease, which may cause premature failure of the implant. This paper presents the first study that quantifies the long-term response of femoral density to hip implantation and plating (lateral and anterior plating) using a mechano-biochemical model which considers the coupling effect between mechanical loading and biochemical affinities as stimuli for bone remodeling. The results showed that the regions directly beneath the plate experienced severe bone loss (i.e. up to ∼ -70%). However, some level of bone formation was observed in the vicinity of the most proximal and distal screw holes in both lateral and anterior plated femurs (i.e. up to ∼ +110%). The bone under the plate was divided into six zones. With respect to bone remodeling response, the findings revealed that anterior plating was not superior to lateral plating since the maximum and average bone losses among the zones in the anterior plated femur (i.e. -36% and -24%, respectively) were approximately the same as their corresponding values in the lateral plated femur (i.e. -38% and -24%, respectively).
Collapse
|
23
|
Tangential Bicortical Locked Fixation Improves Stability in Vancouver B1 Periprosthetic Femur Fractures: A Biomechanical Study. J Orthop Trauma 2015; 29:e364-70. [PMID: 26053467 PMCID: PMC4581902 DOI: 10.1097/bot.0000000000000365] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared with unicortical screws. This biomechanical study compares the stability of 2 of these newer constructs to previous methods. METHODS Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either (1) cerclage cables, (2) locked unicortical screws, (3) a composite of locked screws and cables, or tangentially directed bicortical locking screws using either (4) a stainless steel locking compression plate system with a Locking Attachment Plate (Synthes) or (5) a titanium alloy Non-Contact Bridging system (Zimmer). Specimens were tested to failure in either axial or torsional quasistatic loading modes (n = 3) after 20 moderate load preconditioning cycles. Stiffness, maximum force, and failure mechanism were determined. RESULTS Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other 3 constructs in torsional loading (P < 0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. CONCLUSIONS Proximal fixation stability is likely improved with the use of bicortical locking screws as compared with traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures.
Collapse
|
24
|
Graham SM, Mak JH, Moazen M, Leonidou A, Jones AC, Wilcox RK, Tsiridis E. Periprosthetic femoral fracture fixation: a biomechanical comparison between proximal locking screws and cables. J Orthop Sci 2015; 20:875-80. [PMID: 25968896 DOI: 10.1007/s00776-015-0735-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/28/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The incidence of periprosthetic femoral fractures (PFF) around a stable stem is increasing. The aim of this biomechanical study was to examine how three different methods of fixation, for Vancouver type B1 PFF, alter the stiffness and strain of a construct under various configurations, in order to gain a better insight into the optimal fixation method. METHODS Three different combinations of proximal screws and Dall-Miles cables were used: (A) proximal unicortical locking screws alone; (B) proximal cables and unicortical locking screws; (C) proximal cable alone, each in combination with distal bicortical locking screws, to fix a stainless steel locking compression plate to five synthetic femora with simulated Vancouver type B1 PFFs. In one synthetic femora, there was a 10-mm fracture gap, in order to simulate a comminuted injury. The other four femora had no fracture gap, to simulate a stable injury. An axial load was applied to the constructs at varying degrees of adduction, and the overall construct stiffness and surface strain were measured. RESULTS With regards to stiffness, in both the gap and no gap models, method of fixation A was the stiffest form of fixation. The inclusion of the fracture gap reduced the stiffness of the construct quite considerably for all methods of fixation. The strain across both the femur and the plate was considerably less for method of fixation C, compared to A and B, at the locations considered in this study. CONCLUSION This study highlights that the inclusion of cables appears to damage the screw fixations and does not aid in construct stability. Furthermore, the degree of fracture reduction affects the whole construct stability and the bending behaviour of the fixation.
Collapse
Affiliation(s)
- Simon M Graham
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jonathan H Mak
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Mehran Moazen
- School of Engineering, University of Hull, Hull, HU6 7RX, UK
| | - Andreas Leonidou
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Eleftherios Tsiridis
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK.,Division of Surgery, Department of Surgery and Cancer, Imperial College London, W12 0HS, London, UK.,Academic Orthopaedics and Trauma Unit, "PapaGeorgiou" General Hospital, Aristotle University Medical School, University Campus 54 124, Thessaloniki, Greece
| |
Collapse
|
25
|
Bagheri ZS, Tavakkoli Avval P, Bougherara H, Aziz MSR, Schemitsch EH, Zdero R. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. J Biomech Eng 2015; 136:091002. [PMID: 24828985 DOI: 10.1115/1.4027669] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022]
Abstract
Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.
