1
|
Fan S, Wang K, Wang S, Chen X. Potential drug targets for systemic lupus erythematosus identified through Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e41439. [PMID: 39960916 PMCID: PMC11835111 DOI: 10.1097/md.0000000000041439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
So far, there is no clear pathogenesis and no cure for systemic lupus erythematosus (SLE). The therapeutic benefits of existing drug therapies are far from ideal. The proteome is a major source of therapeutic targets. Therefore, new drug targets for SLE need to be discovered. Based on the STROBE-Mendelian randomization (MR) checklist, we performed MR to explore potential drug targets for SLE, using genome-wide association study summary statistics of plasma and cerebrospinal fluid (CSF) and further replicated in the external validation. Bidirectional MR, reverse causality testing by Steiger filtering, Bayesian co-localization were used. In addition, protein-protein interaction networks (PPI) were performed to reveal potential associations between proteins and current SLE drugs. At false discovery rate (FDR) significance (PFDR < .05), MR analysis revealed 8 proteins. Five proteins decreased the SLE risks, whereas the other 3 proteins increased the SLE risks. None of the 8 proteins had reverse causality except sICAM-1. Bayesian co-localization suggested that 5 proteins shared the same variant with SLE. PPI network suggested that intercellular adhesion molecular 1 (ICAM-1), Fc-gamma-RIIb (FCG2B) and N-terminal pro-B-type natriuretic peptide (N-terminal pro-BNP) interacted with targets of current SLE medications. Our integrative analysis revealed that SLE risk is causally associated with ICAM-1, FCG2B, and N-terminal pro-BNP. These 3 proteins have the potential to become drug targets of SLE, especially for ICAM-1 and FCG2B. More further studies are also warranted to support this finding.
Collapse
Affiliation(s)
- Shiwen Fan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shuai Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
2
|
Kløve-Mogensen K, Terp SK, Steffensen R. Comparison of real-time quantitative PCR and two digital PCR platforms to detect copy number variation in FCGR3B. J Immunol Methods 2024; 526:113628. [PMID: 38331313 DOI: 10.1016/j.jim.2024.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The importance of structural genetic variants, such as copy number variations (CNVs), in modulating human disease is being increasingly recognized. Several clinical conditions require investigation of human neutrophil antigen (HNA-1), which is encoded by the Fc gamma receptor IIIb gene (FCGR3B), including suspicion of neutropenia, infections, and proactive testing of blood component donors to reduce the potential risk in transfusion. In this study, we compared real-time quantitative polymerase chain reaction (qPCR) with two digital PCR (dPCR) platforms, namely droplet digital PCR and an array-based platform, to determine copy numbers (CNs) in FCGR3B. We initially tested 400 anonymous blood donors with qPCR using a commercially available TaqMan probe assay (Applied Biosystems) on a Quant Studio 12 Flex. CNs was determined for all 400 tested individuals with CNs ranging from zero to four. Zero copies were detected in 0.2% (1/400), one copy was detected in 3.8% (15/400), two copies were detected in 87.8% (351/400), three copies were detected in 8.0% (32/400), and four copies were detected in 0.2% (1/400) of tested individuals. From this cohort, we selected 32 donors with CNs from zero to four for analyses with Digital Real-Time PCR (dPCR) using Lab on an array (LOAA) on an On-Point analyzer from Optolane Technologies Inc. and the Droplet Digital PCR (ddPCR) platform from Bio-Rad Laboratories. We compared the obtained CNs of FCGR3B on the three platforms and found full concordance between the CNs obtained. We therefore conclude that all three platforms can be used for quantification of CNs for FCGR3B, and although dPCR has some advantages over qPCR, it was not necessary for reliably estimating CNs of the FCGR3B gene.
Collapse
Affiliation(s)
- Kirstine Kløve-Mogensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Simone Karlsson Terp
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
3
|
Kløve-Mogensen K, Steffensen R, Masmas TN, Glenthøj A, Jensen CF, Haunstrup TM, Ratcliffe P, Höglund P, Hasle H, Nielsen KR. Genetic variations in low-to-medium-affinity Fcγ receptors and autoimmune neutropenia in early childhood in a Danish cohort. Int J Immunogenet 2023; 50:65-74. [PMID: 36754570 DOI: 10.1111/iji.12614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Autoimmune neutropenia (AIN) in early childhood is caused by autoantibodies directed against antigens on the neutrophil membrane and is a frequent cause of neutropenia in children. Association of AIN with Fcγ receptor (FCGR) 3B variants is well described. In this study, we investigate genetic variations in the FCGR locus and copy number variation of FCGR3B. A total of 130 antibody-positive AIN patients, 64 with specific anti-HNA-1a antibodies and 66 with broad-reacting anti-FcγRIIIb antibodies, were genotyped with a multiplex ligation probe assay and compared with healthy controls. Positive findings were confirmed with real-time q-PCR. We determined copy numbers of the FCGR2 and FCGR3 genes and the following SNPs: FCGR2A Q62W (rs201218628), FCGR2A H166R (rs1801274), FCGR2B I232T (rs1050501), FCGR3A V176F (rs396991), haplotypes for FCGR2B/C promoters (rs3219018/rs780467580), FCGR2C STOP/ORF and HNA-1 genotypes in FCGR3B (rs447536, rs448740, rs52820103, rs428888 and rs2290834). Generally, associations were antibody specific, with all associations being representative of the anti-HNA-1a-positive group, while the only association found in the anti-FcγRIIIb group was with the HNA-1 genotype. An increased risk of AIN was observed for patients with one copy of FCGR3B; the HNA genotypes HNA-1a, HNA-1aa or HNA-1aac; the FCGR2A 166H and FCGR2B 232I variations; and no copies of FCGR2B 2B.4. A decreased risk was observed for HNA genotype HNA-1bb; FCGR2A 166R; FCGR2B 232T; and one copy of FCGR2B promoter 2B.4. We conclude that in our Danish cohort, there was a strong association between variation in the FCGR locus and AIN. The findings of different genetic associations between autoantibody groups could indicate the presence of two different disease entities and disease heterogeneity.
