1
|
Obaid AA, Almasmoum H, Almaimani RA, El-Boshy M, Aslam A, Idris S, Ghaith MM, El-Readi MZ, Ahmad J, Farrash WF, Mujalli A, Eid SY, Elzubier ME, Refaat B. Vitamin D and calcium co-therapy mitigates pre-established cadmium nephropathy by regulating renal calcium homeostatic molecules and improving anti-oxidative and anti-inflammatory activities in rat. J Trace Elem Med Biol 2023; 79:127221. [PMID: 37244046 DOI: 10.1016/j.jtemb.2023.127221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Cadmium (Cd) is a major environmental pollutant and chronic toxicity could induce nephropathy by increasing renal oxidative stress and inflammation. Although vitamin D (VD) and calcium (Ca) prophylactic treatments attenuated Cd-induced cell injury, none of the prior studies measure their renoprotective effects against pre-established Cd-nephropathy. AIMS To measure the alleviating effects of VD and/or Ca single and dual therapies against pre-established nephrotoxicity induced by chronic Cd toxicity prior to treatment initiation. METHODS Forty male adult rats were allocated into: negative controls (NC), positive controls (PC), Ca, VD and VC groups. The study lasted for eight weeks and all animals, except the NC, received CdCl2 in drinking water (44 mg/L) throughout the study. Ca (100 mg/kg) and/or VD (350 IU/kg) were given (five times/week) during the last four weeks to the designated groups. Subsequently, the expression of transforming growth factor-β (TGF-β1), inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), VD synthesising (Cyp27b1) and catabolizing (Cyp24a1) enzymes with VD receptor (VDR) and binding protein (VDBP) was measured in renal tissues. Similarly, renal expression of Ca voltage-dependent channels (CaV1.1/CaV3.1), store-operated channels (RyR1/ITPR1), and binding proteins (CAM/CAMKIIA/S100A1/S100B) were measured. Serum markers of renal function alongside several markers of oxidative stress (MDA/H2O2/GSH/GPx/CAT) and inflammation (IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 were also measured. RESULTS The PC group exhibited hypovitaminosis D, hypocalcaemia, hypercalciuria, proteinuria, reduced creatinine clearance, and increased renal apoptosis/necrosis with higher caspase-3 expression. Markers of renal tissue damage (TGF-β1/iNOS/NGAL/KIM-1), oxidative stress (MDA/H2O2), and inflammation (TNF-α/IL-1β/IL-6) increased, whilst the antioxidants (GSH/GPx/CAT) and IL-10 decreased, in the PC group. The PC renal tissues also showed abnormal expression of Cyp27b1, Cyp24a1, VDR, and VDBP, alongside Ca-membranous (CaV1.1/CaV3.1) and store-operated channels (RyR1/ITPR1) and cytosolic Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B). Although VD was superior to Ca monotherapy, their combination revealed the best mitigation effects by attenuating serum and renal tissue Cd concentrations, inflammation and oxidative stress, alongside modulating the expression of VD/Ca-molecules. CONCLUSIONS This study is the first to show improved alleviations against Cd-nephropathy by co-supplementing VD and Ca, possibly by better regulation of Ca-dependent anti-oxidative and anti-inflammatory actions.
Collapse
Affiliation(s)
- Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mahmoud Z El-Readi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Safaa Y Eid
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mohamed E Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
2
|
Nasiadek M, Stragierowicz J, Kilanowicz A. An Assessment of Metallothionein-Cadmium Binding in Rat Uterus after Subchronic Exposure Using a Long-Term Observation Model. Int J Mol Sci 2022; 23:15154. [PMID: 36499479 PMCID: PMC9738218 DOI: 10.3390/ijms232315154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Cadmium (Cd) is an environmental pollutant known to pose a public health issue. The mechanism of Cd toxicity on the uterus, including the protective role of metallothionein (MT), is still not fully understood. The aim of the study was to evaluate the degree of MT-Cd binding in the uterus of rats exposed per os to Cd at daily doses of 0.09, 0.9, 1.8 and 4.5 mg Cd/kg b.w. for 90 days. To assess the permanence of the bond, the rats were observed over long observation periods: 90 and 180 days after termination of exposure. Additionally, uterine concentration of Zn, Cu, Ca, Mg was determined. Cd leads immediately after exposure to a max. 30-fold increase in the concentration of Cd in the uterus, with only small amounts being bound to MT. After 90 days following termination of exposure, and especially after 180 days, an increase in MT-Cd concentration was noted for the three highest doses; even so, the degree of Cd binding by MT was still small. Additionally, the accumulation of Cd in the uterus disturbs the homeostasis of determined essential elements, manifested by a significant increase in Cu concentration and a decrease in Zn, Mg and Ca, especially 180 days after termination of exposure. The obtained results indicate that MT has only a slight protective role in the uterus and that Cd ions may have harmful effects not related to MT: directly on the uterine tissue, and indirectly by disturbing the homeostasis of its essential elements.