Collapse
|
26
|
Hoffmann MF, Burgers TA, Mason JJ, Williams BO, Sietsema DL, Jones CB. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system. Injury 2014; 45:1035-41. [PMID: 24680467 DOI: 10.1016/j.injury.2014.02.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND In the United States there are more than 230,000 total hip replacements annually, and periprosthetic femoral fractures occur in 0.1-4.5% of those patients. The majority of these fractures occur at the tip of the stem (Vancouver type B1). The purpose of this study was to compare the biomechanically stability and strength of three fixation constructs and identify the most desirable construct. METHODS Fifteen medium adult synthetic femurs were implanted with a hip prosthesis and were osteotomized in an oblique plane at the level of the implant tip to simulate a Vancouver type B1 periprosthetic fracture. Fractures were fixed with a non-contact bridging periprosthetic proximal femur plate (Zimmer Inc., Warsaw, IN). Three proximal fixation methods were used: Group 1, bicortical screws; Group 2, unicortical screws and one cerclage cable; and Group 3, three cerclage cables. Distally, all groups had bicortical screws. Biomechanical testing was performed using an axial-torsional testing machine in three different loading modalities (axial compression, lateral bending, and torsional/sagittal bending), next in axial cyclic loading to 10,000 cycles, again in the three loading modalities, and finally to failure in torsional/sagittal bending. RESULTS Group 1 had significantly greater load to failure and was significantly stiffer in torsional/sagittal bending than Groups 2 and 3. After cyclic loading, Group 2 had significantly greater axial stiffness than Groups 1 and 3. There was no difference between the three groups in lateral bending stiffness. The average energy absorbed during cyclic loading was significantly lower in Group 2 than in Groups 1 and 3. CONCLUSIONS Bicortical screw placement achieved the highest load to failure and the highest torsional/sagittal bending stiffness. Additional unicortical screws improved axial stiffness when using cable fixation. Lateral bending was not influenced by differences in proximal fixation. CLINICAL RELEVANCE To treat periprosthetic fractures, bicortical screw placement should be attempted to maximize load to failure and torsional/sagittal bending stiffness.
Collapse
Affiliation(s)
- Martin F Hoffmann
- Van Andel Research Institute, Grand Rapids, MI, USA; Grand Rapids Medical Education Partners, Grand Rapids, MI, USA; Orthopaedic Associates of Michigan, Grand Rapids, MI, USA; Department of Surgery, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | | | | | | | - Debra L Sietsema
- Van Andel Research Institute, Grand Rapids, MI, USA; Orthopaedic Associates of Michigan, Grand Rapids, MI, USA
| | - Clifford B Jones
- Van Andel Research Institute, Grand Rapids, MI, USA; Orthopaedic Associates of Michigan, Grand Rapids, MI, USA
| |
Collapse
|
27
|
Aziz MSR, Nicayenzi B, Crookshank MC, Bougherara H, Schemitsch EH, Zdero R. Biomechanical Measurements of Stiffness and Strength for Five Types of Whole Human and Artificial Humeri. J Biomech Eng 2014; 136:051006. [DOI: 10.1115/1.4027057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 04/10/2014] [Indexed: 11/08/2022]
Abstract
The human humerus is the third largest longbone and experiences 2–3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of “gold standard” fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial “normal” (n = 12); and artificial “osteoporotic” (n = 12). Humeri were tested under “real world” clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial “normal” humeri), and 1 of 4 test modes (artificial “osteoporotic” humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = −0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.
Collapse
Affiliation(s)
- Mina S. R. Aziz
- Institute of Medical Science, University of Toronto, Toronto, ON M5S-1A8, Canada
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Bruce Nicayenzi
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Meghan C. Crookshank
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada
| | - Emil H. Schemitsch
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S-1A8, Canada
| | - Radovan Zdero
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Li Ka Shing Building (West Basement, Room B116), 209 Victoria Street, Toronto, ON M5B-1W8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada e-mail:
| |
Collapse
|
28
|
Kosmopoulos V, Nana AD. Dual plating of humeral shaft fractures: orthogonal plates biomechanically outperform side-by-side plates. Clin Orthop Relat Res 2014; 472:1310-7. [PMID: 24218163 PMCID: PMC3940765 DOI: 10.1007/s11999-013-3379-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/05/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Single large-fragment plate constructs currently are the norm for internal fixation of middiaphyseal humerus fractures. In cases where humeral size is limited, however, dual small-fragment locking plate constructs may serve as an alternative. The mechanical effects of different possible plate configurations around the humeral diaphysis may be important, but to our knowledge, have yet to be investigated. QUESTIONS/PURPOSES We used finite element analysis to compare the simulated mechanical performance of five different dual small-fragment locking plate construct configurations for humeral middiaphyseal fracture fixation in terms of (1) stiffness, (2) stress shielding of bone, (3) hardware stresses, and (4) interfragmentary strain. METHODS Middiaphyseal humeral fracture fixation was simulated using the finite element method. Three 90° and two side-by-side seven-hole and nine-hole small-fragment dual locking plate configurations were tested in compression, torsion, and combined loading. The configurations chosen are based on implantation using either a posterior or anterolateral approach. RESULTS All three of the 90° configurations were more effective in restoring the intact compressive and torsional stiffness as compared with the side-by-side configurations, resulted in less stress shielding and stressed hardware, and showed interfragmentary strains between 5% to 10% in torsion and combined loading. CONCLUSIONS The nine-hole plate anterior and seven-hole plate lateral (90° apart) configuration provided the best fixation. Our findings show the mechanical importance of plate placement with relation to loading in dual-plate fracture-fixation constructs. CLINICAL RELEVANCE The results presented provide novel biomechanical information for the orthopaedic surgeon considering different treatment options for middiaphyseal humeral fractures.