Collapse
Affiliation(s)
- Kirstine Kløve-Mogensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Tania Nicole Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Glenthøj
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christina Friis Jensen
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Thure Mors Haunstrup
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Paul Ratcliffe
- Department of medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Petter Höglund
- Department of medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Demirkaya E, Arici ZS, Romano M, Berard RA, Aksentijevich I. Current State of Precision Medicine in Primary Systemic Vasculitides. Front Immunol 2019; 10:2813. [PMID: 31921111 PMCID: PMC6927998 DOI: 10.3389/fimmu.2019.02813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Precision medicine (PM) is an emerging data-driven health care approach that integrates phenotypic, genomic, epigenetic, and environmental factors unique to an individual. The goal of PM is to facilitate diagnosis, predict effective therapy, and avoid adverse reactions specific for each patient. The forefront of PM is in oncology; nonetheless, it is developing in other fields of medicine, including rheumatology. Recent studies on elucidating the genetic architecture of polygenic and monogenic rheumatological diseases have made PM possible by enabling physicians to customize medical treatment through the incorporation of clinical features and genetic data. For complex inflammatory disorders, the prevailing paradigm is that disease susceptibility is due to additive effects of common reduced-penetrance gene variants and environmental factors. Efforts have been made to calculate cumulative genetic risk score (GRS) and to relate specific susceptibility alleles for use of target therapies. The discovery of rare patients with single-gene high-penetrance mutations informed our understanding of pathways driving systemic inflammation. Here, we review the advances in practicing PM in patients with primary systemic vasculitides (PSVs). We summarize recent genetic studies and discuss current knowledge on the contribution of epigenetic factors and extracellular vesicles (EVs) in disease progression and treatment response. Implementation of PM in PSVs is a developing field that will require analysis of a large cohort of patients to validate data from genomics, transcriptomics, metabolomics, proteomics, and epigenomics studies for accurate disease profiling. This multi-omics approach to study disease pathogeneses should ultimately provide a powerful tool for stratification of patients to receive tailored optimal therapies and for monitoring their disease activity.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Zehra Serap Arici
- Department of Paediatric Rheumatology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Pediatric Rheumatology, Istituto Ortopedico Gaetano Pini, Milan, Italy
| | - Roberta Audrey Berard
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
6
|
Nagelkerke SQ, Tacke CE, Breunis WB, Tanck MWT, Geissler J, Png E, Hoang LT, van der Heijden J, Naim ANM, Yeung RSM, Levin ML, Wright VJ, Burgner DP, Ponsonby AL, Ellis JA, Cimaz R, Shimizu C, Burns JC, Fijnvandraat K, van der Schoot CE, van den Berg TK, de Boer M, Davila S, Hibberd ML, Kuijpers TW. Extensive Ethnic Variation and Linkage Disequilibrium at the FCGR2/3 Locus: Different Genetic Associations Revealed in Kawasaki Disease. Front Immunol 2019; 10:185. [PMID: 30949161 PMCID: PMC6437109 DOI: 10.3389/fimmu.2019.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
The human Fc-gamma receptors (FcγRs) link adaptive and innate immunity by binding immunoglobulin G (IgG). All human low-affinity FcγRs are encoded by the FCGR2/3 locus containing functional single nucleotide polymorphisms (SNPs) and gene copy number variants. This locus is notoriously difficult to genotype and high-throughput methods commonly used focus on only a few SNPs. We performed multiplex ligation-dependent probe amplification for all relevant genetic variations at the FCGR2/3 locus in >4,000 individuals to define linkage disequilibrium (LD) and allele frequencies in different populations. Strong LD and extensive ethnic variation in allele frequencies was found across the locus. LD was strongest for the FCGR2C-ORF haplotype (rs759550223+rs76277413), which leads to expression of FcγRIIc. In Europeans, the FCGR2C-ORF haplotype showed strong LD with, among others, rs201218628 (FCGR2A-Q27W, r2 = 0.63). LD between these two variants was weaker (r2 = 0.17) in Africans, whereas the FCGR2C-ORF haplotype was nearly absent in Asians (minor allele frequency <0.005%). The FCGR2C-ORF haplotype and rs1801274 (FCGR2A-H131R) were in weak LD (r2 = 0.08) in Europeans. We evaluated the importance of ethnic variation and LD in Kawasaki Disease (KD), an acute vasculitis in children with increased incidence in Asians. An association of rs1801274 with KD was previously shown in ethnically diverse genome-wide association studies. Now, we show in 1,028 European KD patients that the FCGR2C-ORF haplotype, although nearly absent in Asians, was more strongly associated with susceptibility to KD than rs1801274 in Europeans. Our data illustrate the importance of interpreting findings of association studies concerning the FCGR2/3 locus with knowledge of LD and ethnic variation.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carline E Tacke
- Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Willemijn B Breunis
- Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eileen Png
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Long T Hoang
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Joris van der Heijden
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ahmad N M Naim
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Rae S M Yeung
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael L Levin
- Department of Pediatrics, Imperial College London, London, United Kingdom
| | - Victoria J Wright
- Department of Pediatrics, Imperial College London, London, United Kingdom
| | - David P Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Justine A Ellis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Health, Centre for Social and Early Emotional Development, Deakin University, Burwood, VIC, Australia
| | - Rolando Cimaz
- Rheumatology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Chisato Shimizu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Jane C Burns
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Karin Fijnvandraat
- Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Plasma Proteins, Sanquin Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C Ellen van der Schoot
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martin de Boer
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore.,Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
7
|
Kitagawa A, Tsuboi N, Yokoe Y, Katsuno T, Ikeuchi H, Kajiyama H, Endo N, Sawa Y, Suwa J, Sugiyama Y, Hachiya A, Mimura T, Hiromura K, Maruyama S. Urinary levels of the leukocyte surface molecule CD11b associate with glomerular inflammation in lupus nephritis. Kidney Int 2019; 95:680-692. [PMID: 30712924 DOI: 10.1016/j.kint.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Noninvasive biomarkers of disease activity are needed to monitor response to therapy and predict disease recurrence in patients with glomerulonephritis. The leukocyte surface markers integrin Mac-1 and CD16b have been implicated in the pathogenesis of lupus nephritis (LN). Mac-1 comprises a unique α subunit (CD11b) complexed with a common β2 subunit, which are released along with CD16b from specific leukocyte subsets under inflammatory conditions including glomerulonephritis. We investigated the association of urinary CD11b and CD16b with histopathological activity in 272 patients with biopsy-proven glomerular diseases, including 118 with LN. Urine CD11b and CD16b were measured via enzyme-linked immunosorbent assay. Urinary levels of both markers were increased in LN, but only urinary CD11b was correlated with the number of glomerular leukocytes and with overall histopathological activity. In a subset of patients with samples available from the time of biopsy and subsequent clinical remission of LN, urinary levels of CD11b decreased with successful glucocorticoid treatment. Receiver-operating characteristic curve analysis demonstrated that urinary CD11b was superior to CD16b, the scavenger receptor CD163, and monocyte chemotactic protein-1 for the prediction of proliferative LN. In anti-mouse nephrotoxic serum glomerulonephritis, urinary CD11b correlated with histologic damage and decreased with corticosteroid treatment. In vitro, CD11b levels were decreased on activated mouse neutrophils displaying Fcγ receptor clustering and transendothelial migration, suggesting that leukocyte activation and transmigration are required for CD11b shedding in urine. Together, our results suggest that urinary CD11b may be a useful biomarker to estimate histopathological activity, particularly glomerular leukocyte accumulation, in LN.
Collapse
Affiliation(s)
- Akimitsu Kitagawa
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Yuki Yokoe
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Nobuhide Endo
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuriko Sawa
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Junya Suwa
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yutaka Sugiyama
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Asaka Hachiya
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Comprehensive Assessment of the Association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: Evidence from a Meta-Analysis. Sci Rep 2016; 6:31617. [PMID: 27538381 PMCID: PMC4990922 DOI: 10.1038/srep31617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
We performed a meta analysis to assess the relationship of FCGRs polymorphisms with the risk of SLE. Thirty-five articles (including up to 5741 cases and 6530 controls) were recruited for meta-analysis. The strongest association was observed between FCGR2B rs1050501 and SLE under the recessive genotypic model of C allele in the overall population (CC vs CT/TT, OR = 1.754, 95%CI: 1.422–2.165, P = 1.61 × 10−7) and in Asian population (CC vs CT/TT, OR = 1.784, 95%CI; 1.408–2.261, P = 1.67 × 10−6). We also found that FCGR3A rs396991 were significant association with the susceptibility to SLE in overall population in recessive model of T allele (TT vs TG/GG, OR = 1.263, 95%CI: 1.123–1.421, P = 9.62 × 10−5). The results also showed that significant association between FCGR2A rs1801274 and SLE under the allelic model in the overall population (OR = 0.879 per A allele, 95%CI: 0.819–0.943, P = 3.31 × 10−4). The meta-analysis indicated that FCGR3B copy number polymorphism NA1·NA2 was modestly associated with SLE in overall population (OR = 0.851 per NA1, 95%CI: 0.772–0.938, P = 1.2 × 10−3). We concluded that FCGR2B rs1050501 C allele and FCGR3A rs396991 T allele might contribute to susceptibility and development of SLE, and were under recessive association model. While, FCGR2A rs1801274 A allele and FCGR3B NA1 were associated with SLE and reduced the risk of SLE.
Collapse
|
9
|
Xu J, Zhao L, Zhang Y, Guo Q, Chen H. CD16 and CD32 Gene Polymorphisms May Contribute to Risk of Idiopathic Thrombocytopenic Purpura. Med Sci Monit 2016; 22:2086-96. [PMID: 27315784 PMCID: PMC4915321 DOI: 10.12659/msm.895390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epidemiological studies have evaluated the associations of CD16 158F>V and CD32 131H>R gene polymorphisms with the risk of idiopathic thrombocytopenic purpura (ITP). MATERIAL AND METHODS Published studies on CD16 158F>V and CD32 131H>R polymorphisms with susceptibility to ITP were systematically reviewed until April 1, 2014. The Cochrane Library Database, Medline, CINAHL, EMBASE, Web of Science, and Chinese Biomedical Database (CBM) were used to search for relevant studies and then a meta-analysis was conducted by using Stata 12.0 software in order to produce consistent statistical results. RESULTS In total, 10 clinical case-control studies with 741 ITP patients and 1092 healthy controls were enrolled for quantitative data analysis. Results of this meta-analysis suggest that CD16 158F>V polymorphism had strong correlations with the susceptibility to ITP under 5 genetic models (all P<0.05). However, no similar associations were found between CD32 131H>R polymorphism and the susceptibility to ITP (all P>0.05). Subgroup analysis by ethnicity revealed that CD16 158F>V polymorphism was associated with the increased risk of ITP among both Caucasian and non-Caucasian populations. Nevertheless, no statistically significant correlations between CD32 131H>R polymorphism and the risk of ITP were observed among Caucasians and non-Caucasians (all P>0.05). CONCLUSIONS Our findings indicate that CD16 158F>V polymorphism may contribute to the increased risk of ITP, whereas CD32 131H>R polymorphism may not be an important risk factor for ITP.
