1
|
Yan YT, Guo F, Liu YF, Zhao ZY, Sun XD, Gao CJ. Electroacupuncture reduces microglial pyroptosis via P2X7R/NLRP3 axis in the rat model of asphyxial cardiac arrest and cardiopulmonary resuscitation. Neuroscience 2025; 570:27-37. [PMID: 39952315 DOI: 10.1016/j.neuroscience.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Asphyxial cardiac arrest and cardiopulmonary resuscitation (ACA/CPR) can severely damage the brain, but electroacupuncture may help reduce this damage through its anti-inflammatory effects. This study explored whether EA could mitigate microglial pyroptosis via the P2X7R/NLRP3 pathway in a rat ACA/CPR model, given that P2X7R activates the NLRP3 inflammasome, leading to pyroptosis and the release of inflammatory factors. Rats underwent an 8-minute ACA/CPR model, with EA stimulation at Baihui (GV 20), Shuigou (DU 26), and bilateral Neiguan (PC 6) every 12 h for three days. P2X7R was modulated using the inhibitor AZ10606120 and the agonist BzATP. Protein expression changes were analyzed using western blotting, ELISA, flow cytometry, and immunofluorescence. ACA/CPR outcomes assessed included survival rate, neurological deficits, brain injury serum markers, and hippocampal ATP levels. The data indicated that microglia activation and co-localization with P2X7R/GSDMD occurred in the hippocampus of the ACA/CPR model, while EA reduced pyroptosis and P2X7R expression 24 h after the restoration of spontaneous circulation (ROSC). In the primary microglial oxygen and glucose deprivation-reoxygenation (OGD/R) model, P2X7R expression increased and then gradually decreased as reoxygenation time progressed. P2X7R and GSDMD levels were high 6 h post-reoxygenation, but AZ10606120 reduced their expression. BzATP counteracted EA's suppression of P2X7R, NLRP3, caspase-1, cleaved caspase-1, GSDMD-FL, and GSDMD-N. Comparable assessments were conducted within the ACA/CPR + AZ10606120 and ACA/CPR cohorts. Consequently, it was deduced that EA exerts a neuroprotective effect following ACA/CPR by modulating P2X7R expression and suppressing microglial pyroptosis.
Collapse
Affiliation(s)
- Yu-Ting Yan
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China
| | - Fei Guo
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China
| | - Yong-Fei Liu
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China
| | - Zhao-Yan Zhao
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China
| | - Xu-De Sun
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China
| | - Chang-Jun Gao
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi 710038, China.
| |
Collapse
|
2
|
Qi X, Lian Y, Fan Z, Wang H, Jiang H, He M, Li L, Huang J, Wan Y. Electroacupuncture normalized tumor vasculature by downregulating glyoxalase-1 to polarize tumor-associated macrophage to M1 phenotype in triple-negative breast cancer. Int Immunopharmacol 2025; 147:113988. [PMID: 39778275 DOI: 10.1016/j.intimp.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis. In recent years, regulating TAMs polarization has become a hot topic for research with objectives to normalize tumor vasculature and improve drug delivery and the tumor microenvironment. Our previous studies have found that peritumoral electroacupuncture (EA) can regulate tumor angiogenesis, but the underlying mechanism remains unclear. METHODS In this study, we examined the phenotype of TAMs and inflammatory factors to observe the effect of peritumoral electroacupuncture on the phenotypic polarization of TAMs. Based on this, we evaluated the structure and function of tumor vasculature. Finally, we conducted a preliminary exploration of the mechanism underlying the regulation of TAMs phenotypic polarization by peritumoral electroacupuncture. RESULTS In this study, we found that peritumoral electroacupuncture could promote the phenotypic polarization of TAMs toward the M1 type, thereby reducing microvascular density in tumor tissue, increasing pericyte coverage, improving the stability of the basement membrane, promoting vascular maturation, and enhancing perfusion while reducing tissue hypoxia. CONCLUSIONS Peritumoral electroacupuncture can promote the phenotypic polarization of TAMs toward the M1 type, leading to normalization of tumor vascular structure and function. The mechanism may be related to the downregulation of glyoxalase-1 and subsequent activation of the MGO-AGEs/RAGE axis.