Collapse
Affiliation(s)
- Victor Kosmopoulos
- Bone and Joint Research Center, Department of Orthopaedic Surgery, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard (CBH 407), Fort Worth, TX, 76107, USA,
| | | |
Collapse
|
29
|
Moazen M, Mak JH, Etchels LW, Jin Z, Wilcox RK, Jones AC, Tsiridis E. Periprosthetic femoral fracture--a biomechanical comparison between Vancouver type B1 and B2 fixation methods. J Arthroplasty 2014; 29:495-500. [PMID: 24035619 DOI: 10.1016/j.arth.2013.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 02/01/2023] Open
Abstract
Current clinical data suggest a higher failure rate for internal fixation in Vancouver type B1 periprosthetic femoral fracture (PFF) fixations compared to long stem revision in B2 fractures. The aim of this study was to compare the biomechanical performance of several fixations in the aforementioned fractures. Finite element models of B1 and B2 fixations, previously corroborated against in vitro experimental models, were compared. The results indicated that in treatment of B1 fractures, a single locking plate can be without complications provided partial weight bearing is followed. In case of B2 fractures, long stem revision and bypassing the fracture gap by two femoral diameters are recommended. Considering the risk of single plate failure, long stem revision could be considered in all comminuted B1 and B2 fractures.
Collapse
Affiliation(s)
- Mehran Moazen
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK; Medical and Biological Engineering, School of Engineering, University of Hull, Hull, UK.
| | - Jonathan H Mak
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Lee W Etchels
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Zhongmin Jin
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK; Institute of Advanced Manufacturing Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, P.R. of China
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Eleftherios Tsiridis
- Academic Department of Orthopaedic and Trauma, University of Leeds, Leeds, UK; Department of Surgery and Cancer, Division of Surgery, Imperial College London, London, UK; Academic Orthopaedics and Trauma Unit, Aristotle University Medical School, University Campus, Thessaloniki, Greece
| |
Collapse
|
30
|
Lenz M, Perren SM, Gueorguiev B, Richards RG, Hofmann GO, Fernandez dell'Oca A, Höntzsch D, Windolf M. A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury 2014; 45 Suppl 1:S71-5. [PMID: 24252576 DOI: 10.1016/j.injury.2013.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Proximal plate fixation is a crucial factor in osteosynthesis of periprosthetic femur fractures. Stability and strength of different fixation concepts for proximal plate fixation were compared. MATERIALS AND METHODS Twelve fresh frozen, bone mineral density matched human femora, instrumented with cemented hip endoprosthesis were osteotomized simulating a Vancouver B1 fracture. Specimens were instrumented with locking compression plates, fixed proximally with either locking attachment plate (LAP), monocortical screws, cerclage plus monocortical screws (1cerclage) or cerclages only (4cerclages). Cyclic testing was performed with monotonically increasing load until failure. Relative movements at the proximal plate-femur interface were registered by motion tracking. RESULTS The LAP construct exhibited a significantly longer cumulative survival (failure criterion 1mm separation at the proximal plate fixation) compared to the monocortical (p=0.048) and 4cerclages constructs (p=0.012) but not to 1cerclage constructs. CONCLUSION Bicortical screw anchorage improves proximal plate fixation in periprosthetic fractures. The cerclage-screw combination is a valuable alternative especially in osteoporotic bone.
