1
|
Panahipour L, Micucci C, Gruber R. Inflammatory Response of THP1 and U937 Cells: The RNAseq Approach. Cells 2024; 13:2062. [PMID: 39768153 PMCID: PMC11674919 DOI: 10.3390/cells13242062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
THP1 and U937 are monocytic cell lines that are common bioassays to reflect monocyte and macrophage activities in inflammation research. However, THP-1 is a human monocytic leukemia cell line, and U937 originates from pleural effusion of histiocytic lymphoma; thus, even though they serve as bioassay in inflammation research, their response to agonists is not identical. Consequently, there has yet to be a consensus about the panel of strongly regulated genes in THP1 and U937 cells representing the inflammatory response to LPS and IFNG. Therefore, we have performed an RNAseq of THP1 and U937 exposed to LPS and IFNG to identify the most sensitive genes and the unique properties of each individual cell line. When applying a highly stringent threshold, we could identify 43, 8 up and 94, 103 down-regulated genes in THP1 and U937 cells, respectively. In THP1 cells, among the most strongly up-regulated genes are CCL1, CXCL2, CXCL3, IL1A, IL1B, IL6, and PTGES. In U937 cells, the strongest up-regulated genes include CSF2, CSF3, CXCL2, CXCL5, CXCL6, IL1A, IL19, IL36G, IL6, ITGA1, ITGA2, and PTGS2. Even though THP1 is considerably less responsive than U937, there are genes commonly upregulated by LPS and IFNG, including the CCL1, CCL3, CCL20, CXCL2, CXCL3, CXCL8, as well as IL1A, IL1B, IL23A, IL6, and genes of prostaglandin synthesis PTGES and PTGS2. Downregulated genes are limited to NRGN and CD36. This head-to-head comparison revealed that THP1 is less responsive than U937 cells to LPS and IFNG and identified a panel of highly regulated genes that can be applied in bioassays in inflammation research. Our data further propose bulk RNAseq as a standard method in bioassay research.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.)
| | - Chiara Micucci
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Sawoo R, Bishayi B. TLR4/TNFR1 blockade suppresses STAT1/STAT3 expression and increases SOCS3 expression in modulation of LPS-induced macrophage responses. Immunobiology 2024; 229:152840. [PMID: 39126792 DOI: 10.1016/j.imbio.2024.152840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1β and oxidative stress. It also significantly activates the MAPKs and NF-κB pathway. Excessive production of pro-inflammatory cytokines is one of the primary characteristic features in the onset and progression of inflammation. Cytokines mainly signal through the JAK/STAT pathway. We hypothesize that blocking of TLR4 along with TNFR1 might be beneficial in suppressing the effects of STAT1/STAT3 due to the stimulation of SOCS3 proteins. Prior to the LPS challenge, the macrophages were treated with antibodies against TLR4 and TNFR1 either individually or in combination. On analysis of the macrophage populations by flowcytometry, it was seen that receptor blockade facilitated the phenotypic shift of the M1 macrophages towards M2 resulting in lowered oxidative stress. Blocking of TLR4/TNFR1 upregulated the SOCS3 and mTOR expressions that enabled the transition of inflammatory M1 macrophages towards the anti-inflammatory M2 phenotype, which might be crucial in curbing the inflammatory responses. Also the reduction in the production of inflammatory cytokines such as IL-6, IL-1β due to the reduction in the activation of the STAT1 and STAT3 molecules was observed in our combination treatment group. All these results indicated that neutralization of both TLR4 and TNFR1 might provide new insights in establishing an alternative therapeutic strategy for LPS-sepsis.
Collapse
Affiliation(s)
- Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
3
|
Pan ML, Ahmad Puzi NN, Ooi YY, Ramasamy R, Vidyadaran S. Response Profiles of BV2 Microglia to IFN-γ and LPS Co-Stimulation and Priming. Biomedicines 2023; 11:2648. [PMID: 37893022 PMCID: PMC10604055 DOI: 10.3390/biomedicines11102648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: The latest research illustrates that microglia phenotype is not the binary 'resting' and 'activated' profiles. Instead, there is wide diversity in microglia states. Similarly, when testing different stimulation protocols for BV2 microglia, we discovered differences in the response of the cells in terms of the production of intracellular ROS (iROS), nitric oxide (NO), CD40 expression, and migratory capacity. (2) Methods: BV2 microglia were treated with single interferon gamma (IFN-γ) stimulation, LPS/IFN-γ co-stimulation, and priming with IFN-γ followed by stimulation with LPS for 24 h. The responses of BV2 microglia were then assessed using the H2DCFDA test for iROS, the Griess assay for NO, immunophenotyping for CD40/CD11b/MHC II, and migration using a transwell apparatus. (3) Results: Single stimulation with IFN-γ induced NO but not ROS in BV2 microglia. Co-stimulation with LPS200IFN-γ2.5 induced a higher iROS production (a 9.2-fold increase) and CD40 expression (28031 ± 8810.2 MFI), compared to priming with primedIFN-γ50LPS100 (a 4.0-fold increase in ROS and 16764 ± 1210.8 MFI of CD40). Co-stimulation also induced cell migration. On the other hand, priming BV2 microglia (primedIFN-γ50LPS100) resulted in a higher NO production (64 ± 1.4 µM) compared to LPS200IFN-γ2.5 co-stimulation (44 ± 1.7 µM). Unexpectedly, priming inhibited BV2 migration. (4) Conclusions: Taken together, the findings from this project reveal the ability of co-stimulation and priming in stimulating microglia into an inflammatory phenotype, and the heterogeneity of microglia responses towards different stimulating approaches.
