1
|
Hulme CH, Mennan C, McCarthy HS, Davies R, Lan T, Rix L, Perry J, Wright K. A comprehensive review of quantum bioreactor cell manufacture: Research and clinical applications. Cytotherapy 2023; 25:1017-1026. [PMID: 37162433 DOI: 10.1016/j.jcyt.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
The Quantum cell expansion system manufactured by Terumo-BCT is perhaps the most widely reported Good Manufacturing Practice-compliant bioreactor used for the expansion of adherent cell populations, both for research purposes and clinical cell-based therapies/trials. Although the system was originally designed for adherent cell expansion, more recently suspension cultures and extracellular vesicle manufacturing protocols have been published using the Quantum system. Cell therapy research and regenerative medicine in general is a rapidly expanding field and as such it is likely that the use of this system will become even more widespread and perhaps mandatory, for both research and development and in the clinic. The purpose of this review is to describe, compare and discuss the diverse range of research and clinical applications currently using the Quantum system, which to our knowledge has not previously been reviewed. In addition, current and future challenges will also be discussed.
Collapse
Affiliation(s)
- Charlotte H Hulme
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Claire Mennan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Helen S McCarthy
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Rebecca Davies
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Tian Lan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Larissa Rix
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Jade Perry
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Karina Wright
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom.
| |
Collapse
|
2
|
Ganeeva I, Zmievskaya E, Valiullina A, Kudriaeva A, Miftakhova R, Rybalov A, Bulatov E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120808. [PMID: 36551014 PMCID: PMC9774716 DOI: 10.3390/bioengineering9120808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Harnessing the human immune system as a foundation for therapeutic technologies capable of recognizing and killing tumor cells has been the central objective of anti-cancer immunotherapy. In recent years, there has been an increasing interest in improving the effectiveness and accessibility of this technology to make it widely applicable for adoptive cell therapies (ACTs) such as chimeric antigen receptor T (CAR-T) cells, tumor infiltrating lymphocytes (TILs), dendritic cells (DCs), natural killer (NK) cells, and many other. Automated, scalable, cost-effective, and GMP-compliant bioreactors for production of ACTs are urgently needed. The primary efforts in the field of GMP bioreactors development are focused on closed and fully automated point-of-care (POC) systems. However, their clinical and industrial application has not yet reached full potential, as there are numerous obstacles associated with delicate balancing of the complex and often unpredictable cell biology with the need for precision and full process control. Here we provide a brief overview of the existing and most advanced systems for ACT manufacturing, including cell culture bags, G-Rex flasks, and bioreactors (rocking motion, stirred-flask, stirred-tank, hollow-fiber), as well as semi- and fully-automated closed bioreactor systems.
Collapse
Affiliation(s)
- Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | | | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Correspondence:
| |
Collapse
|
3
|
Martin R, Lei R, Zeng Y, Zhu J, Chang H, Ye H, Cui Z. Membrane Applications in Autologous Cell Therapy. MEMBRANES 2022; 12:1182. [PMID: 36557091 PMCID: PMC9788437 DOI: 10.3390/membranes12121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common practice. However, in order for these technologies to achieve wide-scale clinical application, the prohibitively high cost associated with these therapies must be addressed through creative engineering. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful membrane applications include expansions of CAR-T cells, various human stem cells, and production of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with tailored functions and surface properties and novel membrane modules that can accommodate the changing needs for surface area and transport properties are to be developed to fulfil this key role.
Collapse
Affiliation(s)
- Risto Martin
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Rui Lei
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Yida Zeng
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Jiachen Zhu
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hong Chang
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| |
Collapse
|
4
|
Jones M, Cunningham A, Frank N, Sethi D. The monoculture of cord-blood-derived CD34 + cells by an automated, membrane-based dynamic perfusion system with a novel cytokine cocktail. Stem Cell Reports 2022; 17:2585-2594. [PMID: 36332632 PMCID: PMC9768577 DOI: 10.1016/j.stemcr.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigen (HLA)-matched cord blood (CB) transplantation is a procedure for the treatment of certain hematological malignancies, hemoglobinopathies, and autoimmune disorders. However, one of the challenges is to provide a sufficient number of T cell-depleted hematopoietic stem and progenitor cells. Currently, only 4%-5% of the CB units stored in CB banks contain enough CD34+ cells for engrafting 70-kg patients. To support this clinical need, we have developed an automated expansion protocol for CB-derived CD34+ cells in the Quantum system's dynamic perfusion bioreactor using a novel cytokine cocktail comprised of stem cell factor (SCF), thrombopoietin (TPO), fms-like tyrosine kinase 3 ligand (Flt-3L), interleukin-3 (IL-3), IL-6, glial cell line-derived neurotrophic factor (GDNF), StemRegenin 1 (SR-1), and a fibronectin-stromal-cell-derived factor-1 (SDF-1)-coated membrane. In an 8-day expansion of a 2 × 106 positively selected CD34+ cell inoculum from 3 donor lineages, the mean cell harvest and cell viability were 1.02 × 108 cells and 95.5%, respectively, and the mean frequency of the CD45+CD34+ immunophenotype was 54.3%. The mean differentiated cell frequencies were 0.5% for lymphocytes, 15.8% for neutrophils, and 15.4% for platelets. These results demonstrate that the automated monoculture protocol can support the expansion of CD34+ cells with minimal lymphocyte residual.