Collapse
Affiliation(s)
- Jiannan Xu
- Department of Cardiology, Yanjiao People's Hospital, Sanhe, Hebei, China (mainland)
| | - Liyun Zhao
- Department of Hematology, Xingtai People's Hospital, Xingtai, Hebei, China (mainland)
| | - Yan Zhang
- Department of Ophthalmology, The Military General Hospital of Beijing PLA, Beijing, China (mainland)
| | - Qingxu Guo
- Department of Vascular Surgery, The Military General Hospital of Beijing PLA, Beijing, China (mainland)
| | - Hui Chen
- Department of Hematology, The Military General Hospital of Beijing PLA, Beijing, China (mainland)
| |
Collapse
|
10
|
Montes A, Perez-Pampin E, Joven B, Carreira P, Fernández-Nebro A, Del Carmen Ordóñez M, Navarro-Sarabia F, Moreira V, Vasilopoulos Y, Sarafidou T, Caliz R, Ferrer MA, Cañete JD, de la Serna AR, Magallares B, Narváez J, Gómez-Reino JJ, Gonzalez A. FCGR polymorphisms in the treatment of rheumatoid arthritis with Fc-containing TNF inhibitors. Pharmacogenomics 2016; 16:333-45. [PMID: 25823782 DOI: 10.2217/pgs.14.175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Reproducible association of a functional polymorphism in FCGR2A with response to a TNF inhibitor (TNFi) in patients with rheumatoid arthritis (RA) led us to explore other FcγR functional polymorphisms. METHODS Functional polymorphisms FCGR3A F158V, FCGR2B I223T and promoter VNTR in FCGRT were analyzed in up to 429 patients with RA. Response to TNFi was recorded during standard care at 3, 6 and 12 months of follow-up. Fixed effects meta-analysis of studies addressing FCGR3A F158V polymorphism, which is the most studied of these polymorphisms, was conducted with inverse variance weighting. RESULTS None of the functional polymorphisms were associated with change in DAS28. Meta-analysis of the seven studies (899 patients) with available data addressing association of FCGR3A F158V with response to TNFi in RA showed no association (OR: 1.11, 95% CI: 0.8-1.5; p = 0.5). CONCLUSION None of the three functional polymorphisms in FcγR genes showed association with response to TNFi in patients with RA. These negative results were obtained in spite of the larger size of this study relative to previous studies addressing the same polymorphisms. In addition, meta-analysis of FCGR3A F158V was also negative against the results provided by previous studies. Original submitted 17 September 2014; Revision submitted 9 December 2014.
Collapse
Affiliation(s)
- Ariana Montes
- Laboratorio de Investigacion 10 & Rheumatology Unit, Instituto de Investigacion Sanitaria - Hospital Clinico Universitario de Santiago, Travesia da Choupana s/n, 15706, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsang-A-Sjoe MWP, Nagelkerke SQ, Bultink IEM, Geissler J, Tanck MWT, Tacke CE, Ellis JA, Zenz W, Bijl M, Berden JH, de Leeuw K, Derksen RH, Kuijpers TW, Voskuyl AE. Fc-gamma receptor polymorphisms differentially influence susceptibility to systemic lupus erythematosus and lupus nephritis. Rheumatology (Oxford) 2016; 55:939-48. [DOI: 10.1093/rheumatology/kev433] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 01/09/2023] Open
|
12
|
Yap DYH, Chan TM. Lupus Nephritis in Asia: Clinical Features and Management. KIDNEY DISEASES 2015; 1:100-9. [PMID: 27536670 DOI: 10.1159/000430458] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lupus nephritis (LN) is a common and severe organ involvement manifesting itself in systemic lupus erythematosus (SLE). There is a considerable difference in prevalence, severity, treatment response and outcomes between Asian LN patients and LN patients from other racial backgrounds. SUMMARY Asian SLE patients have a higher prevalence of LN than Caucasian SLE patients and often present with a more severe disease. Increasing data from genetic studies, accompanied by progress in high-throughput genotyping, have advanced our knowledge about genetic predispositions that might partly contribute to the clinical variations observed. Corticosteroids combined with either cyclophosphamide (CYC) or mycophenolic acid (MPA) is the current standard-of-care induction regimen for severe LN irrespective of race or ethnicity. However, the preference for MPA or CYC, and possibly the optimum dose for MPA, is influenced by the patient's origin. Also, there is an insufficient evidence base for reduced-dose intravenous CYC in Asian patients. Health economics and access to prompt diagnosis and treatment are still challenging issues in some Asian regions. The former represents a significant obstacle limiting the access of patients to MPA despite the proven efficacy of the drug as an induction agent and its superiority over azathioprine (AZA) in preventing disease flares when used for long-term maintenance immunosuppression. Calcineurin inhibitors such as tacrolimus deserve further investigation in view of their additional effect on podocytes by reducing proteinuria and the promising data from Asian patients. Despite considerable advances in the clinical management of LN over the past few decades with resultant improvements in patients' outcomes, there are still knowledge gaps and unmet clinical needs. Asia has made substantial contributions to the evidence base that guides clinical management and continues to offer invaluable opportunities for research pursuits. KEY MESSAGES Treatment responses and clinical outcomes in Asian patients with LN compare favorably with patients from other parts of the world. The prevention and treatment of infective complications remain significant challenges in managing LN in Asia. FACTS FROM EAST AND WEST (1) The prevalence of SLE is lower among Caucasians than other ethnicities. A higher prevalence is observed among Asians and African Americans, while the highest prevalence is found in Caribbean people. The prevalence of LN in Asian SLE patients is much higher than in Caucasians as well. However, the 10-year renal outcome and renal survival rate appear to be better in Asians. (2) Polymorphisms of genes involved in the immune response, such as Fcγ receptor, integrin alpha M, TNF superfamily 4, myotubularin-related protein 3 and many others, might be partly responsible for the differences in prevalence between the different ethnic groups. European ancestry was shown to be associated with a decrease in the risk of LN even after adjustment for genes most associated with renal disease. (3) Access to health care is a key determinant of disease progression, treatment outcome and the management of complications such as infections, particularly in South Asia, and might also explain disparities between clinical outcomes. (4) The efficacy of low-dose CYC combined with corticosteroids for induction treatment of LN was proved in European Caucasian patients. This treatment is also used in Asia, although no formal evaluation of efficacy and safety in comparison with other treatment regimens exists in this population. The efficacy of mycophenolate mofetil (MMF) is similar to that of CYC, and similar between Asians and Caucasians. MMF may be more effective than CYC in inducing response in high-risk populations such as African American or Hispanic patients. MMF might cause less infection-related events in Asians, but its high cost prevents broader usage at present. (5) For maintenance therapy, corticosteroid combined with AZA or MMF is used worldwide, with a broadly similar efficacy of both treatments, although there are data suggesting that in high-risk populations (e.g. African Americans) MMF may be more effective in preventing renal flares. AZA is often preferred in Asia due to economic constraints and because of its safety in pregnancy. (6) Alternative therapies under investigation include rituximab, which might be more efficient in Caucasians, as well as belimumab. Recent Japanese and Chinese studies have indicated a potential benefit of tacrolimus as a substitute for or in addition to CYC or MMF (dual or triple immunosuppression). Mizoribine is used in Japan exclusively.