Collapse
Affiliation(s)
- Meng Liy Pan
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
| | - Nur Nabilah Ahmad Puzi
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
- Department of Craniofacial Diagnostics & Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia;
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University Lakeside Campus, 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Sharmili Vidyadaran
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
| |
Collapse
|
4
|
Panahipour L, Botta S, Abbasabadi AO, Afradi Z, Gruber R. Enamel Matrix Derivative Suppresses Chemokine Expression in Oral Epithelial Cells. Int J Mol Sci 2023; 24:13991. [PMID: 37762294 PMCID: PMC10530986 DOI: 10.3390/ijms241813991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Epithelial cells in periodontitis patients increasingly express chemokines, suggesting their active involvement in the inflammatory process. Enamel matrix derivative (EMD) is an extract of porcine fetal tooth germs clinically applied to support the regrowth of periodontal tissues. Periodontal regeneration might benefit from the potential anti-inflammatory activity of EMD for epithelial cells. Our aim was, therefore, to set up a bioassay where chemokine expression is initiated in the HSC2 oral squamous carcinoma cell line and then test EMD for its capacity to lower the inflammatory response. To establish the bioassay, HSC2 cells being exposed to TNFα and LPS from E. coli (Escherichia coli) or P. gingivalis (Porphyromonas gingivalis) were subjected to RNAseq. Here, TNFα but not LPS caused a robust increase of chemokines, including CXCL1, CXCL2, CXCL8, CCL5, and CCL20 in HSC2 cells. Polymerase chain reaction confirmed the increased expression of the respective chemokines in cells exposed to TNFα and IL-1β. Under these conditions, EMD reduced the expression of all chemokines at the transcriptional level and CXCL8 by immunoassay. The TGF-β receptor type I kinase-inhibitor SB431542 reversed the anti-inflammatory activity. Moreover, EMD-activated TGF-β-canonical signaling was visualized by phosphorylation of smad3 and nuclear translocation of smad2/3 in HSC2 cells and blocked by SB431542. This observation was confirmed with primary oral epithelial cells where EMD significantly lowered the SB431542-dependent expression of CXCL8. In summary, our findings suggest that TGF-β signaling mediates the effects of EMD to lower the forced expression of chemokines in oral epithelial cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Sara Botta
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
5
|
Németh Z, Debreczeni ML, Kajdácsi E, Dobó J, Gál P, Cervenak L. Cooperation of Complement MASP-1 with Other Proinflammatory Factors to Enhance the Activation of Endothelial Cells. Int J Mol Sci 2023; 24:ijms24119181. [PMID: 37298134 DOI: 10.3390/ijms24119181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Endothelial cells play an important role in sensing danger signals and regulating inflammation. Several factors are capable of inducing a proinflammatory response (e.g., LPS, histamine, IFNγ, and bradykinin), and these factors act simultaneously during the natural course of the inflammatory reaction. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) also induces a proinflammatory activation of the endothelial cells. Our aim was to investigate the possible cooperation between MASP-1 and other proinflammatory mediators when they are present in low doses. We used HUVECs and measured Ca2+ mobilization, IL-8, E-selectin, VCAM-1 expression, endothelial permeability, and mRNA levels of specific receptors. LPS pretreatment increased the expression of PAR2, a MASP-1 receptor, and furthermore, MASP-1 and LPS enhanced each other's effects in regulating IL-8, E-selectin, Ca2+ mobilization, and changes in permeability in a variety of ways. Cotreatment of MASP-1 and IFNγ increased the IL-8 expression of HUVECs. MASP-1 induced bradykinin and histamine receptor expression, and consequently, increased Ca2+ mobilization was found. Pretreatment with IFNγ enhanced MASP-1-induced Ca2+ mobilization. Our findings highlight that well-known proinflammatory mediators and MASP-1, even at low effective doses, can strongly synergize to enhance the inflammatory response of endothelial cells.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Márta L Debreczeni
