1
|
Kitchin KT, Richards JA, Robinette BL, Wallace KA, Coates NH, Castellon BT, Grulke EA. Biochemical effects of copper nanomaterials in human hepatocellular carcinoma (HepG2) cells. Cell Biol Toxicol 2023; 39:2311-2329. [PMID: 35877023 DOI: 10.1007/s10565-022-09720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
In dose-response and structure-activity studies, human hepatic HepG2 cells were exposed for 3 days to nano Cu, nano CuO or CuCl2 (ions) at doses between 0.1 and 30 ug/ml (approximately the no observable adverse effect level to a high degree of cytotoxicity). Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. With nano Cu and nano CuO, few indications of cytotoxicity were observed between 0.1 and 3 ug/ml. In respect to dose, lactate dehydrogenase and aspartate transaminase were the most sensitive cytotoxicity parameters. The next most responsive parameters were alanine aminotransferase, glutathione reductase, glucose 6-phosphate dehydrogenase, and protein concentration. The medium responsive parameters were superoxide dismutase, gamma glutamyltranspeptidase, total bilirubin, and microalbumin. The parameters glutathione peroxidase, glutathione reductase, and protein were all altered by nano Cu and nano CuO but not by CuCl2 exposures. Our chief observations were (1) significant decreases in glucose 6-phosphate dehydrogenase and glutathione reductase was observed at doses below the doses that show high cytotoxicity, (2) even high cytotoxicity did not induce large changes in some study parameters (e.g., alkaline phosphatase, catalase, microalbumin, total bilirubin, thioredoxin reductase, and triglycerides), (3) even though many significant biochemical effects happen only at doses showing varying degrees of cytotoxicity, it was not clear that cytotoxicity alone caused all of the observed significant biochemical effects, and (4) the decreased glucose 6-phosphate dehydrogenase and glutathione reductase support the view that oxidative stress is a main toxicity pathway of CuCl2 and Cu-containing nanomaterials.
Collapse
Affiliation(s)
- Kirk T Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA.
| | - Judy A Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Brian L Robinette
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Kathleen A Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Najwa H Coates
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Benjamin T Castellon
- Institute of Biomedical Studies and Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Eric A Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY, 20506-0046, USA
| |
Collapse
|
2
|
Sun QX, Zhang SQ, Wei X, Yang T, Wang JH, Chen ML. Dual mode assay of glutathione with Tb-doped g-C3N4/MnO2 nanoconjugates as fluorescence probe and Mn as elemental target. Anal Chim Acta 2022; 1221:340100. [DOI: 10.1016/j.aca.2022.340100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/01/2022]
|
3
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallant B, Fisher A, Kitchin KT. Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5083-5098. [PMID: 33875094 PMCID: PMC10803003 DOI: 10.1166/jnn.2021.19328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl₂ was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl₂ treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl₂) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFκB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl₂ treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Beena Vallant
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | |
Collapse
|
4
|
Elfsmark L, Ekstrand-Hammarström B, Forsgren N, Lejon C, Hägglund L, Wingfors H. Characterization of toxicological effects of complex nano-sized metal particles using in vitro human cell and whole blood model systems. J Appl Toxicol 2021; 42:203-215. [PMID: 34050537 DOI: 10.1002/jat.4202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Metal oxide fumes form at high temperatures, for instance, during welding or firing ammunition. Inhalation exposure to high levels of airborne metal oxide particles can cause metal fume fever, cardiovascular effects, and lung damage in humans, but the associated underlying pathological mechanisms are still not fully understood. Using human alveolar epithelial cells, vascular endothelial cells, and whole blood model systems, we aimed to elucidate the short-term effects of well-characterized metal particles emitted while firing pistol ammunition. Human lung epithelial cells exposed to gunshot smoke particles (0.1-50 μg/ml) produced reactive oxygen species (ROS) and pro-inflammatory cytokines (interleukin 8 (IL-8), granulocyte-macrophage colony-stimulating