Collapse
Affiliation(s)
- Mark Lenz
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos-Platz, Switzerland; Department of Trauma, Hand and Reconstructive Surgery, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07747 Jena, Germany.
| | - Stephan M Perren
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos-Platz, Switzerland.
| | - Boyko Gueorguiev
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos-Platz, Switzerland.
| | - Robert G Richards
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos-Platz, Switzerland.
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07747 Jena, Germany.
| | | | - Dankward Höntzsch
- Department of Medical Technology Development, BG Trauma Hospital Tübingen, Schnarrenbergstrasse 95, D-72076 Tübingen, Germany.
| | - Markus Windolf
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos-Platz, Switzerland.
| |
Collapse
|
31
|
Moazen M, Mak JH, Etchels LW, Jin Z, Wilcox RK, Jones AC, Tsiridis E. The effect of fracture stability on the performance of locking plate fixation in periprosthetic femoral fractures. J Arthroplasty 2013; 28:1589-95. [PMID: 23642449 DOI: 10.1016/j.arth.2013.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 02/01/2023] Open
Abstract
Periprosthetic femoral fracture (PFF) fixation failures are still occurring. The effect of fracture stability and loading on PFF fixation has not been investigated and this is crucial for optimum management of PFF. Models of stable and unstable PPFs were developed and used to quantify the effect of fracture stability and loading in a single locking plate fixation. Stress on the plate was higher in the unstable compared to the stable fixation. In the case of unstable fractures, it is possible for a single locking plate fixation to provide the required mechanical environment for callus formation without significant risk of plate fracture, provided partial weight bearing is followed. In cases where partial weight bearing is unlikely, additional biological fixation could be considered.
Collapse
Affiliation(s)
- Mehran Moazen
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK; Medical and Biological Engineering, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Siddiqui FS, Shah S, Nicayenzi B, Schemitsch EH, Zdero R, Bougherara H. Biomechanical analysis using infrared thermography of a traditional metal plate versus a carbon fibre/epoxy plate for Vancouver B1 femur fractures. Proc Inst Mech Eng H 2013; 228:107-13. [DOI: 10.1177/0954411913501489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional high-stiffness metal plates for Vancouver B1 femur shaft fractures below the tip of a hip implant can cause stress shielding, bone resorption, and implant loosening. This is the first study to compare the biomechanics of a traditional metal plate versus a low-stiffness carbon fibre/epoxy composite plate for this injury. A total hip replacement was implanted in two previously validated intact artificial femurs. Femurs were fitted with either a metal or composite plate and had a 5 mm fracture gap created to simulate a Vancouver B1 shaft fracture. Femurs were cyclically loaded using 5 Hz at 7° of adduction with an average axial load of 800 N (range = 400–1200 N). Overall mechanical stiffnesses and femur and plate thermographic stresses were obtained. Femur/metal plate stiffness (698 N/mm) was only 12% higher than femur/composite plate stiffness (625 N/mm). The femur with the composite plate had 22.7% higher combined average stress compared to the femur with the metal plate, having specific differences of 29.5% (anterior view), 33.9% (posterior view), 1.0% (medial view), and 26.4% (lateral view). The composite plate itself had an average 21.1% reduction in stress compared to the metal plate. The composite plate reduced stress shielding, yet provided adequate stiffness.
Collapse
Affiliation(s)
- Faisal S Siddiqui
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Suraj Shah
- Martin Orthopaedic Biomechanics Lab, Li Ka Shing Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Bruce Nicayenzi
- Martin Orthopaedic Biomechanics Lab, Li Ka Shing Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Emil H Schemitsch
- Martin Orthopaedic Biomechanics Lab, Li Ka Shing Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Radovan Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
- Martin Orthopaedic Biomechanics Lab, Li Ka Shing Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
33
|
Moazen M, Mak JH, Jones AC, Jin Z, Wilcox RK, Tsiridis E. Evaluation of a new approach for modelling the screw–bone interface in a locking plate fixation: A corroboration study. Proc Inst Mech Eng H 2013; 227:746-56. [DOI: 10.1177/0954411913483259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational modelling of the screw–bone interface in fracture fixation constructs is challenging. While incorporating screw threads would be a more realistic representation of the physics, this approach can be computationally expensive. Several studies have instead suppressed the threads and modelled the screw shaft with fixed conditions assumed at the screw–bone interface. This study assessed the sensitivity of the computational results to modelling approaches at the screw–bone interface. A new approach for modelling this interface was proposed, and it was tested on two locking screw designs in a diaphyseal bridge plating configuration. Computational models of locked plating and far cortical locking constructs were generated and compared to in vitro models described in prior literature to corroborate the outcomes. The new approach led to closer agreement between the computational and the experimental stiffness data, while the fixed approach led to overestimation of the stiffness predictions. Using the new approach, the pattern of load distribution and the magnitude of the axial forces, experienced by each screw, were compared between the locked plating and far cortical locking constructs. The computational models suggested that under more severe loading conditions, far cortical locking screws might be under higher risk of screw pull-out than the locking screws. The proposed approach for modelling the screw–bone interface can be applied to any fixation involved application of screws.