Collapse
Affiliation(s)
- Xuewei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanyan Lian
- Chaoyang District Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhenjia Fan
- Beijing University of Chinese Medicine, Beijing, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyang He
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liling Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuxiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang M, Li T, Li W, Song T, Zhao C, Wu Q, Cui W, Hao Y, Hou Y, Zhu P. Unraveling the neuroprotective potential of scalp electroacupuncture in ischemic stroke: A key role for electrical stimulation. Neuroscience 2024; 562:160-181. [PMID: 39401739 DOI: 10.1016/j.neuroscience.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
This study aims to explore the neuroprotective effects of scalp Electroacupuncture (EA) on ischemic stroke, with a specific focus on the role of electrical stimulation (ES). Employing a rat model of middle cerebral artery occlusion (MCAO), we used methods such as Triphenyl tetrazolium chloride staining, micro-CT scanning, Enzyme linked immunosorbent assay (ELISA), and immunofluorescence to assess the impacts of EA. We further conducted RNA-seq analysis and in vitro experiments with organotypic brain slices and cerebral organoids to explore the underlying mechanisms. Our research revealed that EA notably reduced cerebral infarct volume and improved regional cerebral blood flow in rats following MCAO. Micro-CT imaging showed improved vascular integrity in EA-treated groups. Histological analyses, including HE staining, indicated reduced brain tissue damage. ELISA demonstrated a decrease in pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, suggesting improved blood-brain barrier function. Immunofluorescence and Western blot analyses revealed that EA treatment significantly inhibited microglial and astrocytic overactivation. RNA-seq analysis of brain tissues highlighted a downregulation of immune pathways and inflammatory responses, confirming the neuroprotective role of EA. This was further corroborated by in vitro experiments using organotypic brain slices and cerebral organoids, which showcased the efficacy of electrical stimulation in reducing neuroinflammation and protecting neuronal cells. The study highlights the potential of scalp EA, particularly its ES component, in treating ischemic stroke. It provides new insights into the mechanisms of EA, emphasizing its efficacy in neuroprotection and modulation of neuroinflammation, and suggests avenues for optimized treatment strategies in stroke therapy.
Collapse
Affiliation(s)
- Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Wenyan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Chi Zhao
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Qiulan Wu
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Wenwen Cui
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yuanyuan Hao
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China; Key Laboratory of State Administration of TCM Cardio-Cerebral Vessel Collateral Disease, No.238, the South of Tianshan Street, Shijiazhuang, 050035, Hebei, China.
| | - Pengyu Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, The Street of Guogeli, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Zhang Y, Liu M, Yu D, Wang J, Li J. 17β-Estradiol Ameliorates Postoperative Cognitive Dysfunction in Aged Mice via miR-138-5p/SIRT1/HMGB1 Pathway. Int J Neuropsychopharmacol 2024; 27:pyae054. [PMID: 39520138 PMCID: PMC11631145 DOI: 10.1093/ijnp/pyae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication in older patients and correlated with adverse outcomes. 17β-estradiol treatment was reported to provide neuroprotective protection in various neurologic disorders, but whether it attenuated POCD was unknown. The purpose of this study was to explore the effects of 17β-estradiol treatment on POCD and its mechanisms. METHODS We generated a POCD model in 15-month-old mice via laparotomy, followed by subcutaneous injection of 17β-estradiol, intraperitoneal injection of EX527 (a Sirtuin 1 [SIRT1] inhibitor), or bilateral hippocampal injection of miR-138-5p-agomir. Morris water maze test and open field test were applied to evaluate the cognitive function. The neuronal apoptosis in the hippocampus was detected using the terminal transferase dUTP nick