1
|
Zhou Q, Zhao Y, Fu X. Low molecular weight heparins promote migration and invasion of trophoblast cells through regulating the PI3K/AKT signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4645-4656. [PMID: 39521755 DOI: 10.1007/s00210-024-03577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Pregnant women confront a high risk of mortality due to preeclampsia (PE), which also results in severe challenges for newborns. Due to their efficient properties and minimal side effects, low molecular weight heparins (LMWHs) are extensively utilized by optimizing their molecular size. Nevertheless, there have been no reports regarding the alleviating effect of LMWHs on PE and the molecular mechanism underlying it. To examine the therapeutic impact of LMWHs on PE, we initially created a PE rat model and assessed the advantages of LMWHs on PE through Western blot, immunofluorescence, TUNEL, 24-h proteinuria determination, and other techniques. Furthermore, we examined the in vitro molecular mechanism of LMWHs therapy on PE using CCK-8, Transwell, Flow cytometry, Wound healing assay, and other techniques. LMWHs, when used in vivo, reduced the rise in blood pressure and 24-h proteinuria in rat models of PE. Additionally, they prevented trophoblast cell apoptosis in these rat models. In vitro, LMWHs demonstrated a significant ability to enhance the migration and invasion of HTR-8 and JEG-3 cells. Mechanistically, LMWHs mitigate the development of PE by activating the PI3K/AKT signaling pathway. According to our findings, the activation of the PI3K/AKT signaling pathway by LMWHs appears to provide relief for PE. Therefore, we have compelling evidence supporting the use of LMWHs as an efficient treatment for PE.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Obstetrical, Shengli Oilfeld Central Hospital, 31 Jinan Road, DongyingShandong, 257000, China
| | - Yanan Zhao
- Department of Obstetrical, Shengli Oilfeld Central Hospital, 31 Jinan Road, DongyingShandong, 257000, China
| | - Xiaomin Fu
- Department of Obstetrical, Shengli Oilfeld Central Hospital, 31 Jinan Road, DongyingShandong, 257000, China.
| |
Collapse
|
2
|
Wu X, Hong J, Hong L. The Deubiquitinating Enzyme USP4 Promotes Trophoblast Dysfunction by Stabilizing RYBP. Cell Biochem Biophys 2025; 83:929-939. [PMID: 39405024 DOI: 10.1007/s12013-024-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.
Collapse
Affiliation(s)
- Xuandi Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Jia Hong
- Department of Obstetrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.
| | - Liang Hong
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Toivonen E, Sikkinen J, Salonen A, Kärkkäinen O, Koistinen V, Klåvus A, Meuronen T, Heini T, Maltseva A, Niku M, Jääskeläinen T, Laivuori H. Metabolic profiles of meconium in preeclamptic and normotensive pregnancies. Metabolomics 2025; 21:21. [PMID: 39863780 PMCID: PMC11762436 DOI: 10.1007/s11306-025-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn. OBJECTIVES To compare meconium metabolome of infants from PE and normotensive pregnancies. METHODS A cohort of preeclamptic parturients and normotensive controls were recruited in Tampere University Hospital during 2019-2022. Meconium was sampled and its metabolome analyzed using liquid chromatography- mass spectrometry in 48 subjects in each group. RESULTS Differences in abundances of 1263 compounds, of which 19 could be annotated, were detected between the two groups. Several acylcarnitines, androsterone sulfate, three bile acids, amino acid derivatives (phenylacetylglutamine, epsilon-(gamma-glutamyl)lysine and N-(phenylacetyl)glutamic acid), as well as caffeine and paraxanthine were lower in the PE group compared to the control group. Urea and progesterone were higher in the PE group. CONCLUSION PE is associated with alterations in the meconium metabolome of infants. The differing abundances of several metabolites show alterations in the interaction between the fetoplacental unit and mother in PE, but whether they are a cause or an effect of the disorder remains to be further investigated.