Collapse
Affiliation(s)
- Mehran Moazen
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
- School of Engineering, University of Hull, Hull, UK
| | - Jonathan H Mak
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Zhongmin Jin
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, P.R. of China
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
| | - Eleftherios Tsiridis
- Academic Department of Orthopaedic and Trauma, University of Leeds, Leeds, UK
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
- Academic Orthopaedics and Trauma Unit, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
34
|
Morison Z, Olsen M, Higgins GA, Zdero R, Schemitsch EH. The biomechanical effect of notch size, notch location, and femur orientation on hip resurfacing failure. IEEE Trans Biomed Eng 2013; 60:2214-21. [PMID: 23481682 DOI: 10.1109/tbme.2013.2251745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For hip resurfacing, this is the first biomechanical study to assess anterior and posterior femoral neck notching and femur flexion and extension. Forty-seven artificial femurs were implanted with the Birmingham hip resurfacing (BHR) using a range of notch sizes (0, 2, and 5 mm), notch locations (superior, anterior, and posterior), and femur orientations (neutral stance, flexion, and extension). Implant preparation was done using imageless computer navigation, and mechanical tests measured stiffness and strength. For notch size and location, in neutral stance the unnotched group had 1.9 times greater strength than the 5-mm superior notch group (4539 N versus 2423 N, p=0.047), and the 5-mm anterior notch group had 1.6 times greater strength than the 5-mm superior notch group, yielding a borderline statistical difference (3988 N versus 2423 N, p = 0.056). For femur orientation, in the presence of a 5-mm anterior notch, femurs in neutral stance had 2.2 times greater stiffness than femurs in 25° flexion (1542 N/mm versus 696 N/mm, p = 0.000). Similarly, in the presence of a 5-mm posterior notch, femurs in neutral stance had 2.8 times greater stiffness than femurs in 25° extension (1637 N/mm versus 575 N/mm, p = 0.000). No other statistical differences were noted. All femurs failed through the neck. The results have implications for BHR surgical techniques and recommended patient activities.
Collapse
Affiliation(s)
- Zachary Morison
- Martin Orthopaedic Biomechanics Laboratory, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | |
Collapse
|
35
|
Zdero R, Saidi K, Mason SA, Schemitsch EH, Naudie DDR. A biomechanical comparison of four different cementless press-fit stems used in revision surgery for total knee replacements. Proc Inst Mech Eng H 2013. [PMID: 23185955 DOI: 10.1177/0954411912453246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Few biomechanical studies exist on femoral cementless press-fit stems for revision total knee replacement (TKR) surgeries. The aim of this study was to compare the mechanical quality of the femur-stem interface for a series of commercially available press-fit stems, because this interface may be a 'weak link' which could fail earlier than the femur-TKR bond itself. Also, the femur-stem interface may become particularly critical if distal femur bone degeneration, which may necessitate or follow revision TKR, ever weakens the femur-TKR bond itself. The authors implanted five synthetic femurs each with a Sigma Short Stem (SSS), Sigma Long Stem (SLS), Genesis II Short Stem (GSS), or Genesis II Long Stem (GLS). Axial stiffness, lateral stiffness, 'offset load' torsional stiffness, and 'offset load' torsional strength were measured with a mechanical testing system using displacement control. Axial (range = 1047-1461 N/mm, p = 0.106), lateral (range = 415-462 N/mm, p = 0.297), and torsional (range = 115-139 N/mm, p > 0.055) stiffnesses were not different between groups. The SSS had higher torsional strength (863 N) than the other stems (range = 167-197 N, p < 0.001). Torsional failure occurred by femoral 'spin' around the stem's long axis. There was poor linear correlation between the femur-stem interface area versus axial stiffness (R = 0.38) and torsional stiffness (R = 0.38), and there was a moderate linear correlation versus torsional strength (R = 0.55). Yet, there was a high inverse linear correlation between interfacial surface area versus lateral stiffness (R = 0.79), although this did not result in a statistical difference between stem groups (p = 0.297). These press-fit stems provide equivalent stability, except that the SSS has greater torsional strength.
