1
|
Duyar A, Carrasco M. Eyes on the past: Gaze stability differs between temporal expectation and temporal attention. J Vis 2025; 25:11. [PMID: 40238139 PMCID: PMC12011131 DOI: 10.1167/jov.25.4.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Does the timing of a preceding visual event affect when people deploy attention in the future? Temporal expectation and temporal attention are two distinct processes that interact at the behavioral and neural levels, improving performance and gaze stability. The preceding foreperiod-the interval between the preparatory signal and stimulus onset in the previous trial-modulates expectation at the behavioral and oculomotor levels. Here, we investigated whether the preceding foreperiod also modulates the effects of temporal attention and whether such effects interact with expectation. We found that, regardless of whether the stimulus occurred earlier than, later than, or at the expected moment in the preceding foreperiod, temporal attention improved performance and accelerated gaze stability onset and offset consistently by shifting microsaccade timing. However, overall, only with expected preceding foreperiods, attention inhibited microsaccade rates. Moreover, late preceding foreperiods weakened the expectation effects on microsaccade rates, but this weakening was overridden by attention. Altogether, these findings reveal that the oculomotor system's flexibility does not translate to performance, and suggest that, although selection history can be used as one of the sources of expectation in subsequent trials, it does not necessarily determine, strengthen, or guide attentional deployment.
Collapse
Affiliation(s)
- Aysun Duyar
- Department of Psychology, New York University, New York, NY, USA
- https://orcid.org/0000-0003-1039-8625
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- https://orcid.org/0000-0002-1002-9056
| |
Collapse
|
2
|
Duyar A, Carrasco M. Temporal attention and oculomotor effects dissociate distinct types of temporal expectation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641562. [PMID: 40093085 PMCID: PMC11908187 DOI: 10.1101/2025.03.04.641562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Temporal expectation-the ability to predict when events occur-relies on probabilistic information within the environment. Two types of temporal expectation, temporal precision, based on the variability of an event's onset, and hazard rate, based on the increasing probability of an event with onset delay, interact with temporal attention-ability to prioritize specific moments- at the performance level: Attentional benefits increase with precision but diminish with hazard rate. Both temporal expectation and temporal attention improve fixational stability; however, the distinct oculomotor effects of temporal precision and hazard rate, as well as their interactions with temporal attention, remain unknown. Investigating microsaccade dynamics, we found that hazard-based expectations were reflected in the oculomotor responses, whereas precision-based expectations emerged only when temporal attention was deployed. We also found perception-eye movement dissociations for both types of temporal expectation, yet attentional benefits in performance coincided with microsaccade rate modulations. These findings reveal an interplay among distinct types of temporal expectation and temporal attention in enhancing and recalibrating fixational stability.
Collapse
Affiliation(s)
- Aysun Duyar
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
3
|
Koerfer K, Watson T, Lappe M. Inability to pursue nonrigid motion produces instability of spatial perception. SCIENCE ADVANCES 2024; 10:eadp6204. [PMID: 39504371 PMCID: PMC11540027 DOI: 10.1126/sciadv.adp6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Vision generates a stable representation of space by combining retinal input with internal predictions about the visual consequences of eye movements. We report a type of nonrigid motion that disrupts the connection between eye movements and perception, causing visual instability. This motion is accurately perceived during fixation, but it cannot be pursued. Catch-up saccades are accurately directed to the moving target but the motion stimulus appears to jump in space with each saccade. Our results reveal four major findings about perception and the visuomotor system: (i) Pursuit fails for certain types of motion; (ii) pursuit and catch-up saccades are independently controlled; (iii) prediction of saccade consequences is independent from saccade control; and (iv) the visual stability of moving objects relies on similar motion mechanisms as pursuit.
Collapse
Affiliation(s)
- Krischan Koerfer
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Tamara Watson
- School of Social Sciences and MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| |
Collapse
|
4
|
Carrasco M, Spering M. Perception-action Dissociations as a Window into Consciousness. J Cogn Neurosci 2024; 36:1557-1566. [PMID: 38865201 DOI: 10.1162/jocn_a_02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Understanding the neural correlates of unconscious perception stands as a primary goal of experimental research in cognitive psychology and neuroscience. In this Perspectives paper, we explain why experimental protocols probing qualitative dissociations between perception and action provide valuable insights into conscious and unconscious processing, along with their corresponding neural correlates. We present research that utilizes human eye movements as a sensitive indicator of unconscious visual processing. Given the increasing reliance on oculomotor and pupillary responses in consciousness research, these dissociations also provide a cautionary tale about inferring conscious perception solely based on no-report protocols.
Collapse
|
5
|
Kreyenmeier P, Kumbhani R, Movshon JA, Spering M. Shared Mechanisms Drive Ocular Following and Motion Perception. eNeuro 2024; 11:ENEURO.0204-24.2024. [PMID: 38834301 PMCID: PMC11208981 DOI: 10.1523/eneuro.0204-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
How features of complex visual patterns are combined to drive perception and eye movements is not well understood. Here we simultaneously assessed human observers' perceptual direction estimates and ocular following responses (OFR) evoked by moving plaids made from two summed gratings with varying contrast ratios. When the gratings were of equal contrast, observers' eye movements and perceptual reports followed the motion of the plaid pattern. However, when the contrasts were unequal, eye movements and reports during early phases of the OFR were biased toward the direction of the high-contrast grating component; during later phases, both responses followed the plaid pattern direction. The shift from component- to pattern-driven behavior resembles the shift in tuning seen under similar conditions in neuronal responses recorded from monkey MT. Moreover, for some conditions, pattern tracking and perceptual reports were correlated on a trial-by-trial basis. The OFR may therefore provide a precise behavioral readout of the dynamics of neural motion integration for complex visual patterns.