Collapse
Affiliation(s)
- Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | | |
Collapse
|
3
|
Taghavizadeh Yazdi ME, Amiri MS, Nourbakhsh F, Rahnama M, Forouzanfar F, Mousavi SH. Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26359-26379. [PMID: 33834331 DOI: 10.1007/s11356-021-13687-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Heat shock proteins (HSPs) are a family of proteins that are expressed by cells in reply to stressors. The changes in concentration of HSPs could be utilized as a bio-indicator of oxidative stress caused by heavy metal. Exposure to the different heavy metals may induce or reduce the expression of different HSPs. The exposure to cadmium ion (Cd2+) could increase HSP70 and HSP27 over 2- to 10-fold or even more. The in vitro and in vivo models indicate that the HSP70 family is more sensitive to Cd intoxication than other HSPs. The analyses of other HSPs along with HSP70, especially HSP27, could also be useful to obtain more accurate results. In this regard, this review focuses on examining the literature to bold the futuristic uses of HSPs as bio-indicators in the initial assessment of Cd exposure risks in defined environments.
Collapse
Affiliation(s)
| | | | - Fahimeh Nourbakhsh
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40506, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Munoz-Perez VM, Ortiz MI, Gerardo-Munoz LS, Carino-Cortes R, Salas-Casas A. Tocolytic effect of the monoterpenic phenol isomer, carvacrol, on the pregnant rat uterus. CHINESE J PHYSIOL 2020; 63:204-210. [PMID: 33109786 DOI: 10.4103/cjp.cjp_56_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Despite the wide application of carvacrol (CAR) in different biological and medical areas, there is still insufficient electrophysiological data on the mechanisms of action of CAR, particularly in the pregnant uterine function. The aim of this study was to evaluate the in vitro tocolytic effect of CAR on the contractility of isolated pregnant rat uterus in the presence of a calcium channel antagonist (nifedipine) and a cyclooxygenase inhibitor (indomethacin). The uteri were isolated from pregnant Wistar rats at 16-18 days of pregnancy and suspended in an isolated organ bath chamber containing a Ringer's physiological solution and aerated with 95% O2and 5% CO2. Samples were used in functional tests to evaluate the inhibitory effect of CAR at increasing concentrations on the rhythmic spontaneous, oxytocin-induced phasic, K+-induced tonic, and Ca2+-induced contractions. The differences in inhibitory concentration-50 and Emaxamong the compounds were determined using the one-way ANOVA followed by a post hoc Student-Newman-Keuls or Bonferroni test, in all casesP < 0.05 was considered statistically significant. Nifedipine was used as positive controls where required. CAR caused a significant concentration-dependent inhibition of the uterine contractions induced by the pharmaco- and electro-mechanic stimuli. We showed that the inhibitory effects of CAR depends on the type of muscle contraction stimuli, and that it acts stronger in spontaneous rhythmic activity and in contractions of isolated rat uterus induced by Ca2+. Nifedipine was more potent than CAR and indomethacin on the uterine contractility (P < 0.05), but none of them was more effective than nifedipine. Therefore, the tocolytic effect induced by CAR was associated with the blockade of the calcium channels in the pregnant rat uterus. This property placed CAR as a potentially safe and effective adjuvant agent in cases of preterm labor, an area of pharmacological treatment that requires urgent improvement.