Collapse
Affiliation(s)
- Radovan Zdero
- Biomechanics Lab, St. Michael's Hospital, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
36
|
MacAvelia T, Salahi M, Olsen M, Crookshank M, Schemitsch EH, Ghasempoor A, Janabi-Sharifi F, Zdero R. Biomechanical Measurements of Surgical Drilling Force and Torque in Human Versus Artificial Femurs. J Biomech Eng 2012; 134:124503. [DOI: 10.1115/1.4007953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Few experimental studies have examined surgical drilling in human bone, and no studies have inquired into this aspect for a popular commercially-available artificial bone used in biomechanical studies. Sixteen fresh-frozen human femurs and five artificial femurs were obtained. Cortical specimens were mounted into a clamping system equipped with a thrust force and torque transducer. Using a CNC machine, unicortical holes were drilled in each specimen at 1000 rpm, 1250 rpm, and 1500 rpm with a 3.2 mm diameter surgical drill bit. Feed rate was 120 mm/min. Statistical significance was set at p < 0.05. Force at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (198.4 ± 14.2 N, 180.6 ± 14.0 N, and 176.3 ± 11.2 N) and artificial femurs (87.2 ± 19.3 N, 82.2 ± 11.2 N, and 75.7 ± 8.8 N). For human femurs, force at 1000 rpm was greater than at other speeds (p ≤ 0.018). For artificial femurs, there was no speed effect on force (p ≥ 0.991). Torque at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (186.3 ± 16.9 N·mm, 157.8 ± 16.1 N·mm, and 140.2 ± 16.4 N·mm) and artificial femurs (67.2 ± 8.4 N·mm, 61.0 ± 2.9 N·mm, and 53.3 ± 2.9 N·mm). For human femurs, torque at 1000 rpm was greater than at other speeds (p < 0.001). For artificial femurs, there was no difference in torque for 1000 rpm versus higher speeds (p ≥ 0.228), and there was only a borderline difference between the higher speeds (p = 0.046). Concerning human versus artificial femurs, their behavior was different at every speed (force, p ≤ 0.001; torque, p < 0.001). For human specimens at 1500 rpm, force and torque were linearly correlated with standardized bone mineral density (sBMD) and the T-score used to clinically categorize bone quality (R ≥ 0.56), but there was poor correlation with age at all speeds (R ≤ 0.37). These artificial bones fail to replicate force and torque in human cortical bone during surgical drilling. To date, this is the largest series of human long bones biomechanically tested for surgical drilling.
Collapse
Affiliation(s)
| | - Meisam Salahi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | | | | | - Emil H. Schemitsch
- Martin Orthopaedic Biomechanics Laboratory, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Department of Surgery, University of Toronto, Toronto, ON, M5G 1L5, Canada
| | | | - Farrokh Janabi-Sharifi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Rad Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada; Martin Orthopaedic Biomechanics Laboratory, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada e-mail:
| |
Collapse
|
37
|
Ebrahimi H, Rabinovich M, Vuleta V, Zalcman D, Shah S, Dubov A, Roy K, Siddiqui FS, H. Schemitsch E, Bougherara H, Zdero R. Biomechanical properties of an intact, injured, repaired, and healed femur: An experimental and computational study. J Mech Behav Biomed Mater 2012. [DOI: 10.1016/j.jmbbm.2012.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Al-Jahwari A, Schemitsch EH, Wunder JS, Ferguson PC, Zdero R. The biomechanical effect of torsion on humeral shaft repair techniques for completed pathological fractures. J Biomech Eng 2012; 134:024501. [PMID: 22482676 DOI: 10.1115/1.4005696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the presence of a tumor defect, completed humeral shaft fractures continue to be a major surgical challenge since there is no "gold standard" treatment. This is due, in part, to the fact that only one prior biomechanical study exists on the matter, but which only compared 2 repair methods. The current authors measured the humeral torsional performance of 5 fixation constructs for completed pathological fractures. In 40 artificial humeri, a 2-cm hemi-cylindrical cortical defect with a transverse fracture was created in the lateral cortex. Specimens were divided into 5 different constructs and tested in torsion. Construct A was a broad 10-hole 4.5-mm dynamic compression plate (DCP). Construct B was the same as A except that the screw holes and the tumor defect were filled with bone cement and the screws were inserted into soft cement. Construct C was the same as A except that the canal and tumor defect were filled with bone cement and the screws were inserted into dry cement. Construct D was a locked intramedullary nail inserted in the antegrade direction. Construct E was the same as D except that bone cement filled the defect. For torsional stiffness, construct C (4.45 ± 0.20 Nm/deg) was not different than B or E (p > 0.16), but was higher than A and D (p < 0.001). For failure torque, construct C achieved a higher failure torque (69.65 ± 5.35 Nm) than other groups (p < 0.001). For the failure angle, there were no differences between plating constructs A to C (p ≥ 0.11), except for B versus C (p < 0.05), or between nailing groups D versus E (p = 0.97), however, all plating groups had smaller failure angles than both nailing groups (p < 0.05). For failure energy, construct C (17.97 ± 3.59 J) had a higher value than other groups (p < 0.005), except for A (p = 0.057). Torsional failure always occurred in the bone in the classic "spiral" pattern. Construct C provided the highest torsional stability for a completed pathological humeral shaft fracture.