Collapse
Affiliation(s)
- Philipp Kreyenmeier
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Romesh Kumbhani
- Center for Neural Science, New York University, New York, New York 10003
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, New York 10003
- Department of Psychology, New York University, New York, New York 10003
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Institute for Computing, Information, and Cognitive Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
6
|
Mudrik L, Hirschhorn R, Korisky U. Taking consciousness for real: Increasing the ecological validity of the study of conscious vs. unconscious processes. Neuron 2024; 112:1642-1656. [PMID: 38653247 PMCID: PMC11100345 DOI: 10.1016/j.neuron.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
The study of consciousness has developed well-controlled, rigorous methods for manipulating and measuring consciousness. Yet, in the process, experimental paradigms grew farther away from everyday conscious and unconscious processes, which raises the concern of ecological validity. In this review, we suggest that the field can benefit from adopting a more ecological approach, akin to other fields of cognitive science. There, this approach challenged some existing hypotheses, yielded stronger effects, and enabled new research questions. We argue that such a move is critical for studying consciousness, where experimental paradigms tend to be artificial and small effect sizes are relatively prevalent. We identify three paths for doing so-changing the stimuli and experimental settings, changing the measures, and changing the research questions themselves-and review works that have already started implementing such approaches. While acknowledging the inherent challenges, we call for increasing ecological validity in consciousness studies.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Korisky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Lisi M, Cavanagh P. Different extrapolation of moving object locations in perception, smooth pursuit, and saccades. J Vis 2024; 24:9. [PMID: 38546586 PMCID: PMC10996402 DOI: 10.1167/jov.24.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024] Open
Abstract
The ability to accurately perceive and track moving objects is crucial for many everyday activities. In this study, we use a "double-drift stimulus" to explore the processing of visual motion signals that underlie perception, pursuit, and saccade responses to a moving object. Participants were presented with peripheral moving apertures filled with noise that either drifted orthogonally to the aperture's direction or had no net motion. Participants were asked to saccade to and track these targets with their gaze as soon as they appeared and then to report their direction. In the trials with internal motion, the target disappeared at saccade onset so that the first 100 ms of the postsaccadic pursuit response was driven uniquely by peripheral information gathered before saccade onset. This provided independent measures of perceptual, pursuit, and saccadic responses to the double-drift stimulus on a trial-by-trial basis. Our analysis revealed systematic differences between saccadic responses, on one hand, and perceptual and pursuit responses, on the other. These differences are unlikely to be caused by differences in the processing of motion signals because both saccades and pursuits seem to rely on shared target position and velocity information. We conclude that our results are instead due to a difference in how the processing mechanisms underlying perception, pursuit, and saccades combine motor signals with target position. These findings advance our understanding of the mechanisms underlying dissociation in visual processing between perception and eye movements.
Collapse
Affiliation(s)
- Matteo Lisi
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Patrick Cavanagh
- Department of Psychology, Glendon College, Toronto, Ontario, Canada
- Department Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
8
|
Kim J, Singh S, Vales C, Keebler E, Fisher AV, Thiessen ED. Staying and Returning dynamics of young children's attention. Dev Sci 2023; 26:e13410. [PMID: 37211716 DOI: 10.1111/desc.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
In this paper, we decompose selective sustained attending behavior into components of continuous attention maintenance and attentional transitions and study how each of these components develops in young children. Our results in two experiments suggest that changes in children's ability to return attention to a target locus after distraction ("Returning") play a crucial role in the development of selective sustained attention between the ages of 3.5-6 years, perhaps to a greater extent than changes in the ability to continuously maintain attention on the target ("Staying"). We further distinguish Returning from the behavior of transitioning attention away from task (i.e., becoming distracted) and investigate the relative contributions of bottom-up and top-down factors on these different types of attentional transitions. Overall, these results (a) suggest the importance of understanding the cognitive process of transitioning attention for understanding selective sustained attention and its development, (b) provide an empirical paradigm within which to study this process, and (c) begin to characterize basic features of this process, namely its development and its relative dependence on top-down and bottom-up influences on attention. RESEARCH HIGHLIGHTS: Young children exhibited an endogenously ability, Returning, to preferentially transition attention to task-relevant information over task-irrelevant information. Selective sustained attention and its development were decomposed into Returning and Staying, or task-selective attention maintenance, using novel eye-tracking-based measures. Returning improved between the ages of 3.5-6 years, to a greater extent than Staying. Improvements in Returning supported improvements in selective sustained attention between these ages.
Collapse
Affiliation(s)
- Jaeah Kim
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Shashank Singh
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Catarina Vales
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Emily Keebler
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anna V Fisher
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Erik D Thiessen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Kreyenmeier P, Kumbhani R, Movshon JA, Spering M. Shared mechanisms drive ocular following and motion perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560543. [PMID: 37873151 PMCID: PMC10592915 DOI: 10.1101/2023.10.02.560543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How features of complex visual patterns combine to drive perception and eye movements is not well understood. We simultaneously assessed human observers' perceptual direction estimates and ocular following responses (OFR) evoked by moving plaids made from two summed gratings with varying contrast ratios. When the gratings were of equal contrast, observers' eye movements and perceptual reports followed the motion of the plaid pattern. However, when the contrasts were unequal, eye movements and reports during early phases of the OFR were biased toward the direction of the high-contrast grating component; during later phases, both responses more closely followed the plaid pattern direction. The shift from component- to pattern-driven behavior resembles the shift in tuning seen under similar conditions in neuronal responses recorded from monkey MT. Moreover, for some conditions, pattern tracking and perceptual reports were correlated on a trial-by-trial basis. The OFR may therefore provide a precise behavioural read-out of the dynamics of neural motion integration for complex visual patterns.