Collapse
Affiliation(s)
- Victor Manuel Munoz-Perez
- Department of Pharmacology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, México
| | - Mario I Ortiz
- Department of Pharmacology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, México
| | - Lilian S Gerardo-Munoz
- Department of Pharmacology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, México
| | - Raquel Carino-Cortes
- Department of Pharmacology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, México
| | - Andrés Salas-Casas
- Department of Geriatrics, Academic Area of Gerontology, Institute of Health Sciences, Autonomous University of the State of Hidalgo, México
| |
Collapse
|
5
|
Bhatiya S, Choudhury S, Gari M, Singh P, Shukla A, Garg SK. Myometrial Calcium and Potassium Channels Play a Pivotal Role in Chromium-Induced Relaxation in Rat Uterus: an In Vitro Study. Biol Trace Elem Res 2020; 198:198-205. [PMID: 32034680 DOI: 10.1007/s12011-020-02041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Hexavalent chromium, a well-known environmental toxicant, adversely affects female reproduction and results in abnormal implantation, fetal resorption, and reduction in litter size. Uterine myogenic activity is under control of number of receptors and ion channels, and it regulates fetal-implantation and feto-maternal communication. Despite several known adverse effects of chromium on female reproduction, direct action of chromium on myometrial activity is yet to be understood. In the present study, the effect of in vitro exposure of hexavalent chromium (Cr-VI) on the myogenic activity of isolated myometrial strips of rats was evaluated after mounting the tissue in thermostatically (37 ± 0.5 °C) controlled organ bath under a resting tension of 1 g. Chromium produced concentration-dependent (0.1 nM-0.1 mM) inhibitory effect on myometrial activity. Following pre-treatment of the myometrial strips with glibenclamide (a KATP channel blocker) and 4-aminopyridine (a Kv channel blocker), the concentration-response curve (CRC) of chromium was significantly (P < 0.05) shifted towards right with decrease in the maximum relaxant effect. Contractile effects of CaCl2 and BAY K-8644 (a selective opener of L-type Ca2+ channel) were significantly (P < 0.05) attenuated in the presence of chromium. Chromium-induced myometrial relaxation was also significantly (P < 0.05) reduced in the presence of ICI 118,551 (a selective β2-antagonist) and SR 59230A (a selective β3-antagonist). These findings evidently suggest that chromium produced relaxant effect on rat myometrium by interfering with Ca2+ entry through voltage-dependent Ca2+ channels, and by interacting with beta-adrenoceptors (β2 and β3) and potassium channels (especially KATP and Kv channels). Graphical Abstract Proposed signaling pathway(s) of chromium (VI)-induced myometrial relaxations in rats. KATP: ATP-sensitive K+ channel; KV: voltage-dependent K+ channel; VDCC: voltage-dependent Ca2+ channel; [Ca2+]i: intracellular calcium concentration, stimulatory mechanism, inhibitory mechanism.
Collapse
Affiliation(s)
- Shirish Bhatiya
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Soumen Choudhury
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Manju Gari
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Pawan Singh
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Amit Shukla
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Satish Kumar Garg
- Smooth Muscle Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| |
Collapse
|
6
|
El-Boshy M, Refaat B, Almaimani RA, Abdelghany AH, Ahmad J, Idris S, Almasmoum H, Mahbub AA, Ghaith MM, BaSalamah MA. Vitamin D 3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol 2020; 34:e22440. [PMID: 31926057 DOI: 10.1002/jbt.22440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Although vitamin D (VD) and calcium (Ca) attenuate cadmium (Cd) metabolism, their combined antioxidant and anti-inflammatory actions against Cd toxicity have not been previously explored. Hence, this study measured the protective effects of VD ± Ca supplements against Cd hepatotoxicity. Forty adult male rats were distributed to: negative controls (NCs), positive controls (PCs), VD, Ca, and VD3 and Ca (VDC) groups. All groups, except NC, received CdCl2 in drinking water (44 mg/L) for 4 weeks individually or concurrently with intramuscular VD3 (600 IU/kg; three times per week) and/or oral Ca (100 mg/kg; five times per week). The PC group showed abnormal hepatic biochemical parameters and increase in cellular cytochrome C, caspase-9, and caspase-3 alongside the apoptotic/necrotic cell numbers by terminal deoxynucleotidyl transferase dUTP nick end labeling technique. The PC hepatic tissue also had substantially