Collapse
Affiliation(s)
- Elli Toivonen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| | - Jutta Sikkinen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Tuomas Heini
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arina Maltseva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, Helsinki, Finland
| |
Collapse
|
4
|
Shi J, Lin Z, Zheng Z, Chen M, Huang X, Wang J, Li M, Shao J. Glutamine metabolism promotes human trophoblast cell invasion via COL1A1 mediated by PI3K-AKT pathway. J Reprod Immunol 2024; 166:104321. [PMID: 39243705 DOI: 10.1016/j.jri.2024.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Abnormal trophoblast invasion function is an important cause of recurrent spontaneous abortion (RSA). Recent research has revealed a connection between glutamine metabolism and RSA. However, the interplay between these three factors and their related mechanisms remains unclear. To address this issue, we collected villus tissues from 10 healthy women with induced abortion and from 10 women with RSA to detect glutamine metabolism. Then, the trophoblast cell line HTR-8/SVneo was used in vitro to explore the effect of glutamine metabolism on trophoblast cells invasion, which was tested by transwell assay. We found that the concentration of glutamine in the villi of the normal pregnancy group was significantly higher than that in the RSA group. Correspondingly, the expression levels of key enzymes involved in glutamine synthesis and catabolism, including glutamine synthetase and glutaminase, were significantly higher in the villi of the normal pregnancy group. Regarding trophoblast cells, glutamine markedly enhanced the proliferative and invasive abilities of HTR-8/SVneo cells. Additionally, collagen type I alpha 1 (COL1A1) was confirmed to be a downstream target of glutamine, and glutamine also activated the PI3K-AKT pathway in HTR-8/SVneo cells. These findings indicate that glutamine metabolism facilitates the invasion of trophoblasts by up-regulating COL1A1 expression through the activation of the PI3K-AKT pathway, but the specific mechanism of COL1A1 requires further study.
Collapse
Affiliation(s)
- Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, China
| | - Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jiarui Wang
- Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China.
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China.
| |
Collapse
|
5
|
Huang YS, Chang AA, Yang ZJ, Chen JA, Lin CK, Lan HC. Long-term subculture induces syncytialization and influent the response to bisphenol A (BPA) of placental JEG-3 cells. Reprod Toxicol 2024; 130:108738. [PMID: 39477191 DOI: 10.1016/j.reprotox.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The placenta is a temporary organ that exists only during pregnancy, responsible for connecting the mother and the fetus. During placental development, the cytotrophoblast cells differentiate into multinucleated, syncytialized cells that envelop the chorionic villi, a process known as syncytialization. These syncytiotrophoblast cells serve as a barrier between maternal circulation and the fetus and secrete important hormones such as human chorionic gonadotropin (hCG), estrogen, and progesterone. Proper regulation of trophoblast differentiation and hormone secretion is crucial throughout pregnancy, as disruption of these processes can lead to pregnancy failure. Previous studies showed that Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), negatively impacts pregnancy. It affects placental development, tissue morphology, hormone secretion, and probably increase the risk of pregnancy complications. Furthermore, some compounds like hCG and forskolin induce the cell differentiation and affecting hormone secretion in trophoblast. In this study, we found that long-term subculture of JEG-3 cells indicates an increase in cell differentiation, alterations in physiological properties, and changes in hormone secretion profiles. Our results also demonstrate distinct responses in JEG-3 cells to BPA stimulation in later passages, suggesting that long-term subculture alters cell characteristics and elicits varied responses to stimuli. This implies potential harm from BPA exposure at different stages of pregnancy, albeit through different mechanisms.