Collapse
Affiliation(s)
- Philipp Kreyenmeier
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Romesh Kumbhani
- Center for Neural Science, New York University, New York NY 10003, USA
| | - J. Anthony Movshon
- Center for Neural Science, New York University, New York NY 10003, USA
- Department of Psychology, New York University, New York NY 10003, USA
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Institute for Computing, Information, and Cognitive Systems, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
10
|
Kwon S, Fahrenthold BK, Cavanaugh MR, Huxlin KR, Mitchell JF. Perceptual restoration fails to recover unconscious processing for smooth eye movements after occipital stroke. eLife 2022; 11:67573. [PMID: 35730931 PMCID: PMC9255960 DOI: 10.7554/elife.67573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
The visual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g. blindsight). Here, we asked if saccade accuracy and post-saccadic following responses (PFRs) that automatically track target motion upon saccade landing are retained when conscious perception is lost. We contrasted these behaviors in the blind and intact fields of 11 chronic V1-stroke patients, and in 8 visually intact controls. Saccade accuracy was relatively normal in all cases. Stroke patients also had normal PFR in their intact fields, but no PFR in their blind fields. Thus, V1 damage did not spare the unconscious visual processing necessary for automatic, post-saccadic smooth eye movements. Importantly, visual training that recovered motion perception in the blind field did not restore the PFR, suggesting a clear dissociation between pathways mediating perceptual restoration and automatic actions in the V1-damaged visual system.
Collapse
Affiliation(s)
- Sunwoo Kwon
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | | | - Matthew R Cavanaugh
- Center for Visual Science, University of Rochester, Rochester, United States
| | - Krystel R Huxlin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| |
Collapse
|
11
|
Yoshimoto S, Hayasaka T. Common and independent processing of visual motion perception and oculomotor response. J Vis 2022; 22:6. [PMID: 35293955 PMCID: PMC8944401 DOI: 10.1167/jov.22.4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual motion signals are used not only to drive motion perception but also to elicit oculomotor responses. A fundamental question is whether perceptual and oculomotor processing of motion signals shares a common mechanism. This study aimed to address this question using visual motion priming, in which the perceived direction of a directionally ambiguous stimulus is biased in the same (positive priming) or opposite (negative priming) direction as that of a priming stimulus. The priming effect depends on the duration of the priming stimulus. It is assumed that positive and negative priming are mediated by high- and low-level motion systems, respectively. Participants were asked to judge the perceived direction of a π-phase-shifted test grating after a smoothly drifting priming grating during varied durations. Their eye movements were measured while the test grating was presented. The perception and eye movements were discrepant under positive priming and correlated under negative priming on a trial-by-trial basis when an interstimulus interval was inserted between the priming and test stimuli, indicating that the eye movements were evoked by the test stimulus per se. These findings suggest that perceptual and oculomotor responses are induced by a common mechanism at a low level of motion processing but by independent mechanisms at a high level of motion processing.
Collapse
Affiliation(s)
- Sanae Yoshimoto
- School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.,
| | - Tomoyuki Hayasaka
- School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.,
| |
Collapse
|
12
|
Derrien D, Garric C, Sergent C, Chokron S. The nature of blindsight: implications for current theories of consciousness. Neurosci Conscious 2022; 2022:niab043. [PMID: 35237447 PMCID: PMC8884361 DOI: 10.1093/nc/niab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Blindsight regroups the different manifestations of preserved discriminatory visual capacities following the damage to the primary visual cortex. Blindsight types differentially impact objective and subjective perception, patients can report having no visual awareness whilst their behaviour suggests visual processing still occurs at some cortical level. This phenomenon hence presents a unique opportunity to study consciousness and perceptual consciousness, and for this reason, it has had an historical importance for the development of this field of research. From these studies, two main opposing models of the underlying mechanisms have been established: (a) blindsight is perception without consciousness or (b) blindsight is in fact degraded vision, two views that mirror more general theoretical options about whether unconscious cognition truly exists or whether it is only a degraded form of conscious processing. In this article, we want to re-examine this debate in the light of recent advances in the characterization of blindsight and associated phenomena. We first provide an in-depth definition of blindsight and its subtypes, mainly blindsight type I, blindsight type II and the more recently described blindsense. We emphasize the necessity of sensitive and robust methodology to uncover the dissociations between perception and awareness that can be observed in brain-damaged patients with visual field defects at different cognitive levels. We discuss these different profiles of dissociation in the light of both contending models. We propose that the different types of dissociations reveal a pattern of relationship between perception, awareness and metacognition that is actually richer than what is proposed by either of the existing models. Finally, we consider this in the framework of current theories of consciousness and touch on the implications the findings of blindsight have on these.