Collapse
Affiliation(s)
- Desmond Y H Yap
- Nephrology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Tak Mao Chan
- Nephrology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
13
|
Nonallelic homologous recombination of the FCGR2/3 locus results in copy number variation and novel chimeric FCGR2 genes with aberrant functional expression. Genes Immun 2015; 16:422-9. [PMID: 26133275 DOI: 10.1038/gene.2015.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/17/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
The human FCGR2/3 locus, containing five highly homologous genes encoding the major IgG receptors, shows extensive copy number variation (CNV) associated with susceptibility to autoimmune diseases. Having genotyped >4000 individuals, we show that all CNV at this locus can be explained by nonallelic homologous recombination (NAHR) of the two paralogous repeats that constitute the majority of the locus, and describe four distinct CNV regions (CNRs) with a highly variable prevalence in the population. Apart from CNV, NAHR events also created several hitherto unidentified chimeric FCGR2 genes. These include an FCGR2A/2C chimeric gene that causes a decreased expression of FcγRIIa on phagocytes, resulting in a decreased production of reactive oxygen species in response to immune complexes, compared with wild-type FCGR2A. Conversely, FCGR2C/2A chimeric genes were identified to lead to an increased expression of FCGR2C. Finally, a rare FCGR2B null-variant allele was found, in which a polymorphic stop codon of FCGR2C is introduced into one FCGR2B gene, resulting in a 50% reduction in protein expression. Our study on CNRs and the chimeric genes is essential for the correct interpretation of association studies on FCGR genes as a determinant for disease susceptibility, and may explain some as yet unidentified extreme phenotypes of immune-mediated disease.
Collapse
|
14
|
Crampton SP, Morawski PA, Bolland S. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus. Dis Model Mech 2015; 7:1033-46. [PMID: 25147296 PMCID: PMC4142724 DOI: 10.1242/dmm.016451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.
Collapse
Affiliation(s)
- Steve P Crampton
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
15
|
The presence of FCGR2B promoter or transmembrane region variant alleles leads to reduced serum IL-6 levels in rheumatoid arthritis. Rheumatol Int 2015; 35:1311-8. [DOI: 10.1007/s00296-015-3226-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
16
|
Dong C, Ptacek TS, Redden DT, Zhang K, Brown EE, Edberg JC, McGwin G, Alarcón GS, Ramsey-Goldman R, Reveille JD, Vilá LM, Petri M, Qin A, Wu J, Kimberly RP. Fcγ receptor IIIa single-nucleotide polymorphisms and haplotypes affect human IgG binding and are associated with lupus nephritis in African Americans. Arthritis Rheumatol 2014; 66:1291-9. [PMID: 24782186 DOI: 10.1002/art.38337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate whether the Fcγ receptor IIIa-66L/R/H (FcγRIIIa-66L/R/H) polymorphism influences net effective receptor function and to assess if the FCGR3A combined genotypes formed by FcγRIIIa-66L/R/H and FcγRIIIa-176F/V, as well as copy number variation (CNV), confer risk of developing systemic lupus erythematosus (SLE) and lupus nephritis. METHODS FcγRIIIa variants, expressed on A20 IIA1.6 cells, were used in flow cytometry-based human IgG-binding assays. Using Pyrosequencing methodology, FCGR3A single-nucleotide polymorphism and CNV genotypes were determined in a cohort of 1,728 SLE patients and 2,404 healthy controls. RESULTS The FcγRIIIa-66L/R/H (rs10127939) polymorphism influenced ligand binding capacity in the presence of the FcγRIIIa-176V (rs396991) allele. There was a trend toward an association of the low-binding FcγRIIIa-176F allele with lupus nephritis among African Americans (P = 0.0609) but not among European Americans (P > 0.10). Nephritis among African American patients with SLE was associated with FcγRIIIa low-binding haplotypes containing the 66L/R/H and 176F variants (P = 0.03) and with low-binding genotype combinations (P = 0.002). No association was observed among European American patients with SLE. The distribution of FCGR3A CNV was not significantly different among controls and SLE patients with or without nephritis. CONCLUSION FcγRIIIa-66L/R/H influences ligand binding. The low-binding haplotypes formed by 66L/R/H and 176F confer enhanced risk of lupus nephritis in African Americans. FCGR3A CNVs are not associated with SLE or lupus nephritis in either African Americans or European Americans.
