1
|
Mittal P, Battaglin F, Baca Y, Xiu J, Farrell A, Soni S, Lo JH, Torres‐Gonzalez L, Algaze S, Jayachandran P, Ashouri K, Wong A, Zhang W, Yu J, Zhang L, Weinberg BA, Lou E, Shields AF, Goldberg RM, Marshall JL, Goel S, Singh IK, Lenz H. Comprehensive characterization of MCL-1 in patients with colorectal cancer: Expression, molecular profiles, and outcomes. Int J Cancer 2025; 156:1583-1593. [PMID: 39740007 PMCID: PMC11826129 DOI: 10.1002/ijc.35304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Myeloid cell leukemia 1 (MCL-1) is a member of the B-cell lymphoma 2 protein family and has anti-apoptotic functions. Deregulation of MCL-1 has been reported in several cancers, including lung and breast cancer. In the present study, the association of MCL-1 expression with molecular features in colorectal cancer (CRC) has been highlighted. CRC samples from Caris Life Sciences (Phoenix, AZ) were analyzed using NextGen DNA sequencing, whole transcriptome sequencing, whole exome sequencing, and immunohistochemistry (IHC); and stratified based on MCL-1 expression as top quartile MCL-1high (Q4) and bottom quartile MCL-1low (Q1). Immune cell infiltration (CI) in the tumor microenvironment (TME) was measured using RNA deconvolution analysis (QuanTIseq). MCL-1high tumors were associated with an increased rate of programmed death ligand 1 IHC, higher T cell-inflamed signature, interferon score, microsatellite instability-high and tumor mutational burden-high status. MCL-1high was associated with higher mutation rates of BCOR, TP53, KMT2D, ASXL1, KDM6A, ATM, MSH6, SPEN, KRAS, STK11, GNAS, RNF43, and lower mutation rates of CDKN1B, NRAS, and APC, and copy number amplifications in several genes. MCL-1high TME had higher CI of M1 and M2 macrophages, B cells, natural killer cells, neutrophils, and T-regulatory cells infiltration, and lower CI of myeloid dendritic cells. Higher MCL-1 expression is significantly associated with favorable clinical outcomes in CRC cohorts. Our data showed a strong correlation between MCL-1 and distinct immune biomarkers and TME CI in CRC. Our findings suggest MCL-1 is a potential modulator of antitumor immunity, TME, and biomarker in CRC.
Collapse
Affiliation(s)
- Pooja Mittal
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Zoology, Deshbandhu CollegeUniversity of DelhiNew DelhiIndia
| | - Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | | | | - Shivani Soni
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jae Ho Lo
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lesly Torres‐Gonzalez
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sandra Algaze
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Priya Jayachandran
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Karam Ashouri
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexandra Wong
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wu Zhang
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jian Yu
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lin Zhang
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin A. Weinberg
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDCUSA
| | - Emil Lou
- Division of Hematology, Oncology and TransplantationUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anthony F. Shields
- Department of Oncology, Karmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | | | - John L. Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDCUSA
| | - Sanjay Goel
- Robert Wood Johnson Medical SchoolRutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Indrakant K. Singh
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Zoology, Deshbandhu CollegeUniversity of DelhiNew DelhiIndia
- Delhi School of Public Health, Institute of EminenceUniversity of DelhiNew DelhiIndia
| | - Heinz‐Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Gu L, Zhu J, Nie Q, Xie B, Xue S, Zhang A, Li Q, Zhang Z, Li S, Li Y, Shi Q, Shi W, Zhao L, Liu S, Shi X. NLRP3 promotes inflammatory signaling and IL-1β cleavage in acute lung injury caused by cell wall extract of Lactobacillus casei. Commun Biol 2025; 8:20. [PMID: 39774843 PMCID: PMC11706994 DOI: 10.1038/s42003-025-07462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3. We show that LCWE induces TNF, NF-κB signaling, and so on pathways. Similar to lipopolysaccharide (LPS), LCWE induces the infiltration of CD11b-positive cells and inflammation in lungs. LCWE also triggers inflammatory signaling through TLR2, different from LPS through TLR4. It suggests that cytokines amplify inflammation signaling relying on NLRP3 in LCWE-induced ALI. NLRP3 deletion disrupts inflammation, IL-1β cleavage, and the infiltration of neutrophils and macrophages in the injured lung. Our study highlights an animal ALI model for Gram-positive bacterial pneumonia and that NLRP3 is a key therapeutic target to prevent inflammation and lung damage in LCWE-induced ALI.
Collapse
Affiliation(s)
- Lingui Gu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Jinjin Zhu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qingbing Nie
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Binghua Xie
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China
| | - Shuo Xue
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Ailing Zhang
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qiangwei Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Zhengzhong Zhang
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Shupeng Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Yusen Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qinquan Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Weiwei Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Lei Zhao
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China.