elevated pro-oxidants (malondialdehyde [MDA]/H2 O2 /protein carbonyls) and inflammatory cytokines (interleukin 1β [IL-1β]/IL-6/IL17A/tumor necrosis factor-α), whereas the anti-inflammatory (IL-10/IL-22) and antioxidants (glutathione [GSH]/GPx/catalase enzyme [CAT]) markers declined. Hypovitaminosis D, low hepatic tissue Ca, aberrant hepatic expression of VD-metabolizing enzymes (Cyp2R1/Cyp27a1/cyp24a1), receptor and binding protein alongside Ca-membrane (CaV 1.1/CaV 3.1), and store-operated (RyR1/ITPR1) channels, and Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B) were observed in the PC group. Both monotherapies decreased serum, but not tissue Cd levels, restored the targeted hepatic VD/Ca molecules' expression. However, these effects were more prominent in the VD group than the Ca group. The VDC group, contrariwise, disclosed the greatest alleviations on serum and tissue Cd, inflammatory and oxidative markers, the VD/Ca molecules and tissue integrity. In conclusion, this report is the first to reveal boosted protection for cosupplementing VD and Ca against Cd hepatotoxicity that could be due to enhanced antioxidative, anti-inflammatory, and modulation of the Ca pathways.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Bassem Refaat
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Faculty of Medicine, Department of Biochemistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Department of Anatomy, Alexandria University, Alexandria, Egypt
| | - Jawwad Ahmad
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amani A Mahbub
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Faculty of Medicine, Department of Pathology, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Koli S, Prakash A, Choudhury S, Mandil R, Garg SK. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats. Biol Trace Elem Res 2019; 187:418-424. [PMID: 29785630 DOI: 10.1007/s12011-018-1379-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 01/30/2023]
Abstract
Adverse effects of mercury on female reproduction are reported; however, its effect on myogenic activity of uterus and mechanism thereof is obscure. Present study was undertaken to unravel the mechanistic pathways of mercuric chloride (HgCl2)-induced myometrial contraction in rats. Isometric tension in myometrial strips of rats following in vitro exposure to HgCl2 was recorded using data acquisition system-based physiograph. HgCl2 produced concentration-dependent (10 nM-100 μM) uterotonic effect which was significantly (p < 0.05) reduced in Ca2+-free solution and inhibited in the presence of nifedipine (1 μM), a L-type Ca2+ channel blocker, thus suggesting the importance of extracellular Ca2+ and its entry through L-type calcium channels in HgCl2-induced myometrial contractions in rats. Cumulative concentration-response curve of HgCl2 was significantly (p < 0.05) shifted towards right in the presence of Y-27632 (10 μM), a Rho-kinase inhibitor, suggesting the involvement of Ca2+-sensitization pathway in mediating HgCl2-induced myometrial contraction. HgCl2-induced myometrial contraction was also significantly (p < 0.05) inhibited in the presence of methoctramine or para-fluoro-hexahydro-siladifenidol, a selective M2 and M3 receptor antagonists, respectively, which evidently suggest that mercury also interacts with M2 and M3 muscarinic receptors to produce myometrial contractions. U-73122 and GF-109203X, the respective inhibitors of PLC and PKC-dependent pathways, downstream to the receptor activation, also significantly (p < 0.05) attenuated the uterotonic effect of HgCl2 on rat uterus. Taken together, present study evidently reveals that HgCl2 interacts with muscarinic receptors and activates calcium signaling cascades involving calcium channels, Rho-kinase, protein kinase-C, and phospholipase-C pathways to exert uterotonic effect in rats. Graphical Abstract Graphical abstract depicting the mechanism of mercury-induced myometrial contraction in rats. M receptor: Muscarinic receptor; PIP2: phospho-inositol bisphosphate; PLC: phospholipase-C; DAG: diacyl glycerol; IP3: inositol triphosphate; IP3R: inositol triphosphate receptor; PKC; protein kinase-C; MLCP: myosin light chain phosphatise; MYPT: myosin phosphatase; SR: sarco-endoplasmic reticulum.
Collapse
Affiliation(s)
- Swati Koli
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 (U.P.), India
| | - Atul Prakash
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 (U.P.), India
| | - Soumen Choudhury
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 (U.P.), India
| | - Rajesh Mandil
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 (U.P.), India
| | - Satish K Garg
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 (U.P.), India.