Collapse
Affiliation(s)
- Chaoling Dong
- Yangzhou University, Yangzhou, China; University of Alabama at, Birmingham
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vigato-Ferreira ICC, Toller-Kawahisa JE, Pancoto JAT, Mendes-Junior CT, Martinez EZ, Donadi EA, Louzada-Júnior P, Del Lama JEC, Marzocchi-Machado CM. FcγRIIa and FcγRIIIb polymorphisms and associations with clinical manifestations in systemic lupus erythematosus patients. Autoimmunity 2014; 47:451-8. [DOI: 10.3109/08916934.2014.921809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Song GG, Lee YH. Associations between FCGR2A rs1801274, FCGR3A rs396991, FCGR3B NA1/NA2 polymorphisms and periodontitis: a meta-analysis. Mol Biol Rep 2013; 40:4985-93. [PMID: 23649770 DOI: 10.1007/s11033-013-2599-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to determine whether the Fcγ receptors (FCGRs) polymorphisms confer susceptibility to periodontitis in ethnically different populations. We did a literature search using PubMed and Embase, and conducted a meta-analysis on the associations between the FCGR2A H131R (rs1801274), FCGR3A F158V (rs396991), and FCGR3B NA1/NA2 polymorphisms and periodontitis using allele contrast, the recessive model, the dominant model, and the homozygote contrast. A total of 17 separate comparisons with 1,421 patients with periodontitis and 1,454 controls, involving six Caucasian, six East Asian, two African and one South Asian population were considered in the meta-analysis. Meta-analysis of the FCGR2A H131R polymorphism showed no association between periodontitis and the FCGR2A R allele (OR=0.987, 95% CI=0.881-1.107, p=0.827). Stratification by ethnicity revealed an association between the RR+RH genotype with periodontitis in Caucasian population (OR=0.624, 95% CI=0.479-0.813, p=4.7×10(-5)), but not in East Asian, and African populations. Meta-analysis of the FCGR3A F158V polymorphism revealed an association between the FCGR3A V allele and periodontitis is in Caucasians (OR=1.457, 95% CI=1.014-2.092, p=0.042), but not in East Asians and Africans. In addition, analysis using the dominant model and homozygote contrast showed the same pattern for the FCGR3A V allele. Meta-analysis of the FCGR3B NA1/NA2 polymorphism using the recessive model revealed a significant association between the NA2/NA2 genotype and periodontitis in aggressive periodontitis (OR=2.853, 95% CI=1.673-4.863, 1.1×10(-5)). This meta-analysis demonstrates that the FCGR2A, and FCGR3A polymorphisms may confer susceptibility to periodontitis in Caucasians, and that the FCGR3B polymorphism may be associated with susceptibility to aggressive periodontitis.
Collapse
Affiliation(s)
- Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-705, South Korea
| | | |
Collapse
|
20
|
Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 2012; 39:10627-35. [PMID: 23053960 DOI: 10.1007/s11033-012-1952-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
The aim of this study was to explore candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Two SLE genome-wide association studies (GWASs) datasets were included in this study. Meta-analysis was conducted using 737,984 SNPs in 1,527 SLE cases and 3,421 controls of European ancestry, and 4,429 SNPs that met a threshold of p < 0.01 in a Korean RA GWAS dataset was used. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the meta-analysis results of the SLE GWAS datasets, and a RA GWAS dataset. The most significant result of SLE GWAS meta-analysis concerned rs2051549 in the human leukocyte antigen (HLA) region (p = 3.36E-22). In the non-HLA region, meta-analysis identified 6 SNPs associated with SLE with genome-wide significance (STAT4, TNPO3, BLK, FAM167A, and IRF5). ICSNPathway identified five candidate causal SNPs and 13 candidate causal pathways. This pathway-based analysis provides three hypotheses of the biological mechanism involved. First, rs8084 and rs7192 → HLA-DRA → bystander B cell activation. Second, rs1800629 → TNF → cytokine network. Third, rs1150752 and rs185819 → TNXB → collagen metabolic process. ICSNPathway analysis identified three candidate causal non-HLA SNPs and four candidate causal pathways involving the PADI4, MTR, PADI2, and TPH2 genes of RA. We identified five candidate SNPs and thirteen pathways, involving bystander B cell activation, cytokine network, and collagen metabolic processing, which may contribute to SLE susceptibility, and we revealed candidate causal non-HLA SNPs, genes, and pathways of RA.
Collapse
|
21
|
Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012; 12:174-94. [PMID: 22982174 DOI: 10.1016/j.autrev.2012.08.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Lupus nephritis remains one of the most severe manifestations of systemic lupus erythematosus associated with considerable morbidity and mortality. A better understanding of the pathogenesis of lupus nephritis is an important step in identifying more targeted and less toxic therapeutic approaches. Substantial research has helped define the pathogenetic mechanisms of renal manifestations and, in particular, the complex role of type I interferons is increasingly recognized; new insights have been gained into the contribution of immune complexes containing endogenous RNA and DNA in triggering the production of type I interferons by dendritic cells via activation of endosomal toll-like receptors. At the same time, there have been considerable advances in the treatment of lupus nephritis. Corticosteroids have long been the cornerstone of therapy, and the addition of cyclophosphamide has contributed to renal function preservation in patients with severe proliferative glomerulonephritis, though at the cost of serious adverse events. More recently, in an effort to minimize drug toxicity and achieve equal effectiveness, other immunosuppressive agents, including mycophenolate mofetil, have been introduced. Herein, we provide a detailed review of the trials that established the equivalency of these agents in the induction and/or maintenance therapy of lupus nephritis, culminating in the recent publication of new treatment guidelines by the American College of Rheumatology. Although newer biologics have been approved and continue to be a focus of research, they have, for the most part, been relatively disappointing compared to the effectiveness of biologics in other autoimmune diseases. Early diagnosis and treatment are essential for renal preservation.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, United States
| | | | | | | | | | | |
Collapse
|
22
|
Lee YH, Song GG. Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Hum Immunol 2012; 73:1050-4. [PMID: 22820624 DOI: 10.1016/j.humimm.2012.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 05/29/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether tumor necrosis factor superfamily 4 (TNFSF4) and TNF receptor-associated factor 1-complement 5 (TRAF1-C5) polymorphisms confer susceptibility to systemic lupus erythematosus (SLE). METHODS The authors conducted meta-analyses on associations between polymorphisms of the TNFSF4 (rs2205960, rs1234315, rs10489265) and TRAF1-C5 (rs10818488, rs3761847) genes and SLE susceptibility, using fixed and random effects models. RESULTS A total of 21 comparative studies were included in this meta-analysis; meta-analysis showed an association between the minor allele of rs2205960 of TNFSF4 and SLE in all study subjects (odds ratio [OR]=1.356, 95% confidence interval [CI]=1.275-1.442, p<1.0×10(-9)). Meta-analysis revealed an association between the minor alleles of rs1234315 and rs10489265 of TNFSF4 and SLE in Asians (OR=1.366, 95% CI=1.295-1.440, p<1.0×10(-9); OR=1.463, 95% CI=1.208-1.771, p=9.7×10(-5)). The minor allele of rs10818488 of TRAF1-C5 was found to be significantly associated with SLE in Europeans (OR=1.210, 95% CI=1.115-1.313, p=5.0×10(-6)). The association p-values remained significant after multiple corrections. CONCLUSIONS This meta-analysis confirms that TNFSF4 polymorphisms are associated with susceptibility to SLE in Asians and Europeans. An association was found between the rs10818488 polymorphism of TRAF1-C5 and susceptibility to SLE in Europeans.