Collapse
Affiliation(s)
- Yu-Shiuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ai-An Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Jung-An Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chieh Lan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Shao H, Guan R, Chen Z, Kong R, Zhang C, Gu H. Circular RNA circ_0022707 impedes the progression of preeclampsia via the miR-3135b/GHR/PI3K/Akt axis. Funct Integr Genomics 2024; 24:208. [PMID: 39499344 DOI: 10.1007/s10142-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Preeclampsia (PE) is a severe pregnancy complication linked to maternal and fetal health, yet its underlying causes and pathogenesis remain elusive. Circular RNA (circRNA), a form of non-coding RNA, is implicated in the progression of PE; nevertheless, the specific mechanism is not fully elucidated. This study aimed to identify and validate circRNAs that are pivotal in the pathophysiology of PE. Firstly, we constructed a ceRNA network using datasets from the GEO database and identified circ_0022707 as our study target. Then, using qRT-PCR analysis, we validated that circ_0022707 was downregulated in preeclamptic placentas compared to those of normal pregnant women. In situ hybridization assays revealed that circ_0022707 existed in placental villous trophoblast cells. Additionally, Pearson correlation analysis revealed a negative relationship between the expression of circ_0022707 and PE-related indicators (systolic and diastolic blood pressure, along with 24-h proteinuria levels). Furthermore, gain-of-function experiments confirmed that circ_0022707 could promote trophoblast cell proliferation and cell cycle progression while suppressing apoptosis. In vivo experiments using a preeclampsia-like mouse model also demonstrated that circ_0022707 administration could mitigate preeclampsia-like symptoms. Mechanistically, we confirmed that circ_0022707 functions through the miR-3135b/GHR/PI3K/Akt pathway in trophoblast cells. Overall, our study has provided insight into the important function of circ_002707 in the development of PE, enhancing our understanding of the disease's mechanism and proposing a viable therapeutic strategy for PE.
Collapse
Affiliation(s)
- Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Rui Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Ruijiao Kong
- Department of Laboratory and Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Pu Y, Du Y, He J, He S, Chen Y, Cao A, Dang Y. The mediating role of steroid hormones in the relationship between bisphenol A and its alternatives bisphenol S and F exposure and preeclampsia. J Steroid Biochem Mol Biol 2024; 244:106591. [PMID: 39059562 DOI: 10.1016/j.jsbmb.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Steroid hormone imbalance is believed to increase the odds of developing PE. Bisphenol A (BPA) and its substitutes (e.g., bisphenol S (BPS) and bisphenol F (BPF)) have estrogen-like effects, and its exposure may be related to the development of preeclampsia (PE). To explore the effects of bisphenol exposure on maternal serum steroid hormones and the potential mediating role of steroid hormones in the association between bisphenol exposure and developing PE, concentrations of bisphenols and steroid hormones in serum samples of 383 pregnant women were examined before delivery (including 160 PE cases and 223 control cases). Multivariable logistic and linear models were used to explore the associations of maternal serum bisphenols concentrations with both maternal steroid hormones and PE risk. Mediation modeling was employed to evaluate the mediating role of steroid hormones in the association between bisphenols and PE. Results showed that maternal serum BPS concentrations were positively associated with testosterone (T) concentrations. The mediation analyses suggested that approximately 10.17 % of the associations between BPS concentrations and the development of PE might be mediated by maternal T. In conclusion, maternal exposure to BPS during pregnancy is linked to higher maternal T concentrations, which might increase the odds of developing PE. T might mediate the association between BPS exposure and the development of PE.
Collapse
Affiliation(s)
- Yudong Pu
- Institute of The Songshan Lake Central Hospital of Dongguan City, Dongguan 523326, China.
| | - Yue Du
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shuzhen He
- Institute of The Songshan Lake Central Hospital of Dongguan City, Dongguan 523326, China.
| | - Ya Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Aitong Cao
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
KAN Y, PENG YL, ZHAO ZH, DONG ST, XU YX, MA XT, LIU XL, LIU YY, ZHOU YJ. The impact of female sex hormones on cardiovascular disease: from mechanisms to hormone therapy. J Geriatr Cardiol 2024; 21:669-681. [PMID: 38973823 PMCID: PMC11224657 DOI: 10.26599/1671-5411.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Cardiovascular disease remains the leading cause of mortality in women, yet it has not raised the awareness from the public. The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones. Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects. Before menopause, cardiovascular protective effects of estrogens have been well described. Progestogens were often used in combination with estrogens in hormone therapy. Fluctuations in sex hormone levels, particularly estrogen deficiency, were considered the specific risk factor in women's cardiovascular disease. However, considerable heterogeneity in the impact of hormone therapy was observed in clinical trials. The heterogeneity is likely closely associated with factors such as the initial time, administration route, dosage, and formulation of hormone therapy. This review will delve into the pathogenesis and hormone therapy, summarizing the effect of female sex hormones on hypertension, pre-eclampsia, coronary heart disease, heart failure with preserved ejection fraction, and cardiovascular risk factors specific to women.
