1
|
Madison MK, Doiron TS, Stashevsky J, Zhang N, Yancey M, Gil CH, Aridi HD, Woods EJ, Murphy MP, Miller SJ. Allogenic Vertebral Body Adherent Mesenchymal Stromal Cells Promote Muscle Recovery in Diabetic Mouse Model of Limb Ischemia. Ann Vasc Surg 2025; 110:522-533. [PMID: 39343376 DOI: 10.1016/j.avsg.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI) carries a significant risk for amputation, especially in diabetic patients with poor options for revascularization. Phase I trials have demonstrated efficacy of allogeneic mesenchymal stromal cells (MSC) in treating diabetic CLTI. Vertebral bone-adherent mesenchymal stromal cells (vBA-MSC) are derived from vertebral bodies of deceased organ donors, which offer the distinct advantage of providing a 1,000x greater yield compared to that of living donor bone aspiration. This study describes the effects of intramuscular injection of allogenic vBA-MSC in promoting limb perfusion and muscle recovery in a diabetic CLTI mouse model. METHODS A CLTI mouse model was created through unilateral ligation of the femoral artery in male polygenic diabetic TALLYHO mice. The treated mice were injected with vBA-MSC into the gracilis muscle of the ischemic limb 7 days post ligation. Gastrocnemius or tibialis muscle was assessed postmortem for fibrosis by collagen staining, capillary density via immunohistochemistry, and mRNA by quantitative real-time polymerase chain reaction (PCR). Laser Doppler perfusion imaging and plantar flexion muscle testing (MT) were performed to quantify changes in limb perfusion and muscle function. RESULTS Compared to vehicle (Veh) control, treated mice demonstrated indicators of muscle recovery, including decreased fibrosis, increased perfusion, muscle torque, and angiogenesis. PCR analysis of muscle obtained 7 and 30 days post vBA-MSC injection showed an upregulation in the expression of MyoD1 (P = 0.03) and MyH3 (P = 0.008) mRNA, representing muscle regeneration, vascular endothelial growth factor A (VEGF-A) (P = 0.002; P = 0.004) signifying angiogenesis as well as interleukin (IL-10) (P < 0.001), T regulatory cell marker Foxp3 (P = 0.04), and M2-biased macrophage marker Mrc1 (CD206) (P = 0.02). CONCLUSIONS These findings indicate human allogeneic vBA-MSC ameliorate ischemic muscle damage and rescue muscle function. These results in a murine model will enable further studies to develop potential therapies for diabetic CLTI patients.
Collapse
Affiliation(s)
- Mackenzie K Madison
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Theresa S Doiron
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jennifer Stashevsky
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marlee Yancey
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang-Hyun Gil
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanaa Dakour Aridi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
van Rhijn-Brouwer FCCC, Wever KE, Kiffen R, van Rhijn JR, Gremmels H, Fledderus JO, Vernooij RWM, Verhaar MC. Systematic review and meta-analysis of the effect of bone marrow-derived cell therapies on hind limb perfusion. Dis Model Mech 2024; 17:dmm050632. [PMID: 38616715 PMCID: PMC11139036 DOI: 10.1242/dmm.050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Preclinical and clinical studies on the administration of bone marrow-derived cells to restore perfusion show conflicting results. We conducted a systematic review and meta-analysis on preclinical studies to assess the efficacy of bone marrow-derived cells in the hind limb ischemia model and identify possible determinants of therapeutic efficacy. In vivo animal studies were identified using a systematic search in PubMed and EMBASE on 10 January 2022. 85 studies were included for systematic review and meta-analysis. Study characteristics and outcome data on relative perfusion were extracted. The pooled mean difference was estimated using a random effects model. Risk of bias was assessed for all included studies. We found a significant increase in perfusion in the affected limb after administration of bone marrow-derived cells compared to that in the control groups. However, there was a high heterogeneity between studies, which could not be explained. There was a high degree of incomplete reporting across studies. We therefore conclude that the current quality of preclinical research is insufficient (low certainty level as per GRADE assessment) to identify specific factors that might improve human clinical trials.
