Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ. Structure−Activity Relationships of [2‘,5‘-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]- 3‘-spiro-5‘ ‘-(4‘ ‘-amino-1‘ ‘,2‘ ‘-oxathiole-2‘ ‘,2‘ ‘-dioxide)thymine Derivatives as Inhibitors of HIV-1 Reverse Transcriptase Dimerization.
J Med Chem 2006;
49:4834-41. [PMID:
16884295 DOI:
10.1021/jm0604575]
[Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polymerase activity of HIV-1 reverse transcriptase (RT) is entirely dependent on the heterodimeric structure of the enzyme. Accordingly, RT dimerization represents a target for the development of a new therapeutic class of HIV inhibitors. We previously demonstrated that the N-3-ethyl derivative of 2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine (TSAO-T) destabilizes the inter-subunit interactions of HIV-1 RT [Sluis-Cremer, N.; Dmietrinko, G. I.; Balzarini, J.; Camarasa, M.-J.; Parniak, M. A. Biochemistry 2000, 39, 1427-1433]. In the current study, we evaluated the ability of 64 TSAO-T derivatives to inhibit RT dimerization using a novel screening assay. Five derivatives were identified with improved activity compared to TSAO-T. Four of these harbored hydrophilic or aromatic substituents at the N3 position. Furthermore, a good correlation between the ability of the TSAO-T derivatives to inhibit RT dimerization and the enzyme's polymerase activity was also observed. This study provides an important framework for the rational design of more potent inhibitors of RT dimerization.
Collapse