Collapse
Affiliation(s)
- Diane Derrien
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| | - Clémentine Garric
- Inserm, CHU Lille, U1172—LilNCog (JPARC)—Lille Neuroscience & Cognition, University of Lille, Lille 59000, France
| | - Claire Sergent
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| |
Collapse
|
13
|
Miyamoto T, Numasawa K, Hirata Y, Katoh A, Miura K, Ono S. Effects of smooth pursuit and second-order stimuli on visual motion prediction. Physiol Rep 2021; 9:e14833. [PMID: 33991449 PMCID: PMC8123564 DOI: 10.14814/phy2.14833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine whether smooth pursuit eye movements affect visual motion prediction using a time‐to‐contact task where observers anticipate the exact instant that a partially occluded target would coincide with a stationary object. Moreover, we attempted to clarify the influence of second‐order motion on visual motion prediction during smooth pursuit. One target object moved to another stationary object (6 deg apart) at constant velocity of 3, 4, and 5 deg/s, and then the two objects disappeared 500 ms after the onset of target motion. The observers estimated the moment the moving object would overlap the stationary object and pressed a button. For the pursuit condition, both a Gaussian window and a random dots texture moved in the same direction at the same speed for the first‐order motion, whereas a Gaussian window moved over a static background composed of random dots texture for the second‐order motion. The results showed that the constant error of the time‐to‐contact shifted to a later response for the pursuit condition compared to the fixation condition, regardless of the object velocity. In addition, during smooth pursuit, the constant error for the second‐order motion shifted to an earlier response compared to the first‐order motion when the object velocity was 3 deg/s, whereas no significant difference was found at 4 and 5 deg/s. Therefore, our results suggest that visual motion prediction using a time‐to‐contact task is affected by both eye movements and motion configuration such as second‐order motion.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Chubu University College of Engineering, Kasugai, Japan
| | - Akira Katoh
- Department of Physiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Chen J, Yang P, Chen Z. The effect of the Müller-Lyer configuration on saccadic eye movements is not fully due to illusory perception. J Neurophysiol 2020; 124:856-867. [PMID: 32783573 DOI: 10.1152/jn.00166.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous research has shown that both perception and oculomotor control are affected by visual illusions. While these findings appear to suggest a common code of visual processing for perception and oculomotor control, there remains the possibility that the perceptual and the oculomotor effects emerge through partially different processes. In three experiments, we replicated the previous finding that perception and saccades were both biased by the typical Müller-Lyer configurations. However, using a non-Müller-Lyer setup in which the perceptual illusion effect was much restrained, we did not observe a comparable reduction in the saccadic effect. Instead, the saccadic effect by Müller-Lyer configuration could be partially due to the center-of-gravity (CoG) effect (i.e., the tendency for saccades to land at the center of gravity of the stimuli). These results indicate that the influence of the Müller-Lyer configuration on saccadic eye movements is a mixed effect of perceptual representation and CoG, rather than exclusively due to the illusory perception. We further found that the saccadic and perceptual effects were not correlated at the trial-by-trial level, which suggest that there could be largely independent sources of noise for perception and saccadic control.NEW & NOTEWORTHY The Müller-Lyer illusion affects both perception and oculomotor control, but it is unknown whether these effects arise from the same or different underlying mechanisms. We developed a modified version of the Müller-Lyer configuration, which largely reduced the perceptual illusion effect compared with the typical configuration but reduced the saccadic effect to a much less extent. Such difference indicates that influence of the Müller-Lyer configuration on saccadic eye movements is not fully mediated by illusory perception.
Collapse
Affiliation(s)
- Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Pin Yang
- Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zhongting Chen
- Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Badde S, Myers CF, Yuval-Greenberg S, Carrasco M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat Commun 2020; 11:3341. [PMID: 32620746 PMCID: PMC7335189 DOI: 10.1038/s41467-020-17160-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
The oculomotor system keeps the eyes steady in expectation of visual events. Here, recording microsaccades while people performed a tactile, frequency discrimination task enabled us to test whether the oculomotor system shows an analogous preparatory response for unrelated tactile events. We manipulated the temporal predictability of tactile targets using tactile cues, which preceded the target by either constant (high predictability) or variable (low predictability) time intervals. We find that microsaccades are inhibited prior to tactile targets and more so for constant than variable intervals, revealing a tight crossmodal link between tactile temporal expectation and oculomotor action. These findings portray oculomotor freezing as a marker of crossmodal temporal expectation. Moreover, microsaccades occurring around the tactile target presentation are associated with reduced task performance, suggesting that oculomotor freezing mitigates potential detrimental, concomitant effects of microsaccades and revealing a crossmodal coupling between tactile perception and oculomotor action.
Collapse
Affiliation(s)
- Stephanie Badde
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA.
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA.
| | - Caroline F Myers
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Marisa Carrasco
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA
| |
Collapse
|
16
|
Polgári P, Causin JB, Weiner L, Bertschy G, Giersch A. Novel method to measure temporal windows based on eye movements during viewing of the Necker cube. PLoS One 2020; 15:e0227506. [PMID: 31940327 PMCID: PMC6961897 DOI: 10.1371/journal.pone.0227506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022] Open
Abstract
Bistable stimuli can give rise to two different interpretations between which our perception will alternate. Recent results showed a strong coupling between eye movements and reports of perceptual alternations with motion stimuli, which provides useful tools to objectively assess perceptual alternations. However, motion might entrain eye movements, and here we check with a static picture, the Necker cube, whether eye movements and perceptual reports (manual responses) reveal similar or different alternation rates, and similar or different sensitivity to attention manipulations. Using a cluster analysis, ocular temporal windows were defined based on the dynamics of ocular fixations during viewing of the Necker cube and compared to temporal windows extracted from manual responses. Ocular temporal windows were measured also with a control condition, where the physical stimulus presented to viewers alternated between two non-ambiguous versions of the Necker cube. Attention was manipulated by asking subjects to either report spontaneous alternations, focus on one percept, or switch as fast as possible between percepts. The validity of the ocular temporal windows was confirmed by the correspondence between ocular fixations when the physical stimulus changed and when the bistable Necker cube was presented. Ocular movements defined smaller time windows than time windows extracted from manual responses. The number of manual and ocular windows both increased between the spontaneous condition and the switch condition. However, only manual, and not ocular windows, increased in duration in the focus condition. Manual responses involve decisional mechanisms, and they may be decoupled from automatic oscillations between the two percepts, as suggested by the fact that both the number and duration of ocular windows remained stable between the spontaneous and focus conditions. In all, the recording of eye movements provides an objective measure of time windows, and reveals faster perceptual alternations with the Necker cube and less sensitivity to attention manipulations than manual responses.