Collapse
Affiliation(s)
- Young Ho Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, 126-1 Seoul, Republic of Korea.
| | | |
Collapse
|
23
|
Duan ZH, Pan FM, Zeng Z, Zhang TC, Wang S, Li GX, Mei Y, Gao J, Ge R, Ye DQ, Zou YF, Xu SQ, Xu JH, Zhang L. TheFCGR2Brs10917661 polymorphism may confer susceptibility to ankylosing spondylitis in Han Chinese: a case–control study. Scand J Rheumatol 2012; 41:219-22. [DOI: 10.3109/03009742.2011.625972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Sang A, Yin Y, Zheng YY, Morel L. Animal Models of Molecular Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:321-70. [DOI: 10.1016/b978-0-12-394596-9.00010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Park H, Sheen DH, Lim MK, Shim SC. Animal Models in Systemic Lupus Erythematosus. JOURNAL OF RHEUMATIC DISEASES 2012. [DOI: 10.4078/jrd.2012.19.4.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyo Park
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Dong Hyuk Sheen
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Mi Kyoung Lim
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| | - Seung Cheol Shim
- Department of Internal Medicine, Eulji University College of Medicine, Eulji Medi-Bio Research Institute, Daejeon, Korea
| |
Collapse
|
26
|
Abstract
The predisposition to and clinical phenotype of systemic lupus erythematosus, an autoimmune disease that is associated with significant morbidity and mortality, are affected by genetic and environmental factors. This article aims to examine whether Asians have worse lupus by reviewing the literature on genetic predisposition and clinical outcomes, including major organ involvement, damage score and mortality in Asian populations compared with other ethnicities. A number of lupus nephritis susceptibility genes have been identified in Asians and White patients, with further variations among different Asian populations. Meta-analysis studies on various Fcγ receptor subtypes revealed that FcγRIIIA-F158 allele, which is associated with low binding affinity to IgG1 and IgG3, predisposed to lupus nephritis in Asian patients. Asian patients were reported to have higher rates of lupus nephritis-associated autoantibodies, lupus nephritis and more active glomerulonephritis compared with White patients. Renal outcome and the level of immunosuppressant use in Asians were comparable to Afro-American Blacks in some studies. Asians were also found to have higher overall damage scores compared with Whites. The difference in mortality between Asian patients and other ethnicities in different geographical regions was found to vary depending on socioeconomic factors such as access to health care. Poverty, education level, cultural and behavioural factors are confounders to ethnicity in determining clinical outcome of systemic lupus erythematosus.
Collapse
Affiliation(s)
- M Y Mok
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| | | |
Collapse
|
27
|
Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:271694. [PMID: 21403825 PMCID: PMC3042628 DOI: 10.1155/2011/271694] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/19/2010] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
Collapse
|
28
|
Toong C, Adelstein S, Phan TG. Clearing the complexity: immune complexes and their treatment in lupus nephritis. Int J Nephrol Renovasc Dis 2011; 4:17-28. [PMID: 21694945 PMCID: PMC3108794 DOI: 10.2147/ijnrd.s10233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a classic antibody-mediated systemic autoimmune disease characterised by the development of autoantibodies to ubiquitous self-antigens (such as antinuclear antibodies and antidouble-stranded DNA antibodies) and widespread deposition of immune complexes in affected tissues. Deposition of immune complexes in the kidney results in glomerular damage and occurs in all forms of lupus nephritis. The development of nephritis carries a poor prognosis and high risk of developing end-stage renal failure despite recent therapeutic advances. Here we review the role of DNA-anti-DNA immune complexes in the pathogenesis of lupus nephritis and possible new treatment strategies aimed at their control.