end labeling assay. Meanwhile, the levels of interleukin-1β (IL-1β) and microglia activation were measured by enzymelinked immunosorbent assay and immunofluorescence, respectively. Western blot was utilized to assess the expression of SIRT1 and high mobility group box 1 (HMGB1) protein, and gene expression of miR-138-5p was determined through quantitative real-time polymerase chain reaction. RESULTS Behavioral tests showed that 17β-estradiol treatment improved cognitive function in aged POCD mice. In addition, 17β-estradiol attenuated neuronal apoptosis and microglia activation as well as IL-1β expression in the hippocampus. Nonetheless, injection with EX527 abolished the beneficial impacts of 17β-estradiol against POCD. Furthermore, miR-138-5p was verified to bind with SIRT1, which regulated the expression of HMGB1. After treatment with 17β-estradiol, miR-138-5p expression was reduced in the hippocampus, and the neuroprotective influence of 17β-estradiol on aged POCD mice was reversed after administration of miR-138-5p-agomir. CONCLUSIONS 17β-estradiol treatment exerted neuroprotection effects on POCD in aged mice, which might be relevant to alleviating neuroinflammation via miR-138-5p/SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Graduate Faculty, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jing Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
6
|
Wang L, Bi L, Qiu Y, Huang G, Ye P, Liu Y, Li A, Yang X, Shen P, Wang J, Zeng Q, Zhang H, Li S, Jin H. Effectiveness of electro-acupuncture for cognitive improvement on Alzheimer's disease quantified via PET imaging of sphingosine-1-phosphate receptor 1. Alzheimers Dement 2024; 20:8331-8345. [PMID: 39320044 DOI: 10.1002/alz.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Electro-acupuncture (EA) has demonstrated potential in improving mild-to-moderate dementia in clinics, but the underlying scientific target remains unclear. METHODS EA was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests. Brain magnetic resonance imaging-positron emission tomography (PET) scans using [18F]TZ4877 targeting sphingosine-1-phosphate receptor 1 (S1PR1) and [18F]AV45 targeting amyloid beta fibrils were conducted. The correlation between regional brain PET quantifications and cognitive functions was analyzed. RESULTS EA significantly improved cognitive and memory functions of AD (p = 0.04) and reduced the uptake of [18F]TZ4877 in the cortex (p = 0.02) and hippocampus (p = 0.03). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1. Furthermore, immunohistochemistry showed a significant reduction of interleukin 1β and tumor necrosis factor α after EA treatment. DISCUSSION EA may reverse AD by suppressing neuroinflammation, and the PET imaging of S1PR1 seemed potent in evaluating the treatment for AD patients HIGHLIGHTS: Electro-acupuncture (EA) was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests and positron emission tomography (PET) imaging quantifications. PET tracer [18F]AV45 was used to detect amyloid beta deposition. An increased uptake of [18F]AV45 was found in AD compared to WT mice, with significance observed only in the cortex and not in the hippocampus. EA treatment exhibited a trend toward reduced [18F]AV45 uptake in AD mouse brains post-treatment. However, statistical difference was not attained in most brain regions. EA "Baihui (DU20) and Sishencong (EX-HN1)" significantly improved cognitive and memory functions of AD (p = 0.04). Brain magnetic resonance imaging p(MRI)-positron emission tomography (PET) quantifications revealed that significantly reduced the uptake of [18F]TZ4877 in the cortex (p = 0.02) and hippocampus (p = 0.03) after EA treatment. The correlation between PET quantifications and cognitive functions was analyzed and the most notable correlations were found between escape latency (reaction cognitive and memory behavior) and volume distribution (VT) quantifications of [18F]TZ4877. VT quantifications of [18F]TZ4877 in key brain regions for cognitive and memory ability, such as the cortex and hippocampus, positively correlated with platform latency (cortex p < 0.01, r = 0.7102; hippocampus p < 0.01, r = 0.6891). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1 in the AD brain. And the EA treatment significantly reduced the signals in the cortex and hippocampus. Immunohistochemistry showed a significant reduction of interleukin 1β and tumor necrosis factor α after EA treatment. EA reversed AD by suppressing neuroinflammation in the cortex and hippocampus. The S1PR1 targeting PET tracer [18F]TZ4877 showed promise in evaluating the pathological progression of AD in clinical settings.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - An Li