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), 1052 Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Hydroxychloroquine Effects on THP-1 Macrophage Cholesterol Handling: Cell Culture Studies Corresponding to the TARGET Cardiovascular Trial. Medicina (B Aires) 2022; 58:medicina58091287. [PMID: 36143964 PMCID: PMC9506397 DOI: 10.3390/medicina58091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Objectives: Cardiovascular (CV) risk is elevated in rheumatoid arthritis (RA). RA patient plasma causes pro-atherogenic derangements in cholesterol transport leading to macrophage foam cell formation (FCF). The TARGET randomized clinical trial compares CV benefits of 2 RA drug regimens. Hydoxychloroquine (HCQ) is a key medication used in TARGET. This study examines effects of HCQ on lipid transport to elucidate mechanisms underlying TARGET outcomes and as an indicator of likely HCQ effects on atherosclerosis in RA. Materials and Methods: THP1 human macrophages were exposed to media alone, IFNγ (atherogenic cytokine), HCQ, or HCQ + IFNγ. Cholesterol efflux protein and scavenger receptor mRNA levels were quantified by qRT-PCR and corresponding protein levels were assessed by Western blot. FCF was evaluated via Oil-Red-O and fluorescent-oxidized LDL. Intracellular cholesterol and efflux were quantified with Amplex Red assay. Results: With the exception of a decrease in the efflux protein cholesterol 27-hydroxylase in the presence IFNγ at all HCQ concentrations, no significant effect on gene or protein expression was observed upon macrophage exposure to HCQ and this was reflected in the lack of change in FCF and oxidized LDL uptake. Conclusions: HCQ did not significantly affect THP1 macrophage cholesterol transport. This is consistent with TARGET, which postulates superior effects of anti-TNF agents over sulfasalazine + HCQ.
Collapse
|
7
|
Protective Effect of Membrane-Free Stem Cells against Lipopolysaccharide and Interferon-Gamma-Stimulated Inflammatory Responses in RAW 264.7 Macrophages. Int J Mol Sci 2021; 22:ijms22136894. [PMID: 34198981 PMCID: PMC8268248 DOI: 10.3390/ijms22136894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Recently, adipose-derived stem cells (ADSCs) are considered to be ideal for application in cell therapy or tissue regeneration, mainly due to their wide availability and easy access. In this study, we examined the anti-inflammatory effects of membrane-free stem cell extract (MFSC-Ex) derived from ADSCs against lipopolysaccharide (LPS)/interferon-gamma (IFN-γ) on RAW 264.7 macrophage cells. Exposure of RAW macrophages to LPS and IFN-γ stimuli induced high levels of nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) production. However, pretreatment with MFSC-Ex inhibited LPS/IFN-γ-induced these pro-inflammatory mediators. To clarify the molecular mechanisms underlying the anti-inflammatory property of MFSC-Ex, we analyzed nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) protein expressions by Western blotting. Our study showed that treatment of MFSC-Ex significantly down-regulated inducible nitric oxide synthase (iNOS) and COX-2 protein expressions. Furthermore, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 was also blocked by treatment with MFSC-Ex, indicating that inhibitory effect of MFSC-Ex on MAPK signaling cascade may attribute to inactivation of NF-κB. From these findings, we suggest that MFSC-Ex exert anti-inflammatory activities, which suppressed LPS/IFN-γ-induced production of NO, COX-2 and PGE2 by regulation of NF-κB and MAPK signaling pathway in RAW 264.7 macrophages. In conclusion, MFSC-Ex might provide a new therapeutic opportunity to treatment of inflammatory-related diseases.
Collapse
|
8
|
Yambe N, Tamai R, Mashima I, Kiyoura Y. Etidronate down-regulates Toll-like receptor 2 ligand-induced chemokine production by inhibiting MyD88 expression and NF-κB activation. Immunopharmacol Immunotoxicol 2020; 43:51-57. [PMID: 33251898 DOI: 10.1080/08923973.2020.1850761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Pretreatment of J774.1 cells with etidronate, a non-nitrogen-containing bisphosphonate (non-NBP) used as an antibone resorptive drug, was previously reported to inhibit Toll-like receptor (TLR) 2 agonist-induced proinflammatory cytokine production. The present study aimed to examine the effects of etidronate on chemokine production by human monocytic U937 cells incubated with Pam3Cys-Ser-(Lys)4 (Pam3CSK4, a TLR2 ligand) and lipid A (a TLR4 ligand). METHODS U937 cells were pretreated with or without etidronate, and then incubated with or without Pam3CSK4 or lipid A. Levels of secreted human interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) in culture supernatants and activation of nuclear factor-κB (NF-κB) p65 were measured by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) activity in supernatants. Expression of intracellular adhesion molecule (ICAM)-1 and MyD88 was analyzed by flow cytometry and Western blot analysis, respectively. RESULTS Etidronate down-regulated IL-8 and MCP-1 production and NF-κB p65 activation induced by Pam3CSK4, but not lipid A, in U937 cells. Etidronate also inhibited MyD88 expression in U937 cells incubated with Pam3CSK4. CONCLUSION Etidronate down-regulates IL-8 and MCP-1 production in U937 cells by inhibiting both the expression of MyD88 and activation of NF-κB p65 in the TLR2, but not TLR4, pathway.
