1
|
Chen S, Xiao J, Cai W, Lu X, Liu C, Dong Y, Zheng Y, Song G, Sun Q, Wang H, Xiao Z. Association of the systemic immune-inflammation index with anemia: a population-based study. Front Immunol 2024; 15:1391573. [PMID: 38799419 PMCID: PMC11116595 DOI: 10.3389/fimmu.2024.1391573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Inflammation has been reported to be related to anemia. As a novel inflammatory marker, Systemic immune-inflammation index (SII) has not been studied with Anemia. The aim of this study was to investigate the possible relationship between SII and anemia. Methods This retrospective cross-sectional survey was conducted using data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES) population. In total, 19851 American adults aged ≥18 years were included. SII was calculated as the platelet count×neutrophil count/lymphocyte count. Anemia was defined as hemoglobin (Hgb) levels of < 13 g/dL in males and < 12 g/dL in females. Logistic regression analyses, subgroup analyses and sensitivity analyses were performed to investigate the relationship between SII and anemia. Results Our study included a total of 19851 patients, of which 1501 (7.6%) had anemia. After adjusting for all covariates, the multivariate logistic regression analysis showed that a higher SII (In-transform) level was associated with increased likelihood of anemia (OR=1.51, 95% CI: 1.36-1.68, P<0.001). The association between SII and anemia exhibited a nonlinear manner. The positive correlation between SII and anemia was related to the severity of anemia. Subgroup analysis showed that there was no significant dependence on age, family income, body mass index, hypertension, kidney disease and cancer except gender on this positive association. Furthermore, sensitivity analyses confirmed the robustness of our results. Conclusion Our study demonstrated that SII was positively associated with anemia especially among female participants. And this positive correlation was related to the severity of anemia. Further large-scale prospective studies are still needed to analyze the role of SII in anemia.
Collapse
Affiliation(s)
- Shuying Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jigang Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xulin Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenxi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchun Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ge Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- StateTianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
2
|
Bin S, Cantarelli C, Horwitz JK, Gentile M, Podestà MA, La Manna G, Heeger PS, Cravedi P. Endogenous erythropoietin has immunoregulatory functions that limit the expression of autoimmune kidney disease in mice. Front Immunol 2023; 14:1195662. [PMID: 37520571 PMCID: PMC10381939 DOI: 10.3389/fimmu.2023.1195662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Background Administration of recombinant erythropoietin (EPO), a kidney-produced hormone with erythropoietic functions, has been shown to have multiple immunoregulatory effects in mice and humans, but whether physiological levels of EPO regulate immune function in vivo has not been previously evaluated. Methods We generated mice in which we could downregulate EPO production using a doxycycline (DOX)-inducible, EPO-specific silencing RNA (shEPOrtTAPOS), and we crossed them with B6.MRL-Faslpr/J mice that develop spontaneous lupus. We treated these B6.MRL/lpr shEPOrtTAPOS with DOX and serially measured anti-dsDNA antibodies, analyzed immune subsets by flow cytometry, and evaluated clinical signs of disease activity over 6 months of age in B6.MRL/lpr shEPOrtTAPOS and in congenic shEPOrtTANEG controls. Results In B6.MRL/lpr mice, Epo downregulation augmented anti-dsDNA autoantibody levels and increased disease severity and percentages of germinal center B cells compared with controls. It also increased intracellular levels of IL-6 and MCP-1 in macrophages. Discussion Our data in a murine model of lupus document that endogenous EPO reduces T- and B-cell activation and autoantibody production, supporting the conclusion that EPO physiologically acts as a counterregulatory mechanism to control immune homeostasis.