| |
Collapse
|
8
|
Moyano P, García JM, Lobo M, Anadón MJ, Sola E, Pelayo A, García J, Frejo MT, Pino JD. Cadmium alters heat shock protein pathways in SN56 cholinergic neurons, leading to Aβ and phosphorylated Tau protein generation and cell death. Food Chem Toxicol 2018; 121:297-308. [PMID: 30213552 DOI: 10.1016/j.fct.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
Cadmium, a neurotoxic environmental compound, produces cognitive disorders, although the mechanism remains unknown. Cadmium induces a more pronounced cell death on cholinergic neurons from basal forebrain (BF), mediated, in part, by increase in Aβ and total and phosphorylated Tau protein levels, which may explain cadmium effects on learning and memory processes. Cadmium downregulates the expression of heat shock proteins (HSPs) HSP 90, HSP70 and HSP27, and of HSF1, the master regulator of the HSP pathway. HSPs proteins reduce the production of Aβ and phosphorylated Tau proteins and avoid cell death pathways induction. Thus, we hypothesized that cadmium induced the production of Aβ and Tau proteins by HSP pathway disruption through HSF1 expression alteration, leading to BF cholinergic neurons cell death. Our results show that cadmium downregulates HSF1, leading to HSP90, HSP70 and HSP27 gene expression downregulation in BF SN56 cholinergic neurons. In addition, cadmium induced Aβ and total and phosphorylated Tau proteins generation, mediated partially by HSP90, HSP70 and HSP27 disruption, leading to cell death. These results provide new understanding of the mechanisms contributing to cadmium harmful effects on cholinergic neurons.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Emma Sola
- Department of Pathological Anatomy, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Pathological Anatomy, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Jimena García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Vassallo DV, Almenara CCP, Broseghini-Filho GB, Teixeira AC, da Silva DCF, Angeli JK, Padilha AS. Preliminary Studies of Acute Cadmium Administration Effects on the Calcium-Activated Potassium (SKCa and BKCa) Channels and Na +/K +-ATPase Activity in Isolated Aortic Rings of Rats. Biol Trace Elem Res 2018; 183:325-334. [PMID: 28905315 DOI: 10.1007/s12011-017-1150-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Abstract
Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na+/K+-ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K+ channels, voltage-activated calcium channel, and Na+/K+-ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K+ channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K+ channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca2+-activated K+ channels-SKCa), iberiotoxin (a selective blocker of large-conductance Ca2+-activated K+ channels-BKCa), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na+/K+-ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SKCa and BKCa) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na+/K+-ATPase activity.
Collapse
Affiliation(s)
- Dalton V Vassallo
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil
| | - Camila C P Almenara
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil
| | | | - Ariane Calazans Teixeira
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil
| | - David Chaves F da Silva
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil
| | - Jhuli K Angeli
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil
| | - Alessandra S Padilha
- Federal University of Espírito Santo, Graduate Program in Physiological Sciences, Vitória, ES, Brazil.
- Programa de Pós-Graduação em Ciências Fisiológicas, CCS/UFES, Av. Marechal Campos, 1468. Maruípe, Vitoria, ES, 29040-091, Brazil.
| |
Collapse
|
10
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
11
|
Nakade UP, Sharma A, Choudhury S, Yadav RS, Garg SK. Lead Modulates Calcium Entry and Beta-Adrenoceptors Signaling to Produce Myometrial Relaxation in Rats. Biol Trace Elem Res 2017; 176:176-180. [PMID: 27502953 DOI: 10.1007/s12011-016-0813-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/27/2016] [Indexed: 01/04/2023]
Abstract
Modulation of myometrial spontaneity by lead acetate trihydrate (Pb) and its regulatory pathways were studied in estrogenized rats. Isometric tension in myometrial strips under a resting tension of 1 g was measured using data acquisition system-based physiograph and Lab Chart Pro v7.3.7 software. Lead produced a dose-dependent inhibitory effect on rat myometrium with a major effect on phasic contractions compared to tonic contractions along with a reduction in both amplitude and frequency of contraction. Lead (3 μM) significantly (p < 0.05) reduced CaCl2, and 80 mM KDS induced contractile response while potentiated the relaxant effect of phenylephrine. Based on our findings, it may be inferred that lead blocks calcium entry through VDCC and/or stimulates β-adrenoceptors adenylyl cyclase-C-AMP pathway to produce inhibitory effect on rat myometrium.
Collapse
Affiliation(s)
- Udayraj P Nakade
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, (DUVASU), Mathura, 281001, India
| | - Abhishek Sharma
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, (DUVASU), Mathura, 281001, India
| | - Soumen Choudhury
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, (DUVASU), Mathura, 281001, India
| | - Rajkumar Singh Yadav
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, (DUVASU), Mathura, 281001, India
| | - Satish Kumar Garg
- Experimental Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, (DUVASU), Mathura, 281001, India.
| |
Collapse
|