Collapse
Affiliation(s)
| | - Kimberley Elaine Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Romy Kiffen
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jon-Ruben van Rhijn
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, 3584 CS Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joost Ougust Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robin Wilhelmus Maria Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Marianne Christina Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Sanz-Nogués C, Creane M, Hynes SO, Chen X, Lagonda CA, Goljanek-Whysall K, O'Brien T. Development and Validation of a Multiparametric Semiquantitative Scoring System for the Histopathological Assessment of Ischaemia Severity in Skeletal Muscle. J Tissue Eng Regen Med 2023; 2023:5592455. [PMID: 40226418 PMCID: PMC11918935 DOI: 10.1155/2023/5592455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 04/15/2025]
Abstract
Skeletal muscle is one of the most abundant and dynamic tissues of the body, with a strong regenerative capacity. Muscle injuries can occur as a result of a variety of events, including tissue ischaemia. Lower limb ischaemia occurs when there is an insufficient nutrient and oxygen supply, often caused by stenosis of the arteries due to atherosclerosis. The aim of this study was to develop and validate a multiparametric scoring tool for assessing ischaemia severity in skeletal muscle in a commonly used preclinical animal model. Tissue ischaemia was surgically induced in mice by ligation and excision of the femoral artery. Calf muscles were carefully dissected, prepared for histological analysis, and scored for inflammation, fibrosis, necrosis, adipocyte infiltration, and muscle fibre degeneration/regeneration. Kendall's coefficient of concordance (W) showed a very good agreement between the appraisers when scoring each individual histological feature: inflammation (W = 0.92, p ≤ 0.001), fibrosis (W = 0.94, p ≤ 0.001), necrosis (W = 0.77, p ≤ 0.001), adipocyte infiltration (W = 0.91, p ≤ 0.001), and fibre degeneration/regeneration (W = 0.86, p ≤ 0.001). Intrarater agreement was also excellent (W = 0.94 or more, p ≤ 0.001). There was a statistically significant negative association between the level of muscle ischaemia damage and the calf muscle weight and skeletal muscle fibre diameter. Here, we have developed and validated a new multiparametric, semiquantitative scoring system for assessing skeletal muscle damage due to ischaemia, with excellent inter- and intrarater reproducibility. This scoring system can be used for assessing treatment efficacy in preclinical models of hind limb ischaemia.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway (Ireland), Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
| | - Sean O. Hynes
- Discipline of Pathology, University of Galway (Ireland), Galway, Ireland
- Division of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
| | - Christine Ayu Lagonda
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
- Department of Physiology, School of Medicine, University of Galway (Ireland), Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Science Building, University of Galway (Ireland), Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway (Ireland), Galway, Ireland
| |
Collapse
|
5
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Hickson LJ, Eirin A, Conley SM, Taner T, Bian X, Saad A, Herrmann SM, Mehta RA, McKenzie TJ, Kellogg TA, Kirkland JL, Tchkonia T, Saadiq IM, Tang H, Jordan KL, Zhu X, Griffin MD, Rule AD, van Wijnen AJ, Textor SC, Lerman LO. Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes 2021; 70:1561-1574. [PMID: 33858824 PMCID: PMC8336004 DOI: 10.2337/db19-1268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) facilitate repair in experimental diabetic kidney disease (DKD). However, the hyperglycemic and uremic milieu may diminish regenerative capacity of patient-derived therapy. We hypothesized that DKD reduces human MSC paracrine function. Adipose-derived MSC from 38 participants with DKD and 16 control subjects were assessed for cell surface markers, trilineage differentiation, RNA sequencing (RNA-seq), in vitro function (coculture or conditioned medium experiments with T cells and human kidney cells [HK-2]), secretome profile, and cellular senescence abundance. The direction of association between MSC function and patient characteristics were also tested. RNA-seq analysis identified 353 differentially expressed genes and downregulation of several immunomodulatory