Collapse
Affiliation(s)
- Mark Jones
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA,Corresponding author
| | - Annie Cunningham
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| | - Nathan Frank
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| | - Dalip Sethi
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| |
Collapse
|
5
|
Cunningham AW, Jones M, Frank N, Sethi D, Miller MM. Stem-like memory T cells are generated during hollow fiber perfusion-based expansion and enriched after cryopreservation in an automated modular cell therapy manufacturing process. Cytotherapy 2022; 24:1148-1157. [PMID: 36031522 DOI: 10.1016/j.jcyt.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AIMS Modular automation is a flexible and reliable option to build the foundation of a new or evolving process or to introduce automation to a process that is already established. Herein the authors demonstrate that modular automation provides both high-quality and high-yield T-cell products. METHODS Cells from three individual donors collected on an automated continuous flow centrifugation system were successfully expanded in a functionally closed, automated, perfusion-based hollow fiber bioreactor. These cells were then prepared for cryopreservation in an automated closed-system device that maintains temperature and aliquots a mixed cell product and cryoprotectant into product bags. Cell product bags were thawed and expanded in flasks. Samples taken throughout this manufacturing process were analyzed for cell phenotype, exhaustion markers and functionality. The proportion of CD4+ and CD8+ T cells was maintained through each step, from pre-expansion and post-expansion to immediately after thaw and 24 h after thaw. RESULTS Interestingly, phenotypic markers such as CD45RO, CD45RA and CCR7 evolved throughout the process and stem-like memory T cells emerged as the predominant phenotype in the clinically relevant 24-h post-thaw sample. CONCLUSIONS Modular automation supported the generation of stem-like memory T cells that were not terminally exhausted and were able to produce effector cytokines upon restimulation.
Collapse
Affiliation(s)
| | - Mark Jones
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA
| | - Nathan Frank
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA
| | - Dalip Sethi
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA.
| | - Mindy M Miller
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA.
| |
Collapse
|
6
|
Song HW, Somerville RP, Stroncek DF, Highfill SL. Scaling up and scaling out: Advances and challenges in manufacturing engineered T cell therapies. Int Rev Immunol 2022; 41:638-648. [PMID: 35486592 PMCID: PMC9815724 DOI: 10.1080/08830185.2022.2067154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023]
Abstract
Engineered T cell therapies such as CAR-T cells and TCR-T cells have generated impressive patient responses in previously incurable diseases. In the past few years there have been a number of technical innovations that enable robust clinical manufacturing in functionally closed and often automated systems. Here we describe the latest technology used to manufacture CAR- and TCR-engineered T cells in the clinic, including cell purification, transduction/transfection, expansion and harvest. To help compare the different systems available, we present three case studies of engineered T cells manufactured for phase I clinical trials at the NIH Clinical Center (CD30 CAR-T cells for lymphoma, CD19/CD22 bispecific CAR-T cells for B cell malignancies, and E7 TCR T cells for human papilloma virus-associated cancers). Continued improvement in cell manufacturing technology will help enable world-wide implementation of engineered T cell therapies.
Collapse
Affiliation(s)
- Hannah W Song
- National Institutes of Health, Clinical Center, Center for Cellular Engineering, Bethesda, USA
| | - Robert P Somerville
- National Institutes of Health, Clinical Center, Center for Cellular Engineering, Bethesda, USA
| | - David F Stroncek
- National Institutes of Health, Clinical Center, Center for Cellular Engineering, Bethesda, USA
| | - Steven L Highfill
- National Institutes of Health, Clinical Center, Center for Cellular Engineering, Bethesda, USA
| |
Collapse
|
7
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|