Collapse
Affiliation(s)
- Sofia Bin
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale (CIRI) Scienze della Vita e Tecnologie per la Salute - Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Chiara Cantarelli
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa (UO) Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Julian K. Horwitz
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald Reagan Medical Center, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Micaela Gentile
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa (UO) Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Manuel Alfredo Podestà
- Renal Division, Department of Medicine, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale (CIRI) Scienze della Vita e Tecnologie per la Salute - Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Peter S. Heeger
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Paolo Cravedi
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Abstract
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
| | - Natalie K Thulin
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Kisaoglu H, Baba O, Kalyoncu M. Hematologic manifestations of juvenile systemic lupus erythematosus: An emphasis on anemia. Lupus 2022; 31:730-736. [DOI: 10.1177/09612033221093508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective Anemia is common in patients with juvenile systemic lupus erythematosus (jSLE). While autoimmune hemolytic anemia (AIHA) is the only etiology included in the classification criteria, the etiology of anemia in jSLE may be diverse. We aimed to investigate the etiology of anemia in jSLE and the relationship between anemia and disease characteristics at onset and during the follow-up period. Methods Patients diagnosed with jSLE who met the Systemic Lupus Erythematosus International Collaborating Clinics classification criteria between January 2012 and December 2020 were retrospectively analyzed. Results Hematologic involvement was observed in 70% of the patients. Anemia was the most common cytopenia among patients (60%). Anemia of chronic disease (ACD) and AIHA were the most common etiological factors, both observed in 23% of patients. Patients with anemia had a significantly higher rate of positive ds-DNA antibody and higher erythrocyte sedimentation rate (ESH) and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores. ESH, serum ferritin, and SLEDAI scores negatively correlated with hemoglobin levels in patients with anemia. Iron deficiency was the sole etiology of new-onset anemia. Patients with new-onset anemia during the follow-up period had significantly lower hemoglobin values at onset and a higher rate of renal involvement. Conclusion Anemia in jSLE is mostly AIHA and ACD, but iron deficiency is not rare. The severity of inflammation is associated with the severity of anemia. During the follow-up period, iron deficiency was the predominant cause of anemia, especially in patients with lower hemoglobin concentrations at onset and renal involvement.
Collapse
Affiliation(s)
- Hakan Kisaoglu
- Faculty of Medicine, Department of Pediatric Rheumatology, Karadeniz Technical University, Trabzon, Turkey
| | - Ozge Baba
- Faculty of Medicine, Department of Pediatric Rheumatology, Karadeniz Technical University, Trabzon, Turkey
| | - Mukaddes Kalyoncu
- Faculty of Medicine, Department of Pediatric Rheumatology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
5
|
Handono K, Wahono CS, Pratama MZ, Kalim H. Association of the premature immunosenescence with the presence and severity of anemia among patients with systemic lupus erythematosus. Lupus 2021; 30:1906-1914. [PMID: 34720016 DOI: 10.1177/09612033211038057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION One of the possible mechanisms that contribute to the development of anemia in systemic lupus erythematosus (SLE) is the presence of premature immunosenescence in SLE. This study aimed to observe the correlation between immunosenescence with anemia in SLE. METHODS This research was a cross-sectional study with the subject was 60 women with SLE aged 16-45 years old. Subjects were recorded for the demographic and clinical data, complete blood counts, iron status (iron serum, total iron-binding capacity, and transferrin saturation), ferritin, inflammatory markers (erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP]), and anti-dsDNA levels. Immunosenescence was observed by measuring the senescent T cells from peripheral blood mononuclear cells (PBMC) by flow cytometry, counted as CD4+CD57+ and CD8+CD57+ T cells. Serum IL-2 and IFNγ as the cytokines associated with immunosenescence were also measured from all subjects. Subjects were divided into anemic and non-anemic groups according to the classification of anemia from WHO (Hb < 12 gr/dl). RESULTS Anemic SLE patients had higher CD4+CD57+, CD8+CD57+, and IFNγ, while IL-2 was lower in SLE patients with anemia. Multivariate linear regression revealed that the decreasing levels of Hb were associated with the increase of CD8+CD57+ percentages and IFNγ levels. Anti-dsDNA, ESR, CRP, ferritin, iron serum, and transferrin saturation were correlated with CD8+CD57+. IFNγ level also correlated with the anti-dsDNA, iron serum, and ferritin levels. No correlation was found between the iron status and inflammatory markers with CD4+CD57+ percentages and IL-2 levels. Multivariate regression analysis showed that IFNγ was positively associated with anti-dsDNA and negatively associated with iron serum and transferrin saturation, while CD8+CD57+ percentages were positively associated with the ferritin levels. CONCLUSION Immunosenescence is associated with anemia by modulating the inflammatory response and causing iron dysregulation in SLE.