factor (GM-CSF)) that activate and recruit immune cells. Particles comprising high copper (Cu) and zinc (Zn) content activated human endothelial cells via a non-ROS-mediated mechanism that triggered immune activation (IL-8, GM-CSF), leukocyte adhesion to the endothelium (soluble intercellular adhesion molecule 1 (sICAM-1)), and secretion of regulators of the acute-phase protein synthesis (interleukin 6 (IL-6)). In human whole blood, metal oxides in gunshot smoke demonstrated intrinsic properties that activated platelets (release of soluble cluster of differentiation 40 ligand (sCD40L), platelet-derived growth factor B-chain homodimer(PDGF-BB), and vascular endothelial growth factor A (VEGF-A)) and blood coagulation and induced concomitant release of pro-inflammatory cytokines from blood leukocytes that further orchestrate thrombogenesis. The model systems applied provide useful tools for health risk assessment of particle exposures, but more studies are needed to further elucidate the mechanisms of metal fume fever and to evaluate the potential risk of long-term cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Elfsmark
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Christian Lejon
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Lars Hägglund
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| |
Collapse
|
5
|
The pro-inflammatory stimulus of zinc- and copper-containing welding fumes in whole blood assay via protein tyrosine phosphatase 1B inhibition. Sci Rep 2019; 9:1315. [PMID: 30718726 PMCID: PMC6362009 DOI: 10.1038/s41598-018-37803-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
An asymptomatic systemic inflammation after exposure to zinc- and copper-containing welding fumes has been described as mild form of metal fume fever in recent studies. Since chronic systemic inflammation leads to a higher cardiovascular risk, examining the inflammation with the underlying pathomechanism is necessary to estimate and hopefully prevent long-term effects of welding. We established a whole blood assay to investigate the effects of zinc- and copper-containing welding fume particles on the blood immune response. Increased levels of IL-6, IL-8, TNFα and IL-1β determined after 24 hours of exposure indicated an acute systemic inflammatory reaction. In vitro increases of IL-6 were comparable to in vivo increases of serum IL-6 levels in a study with welding fume exposure of human subjects. Inhibition of PTP1B was identified as one pathway responsible for the effects of zinc- and copper-containing welding fumes and therefore welding fume fever. In conclusion, the whole blood assay is a reliable and feasible method to investigate effects of zinc- and copper-containing welding fumes on the immune system and as a surrogate for systemic inflammation and welding fume fever. Future research can utilize whole blood assays to reduce and partially replace human exposure studies for further investigations of welding fume fever.
Collapse
|
6
|
Krabbe J, Esser A, Kanzler S, Braunschweig T, Kintsler S, Spillner J, Schröder T, Kalverkamp S, Balakirski G, Gerhards B, Rieg AD, Kraus T, Brand P, Martin C. The effects of zinc- and copper-containing welding fumes on murine, rat and human precision-cut lung slices. J Trace Elem Med Biol 2018; 49:192-201. [PMID: 29551464 DOI: 10.1016/j.jtemb.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Recently, the pro-inflammatory effects of metal inert gas brazing welding fumes containing zinc and copper have been demonstrated in humans. Here, murine, rat and human precision cut lung slices (PCLS) were incubated in welding fume containing media with 0.1, 1, 10 and 100 μg/ml for 24 or 48 h. 24 h incubation were determined either by incubation for the total time or for only 6 h followed by a 18 h post-incubation phase. Cytotoxicity, proliferation and DNA repair rates, and cytokine levels were determined. Welding fume particle concentrations of 0.1 and 1 μg/ml showed no toxic effects on PCLS of all three species, while for 10 and 100 μg/ml a concentration-dependent toxicity occurred. Proliferation and DNA repair rates were reduced for all tested concentrations and incubation times. Additionally, the cytokine levels in the supernatants were markedly reduced, while after 6 h of exposure with 18 h of post-incubation time a trend towards increased cytokine levels occurred. PCLS are a reliable and feasible method to assess and offer a prediction of toxic effects of welding fume particles on human lungs. Rat PCLS showed similar responses compared to human PCLS and are suitable for further evaluation of toxic effects exerted by welding fume particles.