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xuan Yang
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Peining Shen
- Pharmaceutical Clinical Trails Office, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Junfeng Wang
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyu Zhang
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shengqiao Li
- Department of Chinese Medicine Oncology, Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
7
|
Zhang W, Song S, Zhang T, Ju X, Shu S, Zhou S. Electroacupuncture for urinary retention after stroke: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract 2024; 57:101877. [PMID: 38996656 DOI: 10.1016/j.ctcp.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND PURPOSE Electroacupuncture (EA) is one of the non-pharmacological therapies in traditional Chinese medicine to treat urinary retention. The objective of this meta-analysis is to assess the efficacy of electroacupuncture in the treatment of urinary retention after stroke. METHODS Overall, seven electronic databases were searched until December 31, 2023, and randomized control trials about EA for urinary retention after stroke were reviewed. Two reviewers independently screened the literature, extracted the data, and assessed the risk of bias for included studies. The meta-analysis was conducted by RevMan 5.4 and Stata/MP 17.0 software. RESULTS Eleven studies with a total of 856 participants were included in this meta-analysis. EA treatment yielded an improved reduction in the post-void residual (PVR) (mean difference [MD]: 37.85, 95 % confidence interval [CI]: 55.09 to -20.61 p < 0.0001) and the weight of diaper pads (MD: 38.87, 95 % CI: 42.68 to -335.06). Further analysis indicated that EA improved the effectiveness ratio (risk ratio [RR]: 1.36, 95 % CI: 1.20 to 1.53, p < 0.00001), the function of the bladder (MD: 0.45, 95 % CI: 0.61 to -0.30), and the quality of life (MD: 1.15, 95 %: CI: 2.10 to -0.20) in comparison to normal treatment and simple acupuncture. CONCLUSION EA may be an effective way and reasonable modality to incorporate into the multiple prevention and therapy for urinary retention after stroke. The wide application of EA could be associated with the improvement of bladder and life quality and decline in the PVR for patients after stroke with urinary retention.
Collapse
Affiliation(s)
- Wenqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shizhen Song
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingting Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyao Ju
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Shu
- Basic Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Lin F, Xiang L, Wu L, Liu Y, Jiang Q, Deng L, Cui W. Positioning regulation of organelle network via Chinese microneedle. SCIENCE ADVANCES 2024; 10:eadl3063. [PMID: 38640234 PMCID: PMC11029808 DOI: 10.1126/sciadv.adl3063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The organelle network is a key factor in the repair and regeneration of lesion. However, effectively intervening in the organelle network which has complex interaction mechanisms is challenging. In this study, on the basis of electromagnetic laws, we constructed a biomaterial-based physical/chemical restraint device. This device was designed to jointly constrain electrical and biological factors in a conductive screw-threaded microneedle (ST-needle) system, identifying dual positioning regulation of the organelle network. The unique physical properties of this system could accurately locate the lesion and restrict the current path to the lesion cells through electromagnetic laws, and dynamic Van der Waals forces were activated to release functionalized hydrogel microspheres. Subsequently, the mitochondria-endoplasmic reticulum (ER) complex was synergistically targeted by increasing mitochondrial ATP supply to the ER via electrical stimulation and by blocking calcium current from the ER to the mitochondria using microspheres, and then the life activity of the lesion cells was effectively restored.