Collapse
Affiliation(s)
- Patrik Polgári
- INSERM U1114, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jean-Baptiste Causin
- INSERM U1114, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Psychiatry Department, University Hospital of Strasbourg, Strasbourg, France
| | - Luisa Weiner
- INSERM U1114, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Psychiatry Department, University Hospital of Strasbourg, Strasbourg, France
| | - Gilles Bertschy
- INSERM U1114, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Psychiatry Department, University Hospital of Strasbourg, Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Psychiatry Department, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Vetter P, Badde S, Phelps EA, Carrasco M. Emotional faces guide the eyes in the absence of awareness. eLife 2019; 8:43467. [PMID: 30735123 PMCID: PMC6382349 DOI: 10.7554/elife.43467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
The ability to act quickly to a threat is a key skill for survival. Under awareness, threat-related emotional information, such as an angry or fearful face, has not only perceptual advantages but also guides rapid actions such as eye movements. Emotional information that is suppressed from awareness still confers perceptual and attentional benefits. However, it is unknown whether suppressed emotional information can directly guide actions, or whether emotional information has to enter awareness to do so. We suppressed emotional faces from awareness using continuous flash suppression and tracked eye gaze position. Under successful suppression, as indicated by objective and subjective measures, gaze moved towards fearful faces, but away from angry faces. Our findings reveal that: (1) threat-related emotional stimuli can guide eye movements in the absence of visual awareness; (2) threat-related emotional face information guides distinct oculomotor actions depending on the type of threat conveyed by the emotional expression.
Collapse
Affiliation(s)
- Petra Vetter
- Department of Psychology, Center for Neural Science, New York University, New York, United States.,Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
| | - Stephanie Badde
- Department of Psychology, Center for Neural Science, New York University, New York, United States
| | - Elizabeth A Phelps
- Department of Psychology, Center for Neural Science, New York University, New York, United States.,Department of Psychology, Harvard University, Cambridge, United States
| | - Marisa Carrasco
- Department of Psychology, Center for Neural Science, New York University, New York, United States
| |
Collapse
|
18
|
Persuh M. The Fata Morgana of Unconscious Perception. Front Hum Neurosci 2018; 12:120. [PMID: 29692714 PMCID: PMC5902557 DOI: 10.3389/fnhum.2018.00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/12/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Marjan Persuh
- Department of Social Sciences, Human Services and Criminal Justice, Borough of Manhattan Community College, City University of New York, New York, NY, United States
| |
Collapse
|
19
|
Combined fMRI- and eye movement-based decoding of bistable plaid motion perception. Neuroimage 2017; 171:190-198. [PMID: 29294388 DOI: 10.1016/j.neuroimage.2017.12.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022] Open
Abstract
The phenomenon of bistable perception, in which perception alternates spontaneously despite constant sensory stimulation, has been particularly useful in probing the neural bases of conscious perception. The study of such bistability requires access to the observer's perceptual dynamics, which is usually achieved via active report. This report, however, constitutes a confounding factor in the study of conscious perception and can also be biased in the context of certain experimental manipulations. One approach to circumvent these problems is to track perceptual alternations using signals from the eyes or the brain instead of observers' reports. Here we aimed to optimize such decoding of perceptual alternations by combining eye and brain signals. Eye-tracking and functional magnetic resonance imaging (fMRI) was performed in twenty participants while they viewed a bistable visual plaid motion stimulus and reported perceptual alternations. Multivoxel pattern analysis (MVPA) for fMRI was combined with eye-tracking in a Support vector machine to decode participants' perceptual time courses from fMRI and eye-movement signals. While both measures individually already yielded high decoding accuracies (on average 86% and 88% correct, respectively) classification based on the two measures together further improved the accuracy (91% correct). These findings show that leveraging on both fMRI and eye movement data may pave the way for optimized no-report paradigms through improved decodability of bistable motion perception and hence for a better understanding of the neural correlates of consciousness.
Collapse
|
20
|
Qian CS, Brascamp JW. How to Build a Dichoptic Presentation System That Includes an Eye Tracker. J Vis Exp 2017:56033. [PMID: 28930987 PMCID: PMC5752173 DOI: 10.3791/56033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The presentation of different stimuli to the two eyes, dichoptic presentation, is essential for studies involving 3D vision and interocular suppression. There is a growing literature on the unique experimental value of pupillary and oculomotor measures, especially for research on interocular suppression. Although obtaining eye-tracking measures would thus benefit studies that use dichoptic presentation, the hardware essential for dichoptic presentation (e.g. mirrors) often interferes with high-quality eye tracking, especially when using a video-based eye tracker. We recently described an experimental setup that combines a standard dichoptic presentation system with an infrared eye tracker by using infrared-transparent mirrors1. The setup is compatible with standard monitors and eye trackers, easy to implement, and affordable (on the order of US$1,000). Relative to existing methods it has the benefits of not requiring special equipment and posing few limits on the nature and quality of the visual stimulus. Here we provide a visual guide to the construction and use of our setup.