genes/pathways in DKD-MSC versus Control-MSC. DKD-MSC phenotype, differentiation, and tube formation capacity were preserved, but migration was reduced. DKD-MSC with and without interferon-γ priming inhibited T-cell proliferation greater than Control-MSC. DKD-MSC medium contained higher levels of anti-inflammatory cytokines (indoleamine 2,3-deoxygenase 1 and prostaglandin-E2) and prorepair factors (hepatocyte growth factor and stromal cell-derived factor 1) but lower IL-6 versus control-MSC medium. DKD-MSC medium protected high glucose plus transforming growth factor-β-exposed HK-2 cells by reducing apoptotic, fibrotic, and inflammatory marker expression. Few DKD-MSC functions were affected by patient characteristics, including age, sex, BMI, hemoglobin A1c, kidney function, and urine albumin excretion. However, senescence-associated β-galactosidase activity was lower in DKD-MSC from participants on metformin therapy. Therefore, while DKD altered the transcriptome and migratory function of culture-expanded MSCs, DKD-MSC functionality, trophic factor secretion, and immunomodulatory activities contributing to repair remained intact. These observations support testing of patient-derived MSC therapy and may inform preconditioning regimens in DKD clinical trials.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Timucin Taner
- Department of Surgery, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Ramila A Mehta
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - James L Kirkland
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Tamar Tchkonia
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mathew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Mtu1 defects are correlated with reduced osteogenic differentiation. Cell Death Dis 2021; 12:61. [PMID: 33431792 PMCID: PMC7801634 DOI: 10.1038/s41419-020-03345-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has revealed that mitochondria dynamics and function regulation is essential for the successful mesenchymal stem cell (MSC) differentiation. In the present study, the researchers reported for the first time that Mtu1 defects are correlated with reduced osteogenic differentiation. Using in vitro cultured bone marrow MSCs and stromal cell line MS5, we demonstrated that depressed Mtu1 expression was associated with reduced 2-thiouridine modification of the U34 of mitochondrial tRNAGln, tRNAGlu, and tRNALys, which led to respiratory deficiencies and reduced mitochondrial ATP production, and finally suppressed osteogenic differentiation. As expected, these Mtu1-deficient mice exhibited obvious osteopenia. Therefore, our findings in this study provide new insights into the pathophysiology of osteopenia.
Collapse
|
8
|
Robinson EL, Pedrosa da Costa Gomes C, Potočnjak I, Hellemans J, Betsou F, de Gonzalo-Calvo D, Stoll M, Birhan Yilmaz M, Ágg B, Beis D, Carmo-Fonseca M, Enguita FJ, Dogan S, Tuna BG, Schroen B, Ammerlaan W, Kuster GM, Carpusca I, Pedrazzini T, Emanueli C, Martelli F, Devaux Y. A Year in the Life of the EU-CardioRNA COST Action: CA17129 Catalysing Transcriptomics Research in Cardiovascular Disease. Noncoding RNA 2020; 6:E17. [PMID: 32443579 PMCID: PMC7345156 DOI: 10.3390/ncrna6020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The EU-CardioRNA Cooperation in Science and Technology (COST) Action is a European-wide consortium established in 2018 with 31 European country members and four associate member countries to build bridges between translational researchers from academia and industry who conduct research on non-coding RNAs, cardiovascular diseases and similar research areas. EU-CardioRNA comprises four core working groups (WG1-4). In the first year since its launch, EU-CardioRNA met biannually to exchange and discuss recent findings in related fields of scientific research, with scientific sessions broadly divided up according to WG. These meetings are also an opportunity to establish interdisciplinary discussion groups, brainstorm ideas and make plans to apply for joint research grants and conduct other scientific activities, including knowledge transfer. Following its launch in Brussels in 2018, three WG meetings have taken place. The first of these in Lisbon, Portugal, the second in Istanbul, Turkey, and the most recent in Maastricht, The Netherlands. Each meeting includes a scientific session from each WG. This meeting report briefly describes the highlights and key take-home messages from each WG session in this first successful year of the EU-CardioRNA COST Action.