Collapse
Affiliation(s)
- Ahmed Al-Jahwari
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON, Canada, M5B-1W8
| | | | | | | | | |
Collapse
|
39
|
Ahmadi S, Shah S, Wunder JS, Schemitsch EH, Ferguson PC, Zdero R. The biomechanics of three different fracture fixation implants for distal femur repair in the presence of a tumor-like defect. Proc Inst Mech Eng H 2012; 227:78-86. [DOI: 10.1177/0954411912454368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The femur is the most common long bone involved in metastatic disease. There is consensus about treating diaphyseal and epiphyseal metastatic lesions. However, the choice of device for optimal fixation for distal femur metaphyseal metastatic lesion remains unclear. This study compared the mechanical stiffness and strength of three different fixation methods. In 15 synthetic femurs, a spherical tumor-like defect was created in the lateral metaphyseal region, occupying 50% of the circumference of the bone. The defect was filled with bone cement and fixed with one of three methods: Group 1 (retrograde nail), Group 2 (lateral locking plate), and Group 3 (lateral nonlocking periarticular plate). Constructs were tested for mechanical stiffness and strength. There were no differences between groups for axial stiffness (Group 1, 1280 ± 112 N/mm; Group 2, 1422 ± 117 N/mm; and Group 3, 1403 ± 122 N/mm; p = 0.157) and offset torsional strength (Group 1, 1696 ± 628 N; Group 2, 1771 ± 290 N; and Group 3, 1599 ± 253 N; p = 0.816). In the coronal plane, Group 2 (296 ± 17 N/mm) had a higher stiffness than Group 1 (263 ± 17 N/mm; p = 0.018). In the sagittal plane, Group 1 (315 ± 9 N/mm) had a higher stiffness than Group 3 (285 ± 19 N/mm; p = 0.028). For offset torsional stiffness, Group 1 (256 ± 23 N/mm) had a higher value than Group 3 (218 ± 16 N/mm; p = 0.038). Group 1 had equivalent performance to both plating groups in two test modes, and it was superior to Group 3 in two other test modes. Since a retrograde nail (i.e. Group 1) would require less soft-tissue stripping in a clinical context, it may be the optimal choice for tumor-like defects in the distal femur.
Collapse
Affiliation(s)
- Shahryar Ahmadi
- Division of Orthopaedic Surgery, University of Arkansas for Medical Sciences, AR, USA
| | - Suraj Shah
- Martin Orthopaedic Biomechanics Laboratory, St. Michael’s Hospital, Toronto, ON, Canada
| | - Jay S Wunder
- Department of Surgery, Faculty of Medicine, University of Toronto, ON, Canada
| | - Emil H Schemitsch
- Department of Surgery, Faculty of Medicine, University of Toronto, ON, Canada
| | - Peter C Ferguson
- Department of Surgery, Faculty of Medicine, University of Toronto, ON, Canada
| | - Rad Zdero
- Martin Orthopaedic Biomechanics Laboratory, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
40
|
MacLeod AR, Pankaj P, Simpson AHR. Does screw–bone interface modelling matter in finite element analyses? J Biomech 2012; 45:1712-6. [DOI: 10.1016/j.jbiomech.2012.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
41
|
Shah S, Bougherara H, Schemitsch EH, Zdero R. Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages. Med Eng Phys 2012; 34:1496-502. [PMID: 22430061 DOI: 10.1016/j.medengphy.2012.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 01/21/2023]
Abstract
Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications.