Collapse
Affiliation(s)
- Cheng S Qian
- Department of Psychology, Michigan State University;
| | - Jan W Brascamp
- Department of Psychology, Michigan State University; Neuroscience Program, Michigan State University
| |
Collapse
|
21
|
Fujiwara M, Ding C, Kaunitz L, Stout JC, Thyagarajan D, Tsuchiya N. Optokinetic nystagmus reflects perceptual directions in the onset binocular rivalry in Parkinson's disease. PLoS One 2017; 12:e0173707. [PMID: 28288201 PMCID: PMC5348009 DOI: 10.1371/journal.pone.0173707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/24/2017] [Indexed: 11/20/2022] Open
Abstract
Optokinetic nystagmus (OKN), the reflexive eye movements evoked by a moving field, has recently gained interest among researchers as a useful tool to assess conscious perception. When conscious perception and stimulus are dissociated, such as in binocular rivalry-when dissimilar images are simultaneously presented to each eye and perception alternates between the two images over time-OKN correlates with perception rather than with the physical direction of the moving field. While this relationship is well established in healthy subjects, it is yet unclear whether it also generalizes to clinical populations, for example, patients with Parkinson's disease. Parkinson's disease is a motor disorder, causing tremor, slow movements and rigidity. It may also be associated with oculomotor deficits, such as impaired saccades and smooth pursuit eye movements. Here, we employed short-duration, onset binocular rivalry (2 s trial of stimulus presentation followed by 1 s inter-trial interval) with moving grating stimuli to assess OKN in Parkinson's disease patients (N = 39) and controls (N = 29) of a similar age. Each trial was either non-rivalrous (same stimuli presented to both eyes) or rivalrous, as in binocular rivalry. We analyzed OKN to discriminate direction of stimulus and perception on a trial-by-trial basis. Although the speed of slow-phase OKN was slower in the patients, discriminability of conscious perception based on OKN was comparable between the groups. Treatment with anti-Parkinson drugs and deep brain stimulation improved motor ability of patients, but did not impact on OKN. Furthermore, OKN-based measures were robust and their latencies were shorter than manual button-based measures in both groups and stimulus conditions. To our knowledge, our study is the first to demonstrate that OKN can be used as a reliable indicator of conscious perception in binocular rivalry even in Parkinson's disease patients in whom impaired manual dexterity may render button-press reports less reliable.
Collapse
Affiliation(s)
- Mana Fujiwara
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Araya Brain Imaging, Tokyo, Japan
| | - Catherine Ding
- Department of Neurosciences, Southern Clinical School, Monash Health, Melbourne, Victoria, Australia
| | - Lisandro Kaunitz
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Julie C. Stout
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Dominic Thyagarajan
- Department of Neurosciences, Southern Clinical School, Monash Health, Melbourne, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Mueller AS, González EG, McNorgan C, Steinbach MJ, Timney B. Aperture extent and stimulus speed affect the perception of visual acceleration. Exp Brain Res 2016; 235:743-752. [PMID: 27866263 DOI: 10.1007/s00221-016-4824-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
Humans are generally poor at detecting the presence of visual acceleration, but it is unclear whether the extent of a field of moving objects through an aperture affects this ability. Hypothetically, the farther a stimulus can accelerate uninterrupted by an aperture's physical constraints, the easier it should be to discern its motion profile. We varied the horizontal extent of the aperture through which continuously accelerating or decelerating random dot arrays were presented at different average speeds, and measured acceleration and deceleration detection thresholds. We also hypothesized that manipulating aperture extent at different speeds would change how observers visually pursue acceleration, which we tested in a control experiment. Results showed that, while there was no difference between the acceleration and deceleration conditions, detection was better in the larger than small aperture conditions. Regardless of aperture size, smaller acceleration and deceleration rates (relative to average speed) were needed to detect changing speed in faster than slower speed ranges. Similarly, observers tracked the stimuli to a greater extent in the larger than small apertures, and smooth pursuit was overall poorer at faster than slower speeds. Notably, the effect of speed on pursuit was greater for the larger than small aperture conditions, suggesting that the small aperture restricted pursuit. Furthermore, there was little difference in psychophysical and eye movement data between the medium and large aperture conditions within each speed range, indicating that it is easier to detect an accelerating profile when the aperture is large enough to encourage a minimum level of pursuit.
Collapse
Affiliation(s)
- Alexandra S Mueller
- Psychology Department, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Center for ADHD, Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., ML-10006, Cincinnati, OH, 45229-3039, USA.
| | - Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, M5T 2S8, Canada.,Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Chris McNorgan
- Psychology Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260-4110, USA
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, M5T 2S8, Canada.,Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Brian Timney
- Psychology Department, University of Western Ontario, London, ON, N6A 5C2, Canada
| |
Collapse
|
23
|
|
24
|
Mueller AS, González EG, McNorgan C, Steinbach MJ, Timney B. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration. Perception 2016; 45:670-683. [PMID: 26854286 DOI: 10.1177/0301006616629034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus.
Collapse
Affiliation(s)
- Alexandra S Mueller
- Psychology Department, University of Western Ontario, London, Ontario, Canada
| | - Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Centre for Vision Research, York University, Toronto, Canada
| | - Chris McNorgan
- Psychology Department, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Centre for Vision Research, York University, Toronto, Canada
| | - Brian Timney
- Psychology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Lisi M, Cavanagh P. Dissociation between the Perceptual and Saccadic Localization of Moving Objects. Curr Biol 2015; 25:2535-40. [PMID: 26412133 DOI: 10.1016/j.cub.2015.08.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/02/2023]
Abstract
Visual processing in the human brain provides the data both for perception and for guiding motor actions. It seems natural that our actions would be directed toward perceived locations of their targets, but it has been proposed that action and perception rely on different visual information [1-4], and this provocative claim has triggered a long-lasting debate [5-7]. Here, in support of this claim, we report a large, robust dissociation between perception and action. We take advantage of a perceptual illusion in which visual motion signals presented within the boundaries of a peripheral moving object can make the object's apparent trajectory deviate by 45° or more from its physical trajectory [8-10], a shift several times larger than the typical discrimination threshold for motion direction [11]. Despite the large perceptual distortion, we found that saccadic eye movements directed to these moving objects clearly targeted locations along their physical rather than apparent trajectories. We show that the perceived trajectory is based on the accumulation of position error determined by prior sensory history-an accumulation of error that is not found for the action toward the same target. We suggest that visual processing for perception and action might diverge in how past information is combined with new visual input, with action relying only on immediate information to track a target, whereas perception builds on previous estimates to construct a conscious representation.