Collapse
Affiliation(s)
- Catherine Toong
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia
| | | | | |
Collapse
|
29
|
Tiller T, Kofer J, Kreschel C, Busse CE, Riebel S, Wickert S, Oden F, Mertes MMM, Ehlers M, Wardemann H. Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. ACTA ACUST UNITED AC 2010; 207:2767-78. [PMID: 21078890 PMCID: PMC2989760 DOI: 10.1084/jem.20100171] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The leukemogenic effects of Myc drive recurrent trisomy in a mouse model of acute myeloid leukemia. Abnormalities in expression levels of the IgG inhibitory Fc gamma receptor IIB (FcγRIIB) are associated with the development of immunoglobulin (Ig) G serum autoantibodies and systemic autoimmunity in mice and humans. We used Ig gene cloning from single isolated B cells to examine the checkpoints that regulate development of autoreactive germinal center (GC) B cells and plasma cells in FcγRIIB-deficient mice. We found that loss of FcγRIIB was associated with an increase in poly- and autoreactive IgG+ GC B cells, including hallmark anti-nuclear antibody–expressing cells that possess characteristic Ig gene features and cells producing kidney-reactive autoantibodies. In the absence of FcγRIIB, autoreactive B cells actively participated in GC reactions and somatic mutations contributed to the generation of highly autoreactive IgG antibodies. In contrast, the frequency of autoreactive IgG+ B cells was much lower in spleen and bone marrow plasma cells, suggesting the existence of an FcγRIIB-independent checkpoint for autoreactivity between the GC and the plasma cell compartment.
Collapse
Affiliation(s)
- Thomas Tiller
- Max Planck Molecular Immunology Research Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH. Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 2010; 330:662-5. [PMID: 21030656 DOI: 10.1126/science.1194878] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A functional immune system is important for survival in natural environments, where individuals are frequently exposed to parasites. Yet strong immune responses may have fitness costs if they deplete limited energetic resources or cause autoimmune disease. We have found associations between fitness and heritable self-reactive antibody responsiveness in a wild population of Soay sheep. The occurrence of self-reactive antibodies correlated with overall antibody responsiveness and was associated with reduced reproduction in adults of both sexes. However, in females, the presence of self-reactive antibodies was positively associated with adult survival during harsh winters. Our results highlight the complex effects of natural selection on immune responsiveness and suggest that fitness trade-offs may maintain immunoheterogeneity, including genetic variation in autoimmune susceptibility.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Morris DL, Roberts AL, Witherden AS, Tarzi R, Barros P, Whittaker JC, Cook TH, Aitman TJ, Vyse TJ. Evidence for both copy number and allelic (NA1/NA2) risk at the FCGR3B locus in systemic lupus erythematosus. Eur J Hum Genet 2010; 18:1027-31. [PMID: 20442749 PMCID: PMC2987408 DOI: 10.1038/ejhg.2010.56] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 11/09/2022] Open
Abstract
The Fcgamma-receptor locus on chromosome 1q23 shows copy-number variation (CNV), and it has previously been shown that individuals with reduced numbers of copies of the Fcgamma-receptor-IIIB gene (FCGR3B) have an increased risk of developing systemic lupus erythematosus (SLE). It is not understood whether the association arises from FCGR3B (CD16b) itself, is observed because of linkage disequilibrium with actual causal alleles and/or is an effect of CNV on flanking FCGR genes. Thus, we extended this previous work by genotyping the FCGR3B alleles NA1/NA2 and re-assaying CNV using a paralogue ratio test assay in a family study (365 families). We have developed a novel case/pseudo-control approach to analyse family data, as the phase of copy number (CN) is not known in parents and cannot always be inferred in offspring. The results, obtained by fitting logistic regression models, confirm the association of low CN of FCGR3B with SLE (P=0.04). The risk conferred by low copies (<2) was contingent on FCGR3B allotype, being greater for deletion of NA1 than the for lower-affinity NA2. The simpler model with just CN was rejected in favour of the biallelic-CN model (P=0.03). We observed a correlation (R(2)=0.75, P<0.0001) between FCGR3B CNV and neutrophil expression in both healthy controls and patients with SLE. Our results suggest that one mechanism by which CNV at this locus confers disease risk is directly as a result of reduced FcgammaRIIIb function, either because of reduced expression (related to CNV) or because of reduced affinity for its ligand (NA1/NA2 allotype).
Collapse
Affiliation(s)
- David L Morris
- Section of Rheumatology, Hammersmith Hospital, Imperial College London, London, UK
| | - Amy L Roberts
- Section of Rheumatology, Hammersmith Hospital, Imperial College London, London, UK
| | - Abigail S Witherden
- Section of Rheumatology, Hammersmith Hospital, Imperial College London, London, UK
| | - Ruth Tarzi
- Department of Renal, Imperial College London, London, UK
| | - Paula Barros
- Section of Rheumatology, Hammersmith Hospital, Imperial College London, London, UK
| | - John C Whittaker
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, London, UK
| | - Terence H Cook
- Department of Histopathology, Imperial College London, London, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Timothy J Vyse
- Section of Rheumatology, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
32
|
|
33
|
Ramos PS, Brown EE, Kimberly RP, Langefeld CD. Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis. Semin Nephrol 2010; 30:164-76. [PMID: 20347645 PMCID: PMC2847514 DOI: 10.1016/j.semnephrol.2010.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease characterized by a loss of tolerance to self-antigens and the production of high titers of serum autoantibodies. Lupus nephritis can affect up to 74% of SLE patients, particularly those of Hispanic and African ancestries, and remains a major cause of morbidity and mortality. A genetic etiology in SLE is now well substantiated. Thanks to extensive collaborations, extraordinary progress has been made in the past few years and the number of confirmed genes predisposing to SLE has catapulted to approximately 30. Studies of other forms of genetic variation, such as copy number variants and epigenetic alterations, are emerging and promise to revolutionize our knowledge about disease mechanisms. However, to date little progress has been made on the identification of genetic factors specific to lupus nephritis. On the near horizon, two large-scale efforts, a collaborative meta-analysis of lupus nephritis based on all genome-wide association data in Caucasians and parallel scans in four other ethnicities, are poised to make fundamental discoveries in the genetics of lupus nephritis. Collectively, these findings will show that a broad array of pathways underlines the genetic heterogeneity of SLE and lupus nephritis, and provide potential avenues for the development of novel therapies.
Collapse
Affiliation(s)
- Paula S Ramos
- Section on Statistical Genetics and Bioinformatics, Division of Public Health Sciences, Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|