| | - Shuzhen Liu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| | - Xuanming Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| |
Collapse
|
3
|
Park JY, Kim MJ, Choi YA, Kim YY, Lee S, Chung JM, Kim SY, Jeong GS, Kim SH. Anti-Inflammatory Effects of Clematis terniflora Leaf on Lipopolysaccharide-Induced Acute Lung Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:6653893. [PMID: 38230250 PMCID: PMC10791263 DOI: 10.1155/2024/6653893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
For centuries, natural products are regarded as vital medicines for human survival. Clematis terniflora var. mandshurica (Rupr.) Ohwi is an ingredient of the herbal medicine, Wei Ling Xian, which has been used in Chinese medicine to alleviate pain, fever, and inflammation. In particular, C. terniflora leaves have been used to cure various inflammatory diseases, including tonsillitis, cholelithiasis, and conjunctivitis. Based on these properties, this study aimed to scientifically investigate the anti-inflammatory effect of an ethanol extract of leaves of C. terniflora (EELCT) using activated macrophages that play central roles in inflammatory response. In this study, EELCT inhibited the essential inflammatory mediators, such as nitric oxide, cyclooxygenase-2, tumor necrosis factor-α, interleukin- (IL-) 6, IL-1β, and inducible nitric oxide synthase, by suppressing the nuclear factor-κB and mitogen-activated protein kinase activation in macrophages. Acute lung injury (ALI) is a fatal respiratory disease accompanied by serious inflammation. With high mortality rate, the disease has no effective treatments. Therefore, new therapeutic agents must be developed for ALI. We expected that EELCT can be a promising therapeutic agent for ALI by reducing inflammatory responses and evaluated its action in a lipopolysaccharide- (LPS-) induced ALI model. EELCT alleviated histological changes, immune cell infiltration, inflammatory mediator production, and protein-rich pulmonary edema during ALI. Collectively, our results may explain the traditional usage of C. terniflora in inflammatory diseases and suggest the promising potential of EELCT as therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Ji-Yeong Park
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Min-Jong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Ae Choi
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeon-Yong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jae-Min Chung
- Department of Gardens and Education, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Sang-Yong Kim
- DMZ Botanic Garden, Korea National Arboretum, Yanggu 24564, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Wang S, Song Y, Xu F, Liu HH, Shen Y, Hu L, Fu Y, Zhu L. Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury. Cell Signal 2023; 108:110698. [PMID: 37149072 DOI: 10.1016/j.cellsig.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Emerging evidence reveals the important role of ferroptosis in the pathophysiological process of acute lung injury (ALI). We aimed to identify and validate the potential ferroptosis-related genes of ALI through bioinformatics analysis and experimental validation. METHODS Murine ALI model was established via intratracheal instillation with LPS and confirmed by H&E staining and transmission electronic microscopy (TEM). RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between control and ALI model mice. The potential differentially expressed ferroptosis-related genes of ALI were identified using the limma R package. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene set enrichment analysis (GSEA), and protein-protein interactions (PPI) were applied for the differentially expressed ferroptosis-related genes. CIBERSORT tool was used to conduct immune cell infiltration analysis. Finally, protein expressions and RNA expression of ferroptosis DEGs were validated in vivo and in vitro by western blots and RT-qPCR. RESULTS Among 5009 DEGs, a total of 86 differentially expressed ferroptosis-related genes (45 up-regulated genes and 41 down-regulated genes) were identified in the lungs between control and ALI. GSEA analysis showed that the genes enriched were mainly involved in response to molecule of bacterial origin and fatty acid metabolic process. The GO and KEGG enrichment analysis indicated that the top 40 ferroptosis DEGs were mainly enriched in reactive oxygen species metabolic process, HIF-1signaling pathway, lipid and atherosclerosis, and ferroptosis. The PPI results and Spearman correlation analysis suggested that these ferroptosis-related genes interacted with each other. Immune infiltration analysis confirmed that ferroptosis DEGs were closely related to immune response. Consistent with the RNA-seq data, the western blot and RT-qPCR unveiled increased mRNA expressions of Cxcl2, Il-6, Il-1β, and Tnfα, and protein expressions of FTH1, TLR4 as well as decreased ACSL3 in LPS-induced ALI. In vitro, the upregulated mRNA levels of CXCL2, IL-6, SLC2A1, FTH1, TNFAIP3, and downregulated NQO1 and CAV1 in LPS-stimulated BEAS-2B and A549 cells were verified. CONCLUSION We identified 86 potential ferroptosis-related genes of LPS-induced ALI through RNA-seq. Several pivotal ferroptosis-related genes involved in lipid metabolism and iron metabolism were implicated in ALI. This study may be helpful to expand our understanding of ALI and provide some potential targets to counteract ferroptosis in ALI.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fan Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han Han Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Pu Z, Zhao Q, Chen J, Xie Y, Mou L, Zha X. Single-cell RNA analysis to identify five cytokines signaling in immune-related genes for melanoma survival prognosis. Front Immunol 2023; 14:1148130. [PMID: 37026000 PMCID: PMC10070796 DOI: 10.3389/fimmu.2023.1148130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Melanoma is one of the deadliest skin cancers. Recently, developed single-cell sequencing has revealed fresh insights into melanoma. Cytokine signaling in the immune system is crucial for tumor development in melanoma. To evaluate melanoma patient diagnosis and treatment, the prediction value of cytokine signaling in immune-related genes (CSIRGs) is needed. In this study, the machine learning method of least absolute selection and shrinkage operator (LASSO) regression was used to establish a CSIRG prognostic signature of melanoma at the single-cell level. We discovered a 5-CSIRG signature that was substantially related to the overall survival of melanoma patients. We also constructed a nomogram that combined CSIRGs and clinical features. Overall survival of melanoma patients can be consistently predicted with good performance as well as accuracy by both the 5-CSIRG signature and nomograms. We compared the melanoma patients in the CSIRG high- and low-risk groups in terms of tumor mutation burden, infiltration of the immune system, and gene enrichment. High CSIRG-risk patients had a lower tumor mutational burden than low CSIRG-risk patients. The CSIRG high-risk patients had a higher infiltration of monocytes. Signaling pathways including oxidative phosphorylation, DNA replication, and aminoacyl tRNA biosynthesis were enriched in the high-risk group. For the first time, we constructed and validated a machine-learning model by single-cell RNA-sequencing datasets that have the potential to be a novel treatment target and might serve as a prognostic biomarker panel for melanoma. The 5-CSIRG signature may assist in predicting melanoma patient prognosis, biological characteristics, and appropriate therapy.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiaqun Chen
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yubin Xie
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| | - Xushan Zha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| |
Collapse
|