Collapse
Affiliation(s)
- Matteo Lisi
- Laboratoire Psychologie de la Perception, CNRS UMR 8248, Université Paris Descartes, 75006 Paris, France.
| | - Patrick Cavanagh
- Laboratoire Psychologie de la Perception, CNRS UMR 8248, Université Paris Descartes, 75006 Paris, France
| |
Collapse
|
26
|
Tadin D. Suppressive mechanisms in visual motion processing: From perception to intelligence. Vision Res 2015; 115:58-70. [PMID: 26299386 DOI: 10.1016/j.visres.2015.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
Abstract
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores.
Collapse
Affiliation(s)
- Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, Rochester, NY 14627, USA; Department of Ophthalmology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Law PCF, Paton BK, Riddiford JA, Gurvich CT, Ngo TT, Miller SM. No Relationship Between Binocular Rivalry Rate and Eye-Movement Profiles in Healthy Individuals: A Bayes Factor Analysis. Perception 2015; 44:643-61. [DOI: 10.1177/0301006615594267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Binocular rivalry (BR) is an intriguing phenomenon in which conflicting images are presented, one to each eye, resulting in perceptual alternations between each image. The rate of BR has been proposed as a potential endophenotype for bipolar disorder because (a) it is well established that this highly heritable psychiatric condition is associated with slower BR rate than in controls, and (b) an individual’s BR rate is approximately 50% genetically determined. However, eye movements (EMs) could potentially account for the slow BR trait given EM anomalies are observed in psychiatric populations, and there has been report of an association between saccadic rate and BR rate in healthy individuals. Here, we sought to assess the relationship between BR rate and EMs in healthy individuals ( N = 40, mean age = 34.4) using separate BR and EM tasks, with the latter measuring saccades during anticipatory, antisaccade, prosaccade, self-paced, free-viewing, and smooth-pursuit tasks. No correlation was found between BR rate and any EM measure for any BR task ( p > .01) with substantial evidence favoring this lack of association (BF01 > 3). This finding is in contrast to previous data and has important implications for using BR rate as an endophenotype. If replicated in clinical psychiatric populations, EM interpretations of the slow BR trait can be excluded.
Collapse
Affiliation(s)
- Phillip C. F. Law
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
| | - Bryan K. Paton
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Philosophy and Cognition Lab, Philosophy Department, SOPHIS, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Jacqueline A. Riddiford
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Caroline T. Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
| | - Trung T. Ngo
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Steven M. Miller
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci 2015; 38:247-58. [PMID: 25765322 DOI: 10.1016/j.tins.2015.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 11/23/2022]
Abstract
Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness.
Collapse
|
29
|
Souto D, Kerzel D. Ocular tracking responses to background motion gated by feature-based attention. J Neurophysiol 2014; 112:1074-81. [DOI: 10.1152/jn.00810.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset.
Collapse
Affiliation(s)
- David Souto
- School of Psychology, University of Leicester, Leicester, United Kingdom; and
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Genève, Switzerland
| |
Collapse
|
30
|
Price NSC, Blum J. Motion perception correlates with volitional but not reflexive eye movements. Neuroscience 2014; 277:435-45. [PMID: 25073044 DOI: 10.1016/j.neuroscience.2014.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/19/2014] [Indexed: 11/17/2022]
Abstract
Visually-driven actions and perception are traditionally ascribed to the dorsal and ventral visual streams of the cortical processing hierarchy. However, motion perception and the control of tracking eye movements both depend on sensory motion analysis by neurons in the dorsal stream, suggesting that the same sensory circuits may underlie both action and perception. Previous studies have suggested that multiple sensory modules may be responsible for the perception of low- and high-level motion, or the detection versus identification of motion direction. However, it remains unclear whether the sensory processing systems that contribute to direction perception and the control of eye movements have the same neuronal constraints. To address this, we examined inter-individual variability across 36 observers, using two tasks that simultaneously assessed the precision of eye movements and direction perception: in the smooth pursuit task, observers volitionally tracked a small moving target and reported its direction; in the ocular following task, observers reflexively tracked a large moving stimulus and reported its direction. We determined perceptual-oculomotor correlations across observers, defined as the correlation between each observer's mean perceptual precision and mean oculomotor precision. Across observers, we found that: (i) mean perceptual precision was correlated between the two tasks; (ii) mean oculomotor precision was correlated between the tasks, and (iii) oculomotor and perceptual precision were correlated for volitional smooth pursuit, but not reflexive ocular following. Collectively, these results demonstrate that sensory circuits with common neuronal constraints subserve motion perception and volitional, but not reflexive eye movements.
Collapse
Affiliation(s)
- N S C Price
- Department of Physiology, Monash University, VIC 3800, Australia.
| | - J Blum
- Department of Physiology, Monash University, VIC 3800, Australia
| |
Collapse
|
31
|
González EG, Lillakas L, Greenwald N, Gallie BL, Steinbach MJ. Unaffected smooth pursuit but impaired motion perception in monocularly enucleated observers. Vision Res 2014; 101:151-7. [PMID: 25007713 DOI: 10.1016/j.visres.2014.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022]
Abstract
The objective of this paper was to study the characteristics of closed-loop smooth pursuit eye movements of 15 unilaterally eye enucleated individuals and 18 age-matched controls and to compare them to their performance in two tests of motion perception: relative motion and motion coherence. The relative motion test used a brief (150 ms) small stimulus with a continuously present fixation target to preclude pursuit eye movements. The duration of the motion coherence trials was 1s, which allowed a brief pursuit of the stimuli. Smooth pursuit data were obtained with a step-ramp procedure. Controls were tested both monocularly and binocularly. The data showed worse performance by the enucleated observers in the relative motion task but no statistically significant differences in motion coherence between the two groups. On the other hand, the smooth pursuit gain of the enucleated participants was as good as that of controls for whom we found no binocular advantage. The data show that enucleated observers do not exhibit deficits in the afferent or sensory pathways or in the efferent or motor pathways of the steady-state smooth pursuit system even though their visual processing of motion is impaired.