Collapse
Affiliation(s)
- Yi KAN
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Lu PENG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Ze-Hao ZHAO
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shu-Tong DONG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yin-Xiao XU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Teng MA
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Li LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Yang LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Jie ZHOU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Fantone S, Tossetta G, Cianfruglia L, Frontini A, Armeni T, Procopio AD, Pugnaloni A, Gualtieri AF, Marzioni D. Mechanisms of action of mineral fibres in a placental syncytiotrophoblast model: An in vitro toxicology study. Chem Biol Interact 2024; 390:110895. [PMID: 38301883 DOI: 10.1016/j.cbi.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Asbestos has been widely used due to its unique characteristics. It is known that exposure to asbestos causes serious damage to health but one species, chrysolite, is still used because it is considered less toxic and not biopersistent in some countries. The aim of our study was to investigate if cellular process underlying the proliferation, differentiation and cell death of placental tissues could be modify in presence of asbestos fibres (50 μg/ml final concentration), long chrysolite fibres (CHR-L) and short chrysolite fibres (CHR-S), using BeWo cell line, an in vitro model that mimics the syncytiotrophoblast (STB), the outer layer of placental villi. Our data demonstrated that none of the fibres analysed alter syncytiotrophoblast formation but all of them induce ROS formation and reduced cell proliferation. Moreover, we showed that only CHR-L fibre induced was able to induce irreversible DNA alterations that carried cells to apoptosis. In fact, BeWo cells exposed to CHR-L fibre showed a significant increase in cleaved CASP3 protein, a marker of apoptosis. These data suggest that CHR-L may induce death of the placental villi leading to impaired placental development. The impairment of placental development is the basis of many gestational pathologies such as preeclampsia and intrauterine growth retardation. Since these pathologies are very dangerous for foetal and maternal life, we suggest to the gynaecologists to carefully evaluate the area of maternal residence, the working environment, the food used, and the materials used daily to avoid contact with these fibres as much as possible.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Antonio D Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro F Gualtieri
- Chemical and Earth Sciences Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
12
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
13
|
Shi H, Kong R, Miao X, Gou L, Yin X, Ding Y, Cao X, Meng Q, Gu M, Suo F. Decreased PPP1R3G in pre-eclampsia impairs human trophoblast invasion and migration via Akt/MMP-9 signaling pathway. Exp Biol Med (Maywood) 2023; 248:1373-1382. [PMID: 37642261 PMCID: PMC10657594 DOI: 10.1177/15353702231182214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 08/31/2023] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication characterized by impaired trophoblast invasion and spiral artery remodeling and can have serious consequences for both mother and child. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is involved in numerous tumor-related biological processes. However, the biological action and underlying mechanisms of PPP1R3G in PE progression remain unclear. We used western blotting and immunohistochemistry to investigate PPP1R3G expression in gestational age-matched pre-eclamptic and normal placental tissues. After lentivirus transfection, wound-healing, Transwell, cell-counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and TdT mediateddUTP Nick End Labeling (TUNEL) assays were used to assess trophoblast migration, invasion, proliferation, and apoptosis, respectively. The relative expression levels of PPP1R3G and the proteins involved in the Akt signaling pathway were determined using western blotting. The results showed that PPP1R3G levels were significantly lower in the placental tissues and GSE74341 microarray of the PE group than those of the healthy control group. We also found that neonatal weight and Apgar score were lower at birth, and peak systolic blood pressure and diastolic blood pressure were higher in the PE group than in the non-PE group. In addition, PPP1R3G knockdown decreased p-Akt/Akt expression and inhibited migration, invasion, and proliferation in HTR-8/SVneo trophoblasts but had no discernible effect on cell apoptosis. Furthermore, PPP1R3G positively regulated matrix metallopeptidase 9 (MMP-9), which was downregulated in placental tissues of pregnant women with PE. These results provided the first evidence that the reduced levels of PPP1R3G might contribute to PE by suppressing the invasion and migration of trophoblasts and targeting the Akt/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Obstetrics, Xuzhou Cancer Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Miao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Xin Yin
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Yuning Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Urology, Xuzhou No. 1 People’s Hospital, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qingyong Meng
- Department of Obstetrics, Xuzhou Maternal and Child Health Hospital Affiliated to Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China
| | - Maosheng Gu
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Feng Suo
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|