Collapse
Affiliation(s)
| | | | - Longxi Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Yupu Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Qinzhe Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | | |
Collapse
|
9
|
Zhang S, Zhang C, Fan M, Chen T, Yan H, Shi N, Chen Y. Neuromodulation and Functional Gastrointestinal Disease. Neuromodulation 2024; 27:243-255. [PMID: 37690016 DOI: 10.1016/j.neurom.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Functional gastrointestinal disorders (FGIDs) are common, and they severely impair an individual's quality of life. The mechanism of pathogenesis and the effective treatments for FGIDs remain elusive. Neuromodulation-a relatively new treatment-has exhibited a good therapeutic effect on FGIDs, although there are different methods for different symptoms of FGIDs. MATERIALS AND METHODS We used PubMed to review the history of neuromodulation for the treatment of FGIDs and to review several recently proposed neuromodulation approaches with improved effects on FGIDs. CONCLUSION Electroacupuncture, transcutaneous electroacupuncture, transcutaneous auricular vagal nerve stimulation, sacral nerve stimulation (SNS) (which relies on vagal nerve stimulation), and gastric electrical stimulation (which works through the modulation of slow waves generated by the interstitial cells of Cajal), in addition to the noninvasive neurostimulation alternative approach method of SNS-tibial nerve stimulation and transcutaneous electrical stimulation (which is still in its infancy), are some of the proposed neuromodulation approaches with improved effects on FGIDs. This review has discussed some critical issues related to the selection of stimulation parameters and the underlying mechanism and attempts to outline future research directions backed by the existing literature.
Collapse
Affiliation(s)
- Shuhui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mingwei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hui Yan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ning Shi
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
10
|
Wan MM, Jin T, Fu ZY, Lai SH, Gao WP. Electroacupuncture Alleviates Dry Eye Ocular Pain Through TNF-ɑ Mediated ERK1/2/P2X 3R Signaling Pathway in SD Rats. J Pain Res 2023; 16:4241-4252. [PMID: 38107367 PMCID: PMC10725190 DOI: 10.2147/jpr.s436258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to examine electroacupuncture's influence on ocular pain and its potential modulation of the TNF-ɑ mediated ERK1/2/P2X3R signaling pathway in dry eye-induced rat models. Methods Male Sprague-Dawley rats with induced dry eye, achieved through extraorbital lacrimal gland removal, were treated with electroacupuncture. Comprehensive metrics such as the corneal mechanical perception threshold, palpebral fissure height, eyeblink frequency, eye wiping duration, behavioral changes in the open field test, and the forced swimming test were employed. Additionally, morphological changes in microglia and neurons were observed. Expression patterns of key markers, TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R, in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) regions, were studied with etanercept serving as a control to decipher the biochemistry of electroacupuncture's therapeutic effects. Results Electroacupuncture treatment demonstrated a notable decrease in the corneal mechanical perception threshold, improvement in palpebral fissure height, and significant reductions in both eyeblink frequency and eye wiping duration. Moreover, it exhibited a promising role in anxiety alleviation. Notably, the technique effectively diminished ocular pain by curbing microglial and neuronal activation in the TG and SpVc regions. Furthermore, it potently downregulated TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R expression within these regions. Conclusion Electroacupuncture attenuated damage to sensory nerve pathways, reduced pain, and eased anxiety in dry eye-afflicted rats. The findings suggest a crucial role of TNF-ɑ mediated ERK1/2/P2X3R signaling pathway inhibition by electroacupuncture in these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, People’s Republic of China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Si-Hua Lai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Zhang P, Bai Y, Zhang F, Zhang X, Deng Y, Ding Y. Editorial: Therapeutic relevance and mechanisms of neuro-immune communication in brain injury. Front Cell Neurosci 2023; 17:1209083. [PMID: 37593230 PMCID: PMC10431939 DOI: 10.3389/fncel.2023.1209083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Pengyue Zhang
- Institute of Acupuncture, Tuina and Rehabilitation, The Second Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
12
|