Collapse
Affiliation(s)
- Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada.
| | - Linda Lillakas
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| | - Naomi Greenwald
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada
| | - Brenda L Gallie
- Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Cancer Informatics, Princess Margaret Hospital, Toronto M5T 2M9, Canada
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
32
|
Szpiro SFA, Spering M, Carrasco M. Perceptual learning modifies untrained pursuit eye movements. J Vis 2014; 14:8. [PMID: 25002412 DOI: 10.1167/14.8.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response.
Collapse
Affiliation(s)
- Sarit F A Szpiro
- Department of Psychology, New York University, New York, NY, USA
| | - Miriam Spering
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, CanadaBrain Research Centre, University of British Columbia, Vancouver, Canada
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
33
|
Sterzer P, Stein T, Ludwig K, Rothkirch M, Hesselmann G. Neural processing of visual information under interocular suppression: a critical review. Front Psychol 2014; 5:453. [PMID: 24904469 PMCID: PMC4032950 DOI: 10.3389/fpsyg.2014.00453] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022] Open
Abstract
When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at a time while the other stimulus is invisible due to interocular suppression. When both stimuli are equally potent in competing for awareness, perception alternates spontaneously between the two stimuli, a phenomenon called binocular rivalry. However, when one stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can be suppressed for prolonged periods of time. A technique that has recently become very popular for the investigation of unconscious visual processing is continuous flash suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-contrast stimulus shown to the other eye invisible for up to minutes. Studies using CFS have produced new insights but also controversies regarding the types of visual information that can be processed unconsciously as well as the neural sites and the relevance of such unconscious processing. Here, we review the current state of knowledge in regard to neural processing of interocularly suppressed information. Focusing on recent neuroimaging findings, we discuss whether and to what degree such suppressed visual information is processed at early and more advanced levels of the visual processing hierarchy. We review controversial findings related to the influence of attention on early visual processing under interocular suppression, the putative differential roles of dorsal and ventral areas in unconscious object processing, and evidence suggesting privileged unconscious processing of emotional and other socially relevant information. On a more general note, we discuss methodological and conceptual issues, from practical issues of how unawareness of a stimulus is assessed to the overarching question of what constitutes an adequate operational definition of unawareness. Finally, we propose approaches for future research to resolve current controversies in this exciting research area.
Collapse
Affiliation(s)
- Philipp Sterzer
- Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Timo Stein
- Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Karin Ludwig
- Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany ; Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Marcus Rothkirch
- Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Guido Hesselmann
- Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
34
|
Glasser DM, Tadin D. Modularity in the motion system: independent oculomotor and perceptual processing of brief moving stimuli. J Vis 2014; 14:28. [PMID: 24665091 DOI: 10.1167/14.3.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In addition to motion perception per se, we utilize motion information for a wide range of brain functions. These varied functions place different demands on the visual system, and therefore a stimulus that provides useful information for one function may be inadequate for another. For example, the direction of motion of large high-contrast stimuli is difficult to discriminate perceptually, but other studies have shown that such stimuli are highly effective at eliciting directional oculomotor responses such as the ocular following response (OFR). Here, we investigated the degree of independence between perceptual and oculomotor processing by determining whether perceptually suppressed moving stimuli can nonetheless evoke reliable eye movements. We measured reflexively evoked tracking eye movements while observers discriminated the motion direction of large high-contrast stimuli. To quantify the discrimination ability of the oculomotor system, we used signal detection theory to generate associated oculometric functions. The results showed that oculomotor sensitivity to motion direction is not predicted by perceptual sensitivity to the same stimuli. In fact, in several cases oculomotor responses were more reliable than perceptual responses. Moreover, a trial-by-trial analysis indicated that, for stimuli tested in this study, oculomotor processing was statistically independent from perceptual processing. Evidently, perceptual and oculomotor responses reflect the activity of independent dissociable mechanisms despite operating on the same input. While results of this kind have traditionally been interpreted in the framework of perception versus action, we propose that these differences reflect a more general principle of modularity.
Collapse
|
35
|
Ueda H, Takahashi K, Watanabe K. Influence of removal of invisible fixation on the saccadic and manual gap effect. Exp Brain Res 2013; 232:329-36. [DOI: 10.1007/s00221-013-3743-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022]
|
36
|
Simoncini C, Perrinet LU, Montagnini A, Mamassian P, Masson GS. More is not always better: adaptive gain control explains dissociation between perception and action. Nat Neurosci 2012; 15:1596-603. [PMID: 23023292 DOI: 10.1038/nn.3229] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
Abstract
Moving objects generate motion information at different scales, which are processed in the visual system with a bank of spatiotemporal frequency channels. It is not known how the brain pools this information to reconstruct object speed and whether this pooling is generic or adaptive; that is, dependent on the behavioral task. We used rich textured motion stimuli of varying bandwidths to decipher how the human visual motion system computes object speed in different behavioral contexts. We found that, although a simple visuomotor behavior such as short-latency ocular following responses takes advantage of the full distribution of motion signals, perceptual speed discrimination is impaired for stimuli with large bandwidths. Such opposite dependencies can be explained by an adaptive gain control mechanism in which the divisive normalization pool is adjusted to meet the different constraints of perception and action.
Collapse
Affiliation(s)
- Claudio Simoncini
- Team InViBe, Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | | | | | | | | |
Collapse
|
37
|
Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness. J Neurosci 2012; 32:7594-601. [PMID: 22649238 DOI: 10.1523/jneurosci.0355-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.
Collapse
|