Collapse
Affiliation(s)
- Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
| | - Cesarius Singgih Wahono
- Rheumatology and Immunology Division, Department of Internal Medicine, Facuty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
| | - Mirza Zaka Pratama
- Rheumatology and Immunology Division, Department of Internal Medicine, Facuty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
| | - Handono Kalim
- Rheumatology and Immunology Division, Department of Internal Medicine, Facuty of Medicine Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
| |
Collapse
|
6
|
Eswarappa M, Cantarelli C, Cravedi P. Erythropoietin in Lupus: Unanticipated Immune Modulating Effects of a Kidney Hormone. Front Immunol 2021; 12:639370. [PMID: 33796104 PMCID: PMC8007959 DOI: 10.3389/fimmu.2021.639370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease with variable clinical presentation, typically characterized by a relapsing-remitting course. SLE has a multifactorial pathogenesis including genetic, environmental, and hormonal factors that lead to loss of tolerance against self-antigens and autoantibody production. Mortality in SLE patients remains significantly higher than in the general population, in part because of the limited efficacy of available treatments and the associated toxicities. Therefore, novel targeted therapies are urgently needed to improve the outcomes of affected individuals. Erythropoietin (EPO), a kidney-produced hormone that promotes red blood cell production in response to hypoxia, has lately been shown to also possess non-erythropoietic properties, including immunomodulatory effects. In various models of autoimmune diseases, EPO limits cell apoptosis and favors cell clearance, while reducing proinflammatory cytokines and promoting the induction of regulatory T cells. Notably, EPO has been shown to reduce autoimmune response and decrease disease severity in mouse models of SLE. Herein, we review EPO's non-erythropoietic effects, with a special focus on immune modulating effects in SLE and its potential clinical utility.
Collapse
Affiliation(s)
- Meghana Eswarappa
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Hao S, Zhang Y, Hua L, Xie N, Xiao N, Wang H, Fu R, Shao Z. Antibodies specific to ferritin light chain polypeptide are frequently detected in patients with immune‑related pancytopenia. Mol Med Rep 2020; 22:2012-2020. [PMID: 32705249 PMCID: PMC7411336 DOI: 10.3892/mmr.2020.11280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Immuno-related pancytopenia (IRP) is characterized by pancytopenia resulting from bone marrow suppression or destruction mediated by auto-antibodies. In our previous study, a K562 cDNA library was established, which was used to screen for seven possible auto-antigens produced by hematopoietic cells in patients with IRP, including ferritin light chain (FTL). In the present study, FTL was expressed and purified, and the levels of the auto-antibodies specific to FTL were measured. Through ELISA, it was shown that the titer of anti-FTL antibodies was higher in patients with IRP without treatment compared with those who had recovered from IRP, those with severe aplastic anemia (SAA), those with myelodysplastic syndrome (MDS) and the healthy controls. Furthermore, the expression levels of FTL-mRNA were upregulated in patients with IRP without treatment compared with those who had recovered from IRP, those with MDS and the normal controls. The results suggest that FTL antibody expression is upregulated in patients with IRP. Detecting FTL antibodies may therefore have certain clinical value in differentiating between IRP, SAA and MDS. Furthermore, in specific patients with IRP, FTL as an auto-antigen may induce immune attack on hematopoietic stem cells.