Bao Q, Liu Y, Zhang X, Li Y, Wang Z, Ye F, He X, Xia M, Chen Z, Yao J, Zhong W, Wu K, Wang Z, Sun M, Chen J, Hong X, Zhao L, Yin Z, Liang F. Clinical observation and mechanism of acupuncture on amnestic mild cognitive impairment based on the gut-brain axis: study protocol for a randomized controlled trial. Front Med (Lausanne) 2023; 10:1198579. [PMID: 37415772 PMCID: PMC10321407 DOI: 10.3389/fmed.2023.1198579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Background Amnestic mild cognitive impairment (aMCI) is a pre-dementia condition associated with declined cognitive function dominated by memory impairment. The occurrence of aMCI is associated with the gut-brain axis. Previous studies have shown cognitive improvements in MCI after acupuncture treatment. This study evaluates whether acupuncture can produce a therapeutic effect in patients with aMCI by modulating the gut-brain axis. Methods and design This is a prospective, parallel, multicenter randomized controlled trial. A total of 40 patients with aMCI will be randomly assigned to an acupuncture group (AG) or a waiting-list group (WG), participants in both groups will receive health education on improving cognitive function at each visit, and acupuncture will be conducted twice a week for 12 weeks in the AG. Another 20 matched healthy volunteers will be enrolled as normal control. The primary outcome will be the change in Alzheimer's Disease Assessment Scale-cognitive scale score before and after treatment. Additionally, functional magnetic resonance imaging data, faeces, and blood will be collected from each participant to characterize the brain function, gut microbiota, and inflammatory cytokines, respectively. The differences between patients with aMCI and healthy participants, and the changes in the AG and WG groups before and after treatment will be observed. Ultimately, the correlation among brain function, gut microbiota, inflammatory cytokines, and clinical efficacy evaluation in patients with aMCI will be analyzed. Discussion This study will identify the efficacy and provide preliminary data on the possible mechanism of acupuncture in treating aMCI. Furthermore, it will also identify biomarkers of the gut microbiota, inflammatory cytokines, and brain function correlated with therapeutic effects. The results of this study will be published in peer-reviewed journals. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2200062084.
Collapse
Affiliation(s)
- Qiongnan Bao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Yiwei Liu
- The West China Hospital, Chengdu, China
| | - Xinyue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Yaqin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqi Wang
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Fang Ye
- The Sichuan Province People's Hospital, Chengdu, China
| | - Xia He
- The Rehabilitation Hospital of Sichuan Province, Chengdu, China
| | - Manze Xia
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Zhenghong Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Wanqi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Kexin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Ziwen Wang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Mingsheng Sun
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Jiao Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Xiaojuan Hong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Zihan Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| |
Collapse
|
13
|
Wu L, Dong Y, Zhu C, Chen Y. Effect and mechanism of acupuncture on Alzheimer's disease: A review. Front Aging Neurosci 2023; 15:1035376. [PMID: 36936498 PMCID: PMC10020224 DOI: 10.3389/fnagi.2023.1035376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
With the development trend of an aging society, Alzheimer's disease (AD) has become an urgent problem in the field of medicine worldwide. Cognitive impairment in AD patients leads to a decline in the ability to perform daily living and abnormalities in behavior and personality, causing abnormal psychiatric symptoms, which seriously affect the daily life of patients. Currently, mainly drug therapy is used for AD patients in the clinic, but a large proportion of patients will experience drug efficacy not working, and even some drugs bring severe sleep disorders. Acupuncture, with its unique concept and treatment method, has been validated through a large number of experiments and proved its reliability of acupuncture in the treatment of AD. Many advances have been made in the study of the neurobiological mechanisms of acupuncture in the treatment of AD, further demonstrating the good efficacy and unique advantages of acupuncture in the treatment of AD. This review first summarizes the pathogenesis of AD and then illustrates the research progress of acupuncture in the treatment of AD, which includes the effect of acupuncture on the changes of biochemical indicators in AD in vivo and the specific mechanism of action to exert the therapeutic effect. Changes in relevant indicators of AD similarly further validate the effectiveness of acupuncture treatment. The clinical and mechanistic studies of acupuncture in the treatment of AD are intensified to fit the need for social development. It is believed that acupuncture will achieve new achievements in the treatment of AD as research progresses.