Collapse
Affiliation(s)
- Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - André Esser
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jan Spillner
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Boxgraben 99, 52064 Aachen, Germany
| | - Sebastian Kalverkamp
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Galina Balakirski
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Departement of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Benjamin Gerhards
- ISF- Welding and Joining Institute, RWTH Aachen University, Pontstraße 49, 52062 Aachen, Germany
| | - Annette D Rieg
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Kraus
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Peter Brand
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
7
|
Weiss KH, Van de Moortele M, Gotthardt DN, Pfeiffenberger J, Seessle J, Ullrich E, Gielen E, Borghs H, Adriaens E, Stremmel W, Meersseman W, Boonen S, Cassiman D. Bone demineralisation in a large cohort of Wilson disease patients. J Inherit Metab Dis 2015; 38:949-56. [PMID: 25663473 DOI: 10.1007/s10545-015-9815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023]
Abstract
AIMS AND BACKGROUND We compared the bone mineral density (BMD) of adult Wilson disease (WD) patients (n = 148), with an age- and gender-matched healthy control population (n = 148). Within the WD cohort, correlations of BMD with WD disease parameters, lab results, type of treatment and known osteoporosis risk factors were analysed. METHODS Hip and lumbar spine absolute BMD and T-score were measured by dual-energy X-ray absorptiometry. Osteoporosis and osteopenia were defined as a T-score ≤ -2.5, and between -1 and -2.5, respectively. RESULTS There were significantly more subjects with abnormal T-scores in the WD population (58.8%) than in the control population (45.3%) (χ(2) = 6.65, df = 2, p = 0.036), as there were 50.0% osteopenic and 8.8% osteoporotic WD patients, vs. 41.2% and 4.1%, respectively, in the controls. Especially L2-L4 spine BMD measurements (BMD and T-scores) differed significantly between the WD population and matched controls. L2-L4 spine BMD for WD patients was on average 0.054 g/cm(2) (5.1%) lower than in matched normal controls (0.995 ± 0.156 vs 1.050 ± 0.135; p = 0.002). We found no significant correlation between BMD values and any of the WD disease parameters (e.g. the severity of liver disease), lab results, type of treatment or known osteoporosis risk factors. Duration of D-penicillamine treatment was negatively correlated with femoral BMD value, but in a clinically irrelevant manner, compared to age and gender. Importantly, BMD remained significantly lower in WD patients (n = 89) vs. controls after excluding WD patients with cirrhosis (p = 0.009). CONCLUSIONS Our study suggests that WD is intrinsically associated with bone demineralisation.
Collapse
Affiliation(s)
- Karl Heinz Weiss
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Boaru SG, Merle U, Uerlings R, Zimmermann A, Flechtenmacher C, Willheim C, Eder E, Ferenci P, Stremmel W, Weiskirchen R. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease. J Cell Mol Med 2015; 19:806-814. [PMID: 25704483 PMCID: PMC4395195 DOI: 10.1111/jcmm.12497] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022] Open
Abstract
Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.
Collapse
Affiliation(s)
- Sorina Georgiana Boaru
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapie and Clinical Chemistry, RWTH Aachen University Hospital AachenAachen, Germany
| | - Uta Merle
- Department of Gastroenterology, Internal Medicine IV, University Hospital HeidelbergHeidelberg, Germany
| | - Ricarda Uerlings
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapie and Clinical Chemistry, RWTH Aachen University Hospital AachenAachen, Germany
| | - Astrid Zimmermann
- Central Institute of Engineering, Electronic und Analytics (ZEA-3), Research Centre Jülich (FZJ)Jülich, Germany
| | | | - Claudia Willheim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of ViennaVienna, Austria
| | - Elisabeth Eder
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of ViennaVienna, Austria
| | - Peter Ferenci
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of ViennaVienna, Austria
| | - Wolfgang Stremmel
- Department of Gastroenterology, Internal Medicine IV, University Hospital HeidelbergHeidelberg, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapie and Clinical Chemistry, RWTH Aachen University Hospital AachenAachen, Germany
| |
Collapse
|
9
|
Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition 2014; 30:96-106. [PMID: 24290605 DOI: 10.1016/j.nut.2013.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Copper (Cu) is widely used in industry for the manufacture of a vast range of goods including Cu-intrauterine devices (IUDs), electronic products, agrochemicals, and many others. It is also one of the trace elements essential to human health in the right measure and is used as a parenteral supplement in patients unable to ingest food. Elevated Cu levels have been found in the plasma of women using Cu-IUDs and in farmers working with Cu-based pesticides. However, possible alterations due to Cu overload in the brain have been poorly studied. Therefore, the aim of this study was to investigate the effects of Cu administration on rat brain in Cu-sufficient and Cu-deficient animals fed on semi-synthetic diets with different doses of Cu (7 or 35 ppm). METHODS We aimed to investigate the effects of Cu administration using two routes of administration: oral and intraperitoneal (IP). Male Wistar rats were feeding (one month) a complete (7 ppm) or a deficient (traces) Cu diets subdivided into three categories oral-, intraperitoneal- (or both) supplemented with copper carbonate (7 to 35 ppm). Cu content in plasma, brain zones (cortex and hippocampus), antioxidant enzyme activities, and protease systems involved in programmed cell death were determined. RESULTS The results show that Cu levels and the concentration of Cu in plasma and brain were dose-dependent and administration route-dependent and demonstrated a prooxidative effect in plasma and brain homogenates. Oxidative stress biomarkers and antioxidative enzyme activity both increased under Cu overload, these effects being more noticeable when Cu was administered IP. Concomitantly, brain lipids from cortex and hippocampus were strongly modified, reflecting Cu-induced prooxidative damage. A significant increase in the activities of calpain (milli- and micro-) and caspase-3 activity also was observed as a function of dose and administration route. CONCLUSION The findings of this study could be important in evaluating the role of Cu in brain metabolism and neuronal survival.
Collapse
|
10
|
Spincemaille P, Chandhok G, Newcomb B, Verbeek J, Vriens K, Zibert A, Schmidt H, Hannun YA, van Pelt J, Cassiman D, Cammue BPA, Thevissen K. The plant decapeptide OSIP108 prevents copper-induced apoptosis in yeast and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1207-1215. [PMID: 24632503 DOI: 10.1016/j.bbamcr.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Benjamin Newcomb
- Department of Medicine and the Stony Brook Cancer Center, University of Stony Brook, Stony Brook, New York, 11794, USA
| | - Jef Verbeek
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Kim Vriens
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Andree Zibert
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Hartmut Schmidt
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, University of Stony Brook, Stony Brook, New York, 11794, USA
| | - Jos van Pelt
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.,Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
11
|
Arnal N, Castillo O, de Alaniz MJT, Marra CA. Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration. Int J Alzheimers Dis 2013; 2013:645379. [PMID: 24363953 PMCID: PMC3836397 DOI: 10.1155/2013/645379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/13/2013] [Indexed: 01/22/2023] Open
Abstract
Copper (Cu) and cholesterol (Cho) are both associated with neurodegenerative illnesses in humans and animals models. We studied the effect in Wistar rats of oral supplementation with trace amounts of Cu (3 ppm) and/or Cho (2%) in drinking water for 2 months. Increased amounts of nonceruloplasmin-bound Cu were observed in plasma and brain hippocampus together with a higher concentration of ceruloplasmin in plasma, cortex, and hippocampus. Cu, Cho, and the combined treatment Cu + Cho were able to induce a higher Cho/phospholipid ratio in mitochondrial membranes with a simultaneous decrease in glutathione content. The concentration of cardiolipin decreased and that of peroxidation products, conjugated dienes and lipoperoxides, increased. Treatments including Cho produced rigidization in both the outer and inner mitochondrial membranes with a simultaneous increase in permeability. No significant increase in Cyt C leakage to the cytosol was observed except in the case of cortex from rats treated with Cu and Cho nor were there any significant changes in caspase-3 activity and the Bax/Bcl2 ratio. However, the A β (1-42)/(1-40) ratio was higher in cortex and hippocampus. These findings suggest an incipient neurodegenerative process induced by Cu or Cho that might be potentiated by the association of the two supplements.
Collapse
Affiliation(s)
- Nathalie Arnal
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Omar Castillo
- Centro de Investigaciones Cardiovasculares (CIC), CCT-CONICET, 1900 La Plata, Argentina
| | - María J. T. de Alaniz
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Carlos A. Marra
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
- INIBIOLP, Cátedra de Bioquímica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calles 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|