Collapse
Affiliation(s)
- Suraj Shah
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
42
|
Crookshank M, Coquim J, Olsen M, Schemitsch EH, Bougherara H, Zdero R. Biomechanical measurements of axial crush injury to the distal condyles of human and synthetic femurs. Proc Inst Mech Eng H 2012; 226:320-9. [DOI: 10.1177/0954411912438038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Few studies have evaluated the ‘bulk’ mechanical properties of human longbones and even fewer have compared human tissue to the synthetic longbones increasingly being used by researchers. Distal femur fractures, for example, comprise about 6% of all femur fractures, but the mechanical properties of the distal condyles of intact human and synthetic femurs have not been well quantified in the literature. To this end, the distal portions of a series of 16 human fresh-frozen femurs and six synthetic femurs were prepared identically for mechanical testing. Using a flat metal plate, an axial ‘crush’ force was applied in-line with the long axis of the femurs. The two femur groups were statistically compared and values correlated to age, size, and bone quality. Results yielded the following: crush stiffness (human, 1545 ± 728 N/mm; synthetic, 3063 ± 1243 N/mm; p = 0.002); crush strength (human, 10.3 ± 3.1 kN; synthetic, 12.9 ± 1.7 kN; p = 0.074); crush displacement (human, 6.1 ± 1.8 mm; synthetic, 2.8 ± 0.3 mm; p = 0.000); and crush energy (human, 34.8 ± 15.9 J; synthetic, 18.1 ± 5.7 J; p = 0.023). For the human femurs, there were poor correlations between mechanical properties versus age, size, and bone quality (R2 ≤ 0.18), with the exception of crush strength versus bone mineral density (R2 = 0.33) and T-score (R2 = 0.25). Human femurs failed mostly by condyle ‘roll back’ buckling (15 of 16 cases) and/or unicondylar or bicondylar fracture (7 of 16 cases), while synthetic femurs all failed by wedging apart of the condyles resulting in either fully or partially displaced condylar fractures (6 of 6 cases). These findings have practical implications on the use of a flat plate load applicator to reproduce real-life clinical failure modes of human femurs and the appropriate use of synthetic femurs. To the authors’ knowledge, this is the first study to have done such an assessment on human and synthetic femurs.
Collapse
Affiliation(s)
- Meghan Crookshank
- Faculty of Medicine, University of Toronto, Canada
- Martin Orthopaedic Biomechanics Laboratory, St Michael’s Hospital, Canada
| | - Jason Coquim
- Department of Mechanical and Industrial Engineering, Ryerson University, Canada
| | - Michael Olsen
- Faculty of Medicine, University of Toronto, Canada
- Martin Orthopaedic Biomechanics Laboratory, St Michael’s Hospital, Canada
| | - Emil H Schemitsch
- Faculty of Medicine, University of Toronto, Canada
- Martin Orthopaedic Biomechanics Laboratory, St Michael’s Hospital, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Canada
| | - Rad Zdero
- Martin Orthopaedic Biomechanics Laboratory, St Michael’s Hospital, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Canada
| |
Collapse
|
43
|
Nicayenzi B, Shah S, Schemitsch EH, Bougherara H, Zdero R. The biomechanical effect of changes in cancellous bone density on synthetic femur behaviour. Proc Inst Mech Eng H 2011; 225:1050-60. [DOI: 10.1177/0954411911420004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomechanical researchers increasingly use commercially available and experimentally validated synthetic femurs to mimic human femurs. However, the choice of cancellous bone density for these artificial femurs appears to be done arbitrarily. The aim of the work reported in this paper was to examine the effect of synthetic cancellous bone density on the mechanical behaviour of synthetic femurs. Thirty left, large, fourth-generation composite femurs were mounted onto an Instron material testing system. The femurs were divided evenly into five groups each containing six femurs, each group representing a different synthetic cancellous bone density: 0.08, 0.16, 0.24, 0.32, and 0.48 g/cm3. Femurs were tested non-destructively to obtain axial, lateral, and torsional stiffness, followed by destructive tests to measure axial failure load, displacement, and energy. Experimental results yielded the following ranges and the coefficient of determination for a linear regression ( R2) with cancellous bone density: axial stiffness (range 2116.5–2530.6 N/mm; R2 = 0.94), lateral stiffness (range 204.3–227.8 N/mm; R2 = 0.08), torsional stiffness (range 259.9–281.5 N/mm; R2 = 0.91), failure load (range 5527.6–11 109.3 N; R2 = 0.92), failure displacement (range 2.97–6.49 mm; R2 = 0.85), and failure energy (range 8.79–42.81 J; R2 = 0.91). These synthetic femurs showed no density effect on lateral stiffness and only a moderate influence on axial and torsional stiffness; however, there was a strong density effect on axial failure load, displacement, and energy. Because these synthetic femurs have previously been experimentally validated against human femurs, these trends may be generalized to the clinical situation. This is the first study in the literature to perform such an assessment.
Collapse
Affiliation(s)
- B Nicayenzi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - S Shah
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
- Martin Orthopaedic Biomechanics Lab, St. Michael’s Hospital, Toronto, ON, Canada
| | - E H Schemitsch
- Martin Orthopaedic Biomechanics Lab, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - H Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - R Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
- Martin Orthopaedic Biomechanics Lab, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|