Collapse
Affiliation(s)
- Liu Wu
- Department of Tuina, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Zhu
- Department of Galactophore, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Jia H, Chen Y, Wang Y, Jia L, Tian Y, Jiang H. The neuroprotective effect of electro-acupuncture on cognitive recovery for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e32885. [PMID: 36820591 PMCID: PMC9907991 DOI: 10.1097/md.0000000000032885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health and socioeconomic problem that affects all societies. Consciousness disorder is a common complication after TBI while there is still no effective treatment currently. The aim of this study was to investigate the protective effect of electro-acupuncture (EA) on cognitive recovery for patients with mild TBI. METHODS A total of 83 patients with initial Glasgow coma scale score higher than 12 points were assigned into this study. Then patients were randomly divided into 2 groups: EA group and control group (group C). Patients in group EA received EA treatment at Neiguan and Shuigou for 2 weeks. At 0 minute before EA treatment (T1), 0 minute after EA treatment (T2), and 8 weeks after EA treatment (T3), level of neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), hypoxia inducible factor-1α (HIF-1α), and malondialdehyde were tested by enzyme-linked immunosorbent assay. The score of Montreal Cognitive Function Assessment (MoCA) and mini-mental state examination (MMSE) as well as cerebral oxygen saturation (rSO2) were detected at the same time. RESULTS Compared with the baseline at T1, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased in the 2 groups were significantly increased at T2-3 (P < .05). Compared with group C, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased were significantly increased at T2-3 in group EA; the difference were statistically significant (P < .05). CONCLUSIONS EA treatment could improve the cognitive recovery for patients with mild TBI and the potential mechanism may be related to improving cerebral hypoxia and alleviating brain injury.
Collapse
Affiliation(s)
- Haokun Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
- * Correspondence: Haokun Jia, Department of Neurosurgery, Cangzhou Central Hospital, No. 50, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province, 061017, China (e-mail: )
| | - Yonghan Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yi Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Linwei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yaohui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Hao Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| |
Collapse
|
15
|
Chen B, Liu D, Li T, Zheng L, Lan L, Yang N, Huang Y. Research Hotspots and Trends on Acupuncture for Anti-Inflammation: A Bibliometric Analysis from 2011 to 2021. J Pain Res 2023; 16:1197-1217. [PMID: 37056280 PMCID: PMC10089150 DOI: 10.2147/jpr.s398393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Purpose We here explored the research status, research hotspots, and development trend of acupuncture against inflammation from both quantitative and qualitative aspects through bibliometrics. Methods We used CiteSpace and VOSviewer to analyze the literature about acupuncture against inflammation from 2011 to 2021 in the Web of Science Core Collection database by using a visual knowledge map. Results In total, 1479 articles were included, and the number of articles published each year exhibited an upward trend. The largest number of articles were published in China (661), followed by the United States (287) and South Korea (164). The most productive institution is Beijing University of Chinese Medicine (72), while the most influential institution is the Capital Medical University (0.28). Evidence-based Complementary and Alternative Medicine (131) is the journal that published most articles on the topic. Lin Yiwen is the most prolific author, and Borovikova L is the most influential co-cited author. The keywords that have burst in the last 2 years are inflammation and activation. The keywords with the highest frequency of use are electroacupuncture (EA), inflammation, and expression. Conclusion The number of publications on acupuncture for anti-inflammation research is rapidly increasing. China is a productive country, but the influence of centrality is poor. Research institutions are concentrated in universities, and the whole collaborative network needs to be strengthened. The anti-inflammatory mechanism of acupuncture is the main focus of research in this field. Regulation of immune cell balance by acupuncture may be a hot topic in mechanism research. At present, immune cells, vagus nerve, signal pathway, inflammatory corpuscles, cytokines and neurotransmitters are popular research topics. In the future, the basic research of acupuncture for anti-inflammation transformed into clinical practice may be a trend. EA and bee venom acupuncture may be promising research directions for acupuncture treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Bing Chen
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Di Liu
- Traditional Chinese Medicine Orthopedics and Traumatology Department, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Tao Li
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Lijiang Zheng
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ling Lan
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Niu Yang
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yinlan Huang
- Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Yinlan Huang, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, People’s Republic of China, Tel +86 18209506917, Email
| |
Collapse
|
16
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|