Collapse
Affiliation(s)
- Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | | | - Ines Potočnjak
- Institute for Clinical Medical Research and Education, University Hospital Centre Sisters of Charity, Zagreb 10 000, Croatia;
| | | | - Fay Betsou
- Integrated BioBank of Luxembourg, L-3555 Dudelange, Luxembourg; (F.B.); (W.A.)
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain;
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, 48149 Münster, Germany;
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir 35330, Turkey;
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Hungary;
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Dimitris Beis
- Centre for Clinical, Experimental Surgery, & Translational Research, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece;
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.-F.); (F.J.E.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.-F.); (F.J.E.)
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey;
| | - Bilge G. Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, L-3555 Dudelange, Luxembourg; (F.B.); (W.A.)
| | - Gabriela M. Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
| | - Irina Carpusca
- Cardiovascular Research Unit, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (C.P.d.C.G.); (I.C.)
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, 1005 Lausanne, Switzerland;
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (C.P.d.C.G.); (I.C.)
| | | |
Collapse
|
9
|
Zhang F, Wang C, Wen X, Chen Y, Mao R, Cui D, Li L, Liu J, Chen Y, Cheng J, Lu Y. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs-mediated CD8 + T cell responses. J Cell Mol Med 2020; 24:5817-5831. [PMID: 32283569 PMCID: PMC7214166 DOI: 10.1111/jcmm.15250] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) as a kind of serious microvascular complication of Diabetes Mellitus (DM) usually causes the end‐stage of renal disease (ESRD). Studies have demonstrated that CD103+ dendritic cells (DCs) exhibited a renal pathogenic effect in murine chronic kidney disease (CKD). Mesenchymal stem cells (MSCs) can alleviate DN and suppress the DCs maturation. To explore the role of CD103+ DCs and the potential mechanisms underlying MSCs‐mediated protective effects in DN, we used bone marrow MSCs (BM‐MSCs) to treat DN rats. MSCs transplantation considerably recovered kidney function and diminished renal injury, fibrosis and the population of renal CD103+ DCs in DN rat. The MSCs‐treated DN rats had decreased mRNA expression levels of interleukin (IL)1β, IL6, tumour necrosis factor alpha (TNF‐α), monocyte chemotactic protein 1 (MCP‐1) and reduced CD8 T cell infiltration in the kidney. MSCs significantly down‐regulated the genes expression of transcription factors (Basic leucine zipper transcriptional factor ATF‐like 3, Batf3 and DNA‐binding protein inhibitor ID‐2, Id2) and FMS‐like tyrosine kinase‐3 (Flt3) which are necessary for CD103+ DCs development. The protective effect of MSCs may be partly related to their immunosuppression of CD8+ T cell proliferation and activation mediated by CD103+ DCs in the kidney of DN rats.
Collapse
Affiliation(s)
- Fuping Zhang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiwen Mao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Danli Cui
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Biscetti F, Bonadia N, Nardella E, Cecchini AL, Landolfi R, Flex A. The Role of the Stem Cells Therapy in the Peripheral Artery Disease. Int J Mol Sci 2019; 20:E2233. [PMID: 31067647 PMCID: PMC6539394 DOI: 10.3390/ijms20092233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023] Open
Abstract
Vascular complications of diabetes mellitus are an important issue for all clinicians involved in the management of this complex pathology. Although many therapeutic advances have been reached, peripheral arterial disease is still an unsolved problem that each year compromises the quality of life and life span of affected patients. Oftentimes, patients, after ineffective attempts of revascularization, undergo greater amputations. At the moment, there is no effective and definitive treatment available. In this scenario, the therapeutic use of stem cells could be an interesting option. The aim of the present review is to gather all the best available evidence in this regard and to define a new role of the stem cells therapy in this field, from biomarker to possible therapeutic target.
Collapse
Affiliation(s)
- Federico Biscetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Nicola Bonadia
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Medicina d’Urgenza e Pronto Soccorso, 00168 Roma, Italy
| | - Elisabetta Nardella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Andrea Leonardo Cecchini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Raffaele Landolfi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. Clinica Medica e Malattie Vascolari, 00168 Roma, Italy; (E.N.); andrealeonardo-@hotmail.it (A.L.C.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|