Collapse
Affiliation(s)
- Shanfeng Hao
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yang Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Luogang Hua
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Ning Xie
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Na Xiao
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
8
|
Donadei C, Angeletti A, Cantarelli C, D'Agati VD, La Manna G, Fiaccadori E, Horwitz JK, Xiong H, Guglielmo C, Hartzell S, Madsen JC, Maggiore U, Heeger PS, Cravedi P. Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight 2019; 5:127428. [PMID: 31013255 DOI: 10.1172/jci.insight.127428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IL-17-producing CD4+ cells (TH17) are pathogenically linked to autoimmunity including to autoimmune kidney disease. Erythropoietin's (EPO) newly recognized immunoregulatory functions and its predominant intra-renal source suggested that EPO physiologically regulates TH17 differentiation, thereby serving as a barrier to the development of autoimmune kidney disease. Using in vitro studies of human and murine cells and in vivo models, we show that EPO ligation of its receptor (EPO-R) on CD4+ T cells directly inhibits TH17 generation and promotes trans-differentiation of TH17 into IL-17-FOXP3+CD4+ T cells. Mechanistically, EPO/EPO-R ligation abrogates upregulation of SGK1 gene expression and blocks p38 activity to prevent SGK1 phosphorylation, thereby inhibiting RORC-mediated transcription of IL-17 and IL-23 receptor genes. In a murine model of TH17-dependent aristolochic acid (ArA)-induced, interstitial kidney disease associated with reduced renal EPO production, we demonstrate that transgenic EPO overexpression or recombinant EPO (rEPO) administration limits TH17 formation and clinical/histological disease expression. EPO/EPO-R ligations on CD4+ T cells abrogate, while absence of T cell-expressed EPO-R augments, TH17 induction and clinical/histological expression of pristane-induced glomerulonephritis (associated with decreased intrarenal EPO). rEPO prevents spontaneous glomerulonephritis and TH17 generation in MRL-lpr mice. Together, our findings indicate that EPO physiologically and therapeutically modulate TH17 cells to limit expression of TH17-associated autoimmune kidney disease.
Collapse
Affiliation(s)
- Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Andrea Angeletti
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Chiara Cantarelli
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Gaetano La Manna
- Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Julian K Horwitz
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chiara Guglielmo
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Hartzell
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Uchida M, Ooka S, Goto Y, Suzuki K, Fujimoto H, Ishimori K, Matsushita H, Takakuwa Y, Kawahata K. Anti-IL-10 antibody in systemic lupus erythematosus. Open Access Rheumatol 2019; 11:61-65. [PMID: 30988645 PMCID: PMC6440452 DOI: 10.2147/oarrr.s191953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose IL-10 is a cytokine known to inhibit inflammatory cytokines. To determine its role in the pathogenesis of systemic lupus erythematosus (SLE), the presence of anti-IL-10 antibody is required to be examined. Although antibodies against cytokines are known to be present in SLE, no studies have determined the role of IL-10, particularly in Japanese patients. We assayed anti-IL-10 antibody in SLE and examined the clinical significance. Patients and methods We performed a retrospective study of 80 Japanese patients with SLE. Sixteen scleroderma patients, 19 rheumatoid arthritis (RA) patients, 23 Behcet’s disease patients, and 23 healthy subjects were selected as control groups. Clinical information was abstracted from medical records. Anti-IL-10 antibody level was determined with an ELISA. Results With the cutoff established as serum absorbance +2 SDs (OD 0.729) in healthy subjects, we defined any sample above this cutoff as anti-IL-10 antibody-positive. Fourteen patients with SLE (17.5%) were found to be anti-IL-10 antibody positive. Absorbance was significantly higher in serum from patients with SLE and RA than in healthy individuals. In SLE, patients with low complement values were significantly more common in the antibody-positive group. Serum IgG levels were significantly higher in the antibody-positive group. In multivariable analysis, high level of serum IgG is associated with anti-IL-10 antibody positive. Conclusion The present study found that anti-IL-10 antibody is present in SLE and related to clinical parameters. These results suggest that the presence of anti-IL-10 antibody was associated with high level of serum IgG, but is not associated with disease activity in patients with SLE.
Collapse
Affiliation(s)
- Marina Uchida
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Seido Ooka
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Yutaka Goto
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Kanako Suzuki
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Hisae Fujimoto
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Kana Ishimori
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Hiromi Matsushita
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Yukiko Takakuwa
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| | - Kimito Kawahata
- Division of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan,
| |
Collapse
|