Collapse
Affiliation(s)
- Naohito Yambe
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| | - Izumi Mashima
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Japan
| |
Collapse
|
9
|
Schulz D, Schlieckau F, Fill Malfertheiner S, Reuschel E, Seelbach-Göbel B, Ernst W. Effect of betamethasone, indomethacin and fenoterol on neonatal and maternal mononuclear cells stimulated with Escherichia coli. Cytokine 2019; 116:97-105. [PMID: 30703694 DOI: 10.1016/j.cyto.2018.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Despite considerable progress in the field of perinatal care, infectious diseases, especially when caused by gram negative bacteria, remain a major reason for neonatal morbidity and mortality. Notably infants born prematurely and those with very low birth weight are at risk due to their immature and deficient immune system and their prolonged hospitalization which promotes nosocomial infections. In case of impending preterm birth, betamethasone is given to induce lung maturation and tocolytic agents like indomethacin or fenoterol are administered to suppress premature labor. The aim of this study was to analyze the effects of these drugs on the immune system of mothers and neonates. Therefore, mononuclear cells from cord blood and peripheral maternal blood were stimulated with Escherichia coli and incubated with betamethasone, indomethacin and fenoterol. Subsequently the effect of the treatment on cytokine production was determined. Betamethasone alone and in combination with tocolytic agents inhibited the production of pro- and anti-inflammatory cytokines. Not only does betamethasone dampen the immune response by reducing the production of cytokines, it also has a variety of other detrimental short- and long-term effects on the neonate. In conclusion we would recommend using biological markers to determine if premature labor actually leads to preterm birth and subsequently administer betamethasone only to mothers giving birth prematurely.
Collapse
Affiliation(s)
- Daniela Schulz
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany; Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Florian Schlieckau
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany; Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Sara Fill Malfertheiner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Edith Reuschel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Birgit Seelbach-Göbel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Wolfgang Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
10
|
Suzuki T, Sakata K, Mizuno N, Palikhe S, Yamashita S, Hattori K, Matsuda N, Hattori Y. Different involvement of the MAPK family in inflammatory regulation in human pulmonary microvascular endothelial cells stimulated with LPS and IFN-γ. Immunobiology 2018; 223:777-785. [PMID: 30115376 DOI: 10.1016/j.imbio.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022]
Abstract
Pulmonary endothelial injury is central in the pathogenesis of acute lung injury (ALI). The MAPK signaling cascades are generally thought to be involved in the molecular mechanism underlying the ALI development, but their roles in pulmonary endothelial injury is poorly understood. We thus examined the involvement of the MAPK family member in inflammatory responses of human pulmonary microvascular endothelial cells (HPMVECs) stimulated with LPS and IFN-γ. HPMVECs were found to exhibit the upregulation of expression of Toll-like receptor 4 by IFN-γ, resulting in potentiation of inflammatory cytokine release by LPS stimulation. All MAPKs, ERK1/2, JNK, and p38, were activated by simultaneous stimulation with LPS/IFN-γ. JNK activation in cells stimulated with LPS/IFN-γ was significantly potentiated by the two different p38 inhibitors, SB203580 and RWJ67657, suggesting the negative regulation of JNK activation by p38 in HPMVECs. The mRNA and protein expression levels of ICAM-1 were eliminated by the JNK inhibitor, suggesting that ICAM-1 expression is positively regulated by JNK. The p38 inhibitor significantly enhanced ICAM-1 expression. ERK1/2 activation was not responsible for the LPS/IFN-γ-induced ICAM-1 upregulation in HPMVECs. THP-1 monocyte adhesion to HPMVECs under LPS/IFN-γ stimulation was inhibited by the JNK inhibitor and enhanced by the p38 inhibitor. We conclude that, in HPMVECs stimulated with LPS/IFN-γ, JNK mediates ICAM-1 expression that can facilitate leukocyte adherence and transmigration, while p38 MAPK negatively regulates the upregulation of ICAM-1 through inhibition of JNK activation.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kimimasa Sakata
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Natsumi Mizuno
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Kämpfer AAM, Urbán P, Gioria S, Kanase N, Stone V, Kinsner-Ovaskainen A. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol In Vitro 2017; 45:31-43. [PMID: 28807632 PMCID: PMC5744654 DOI: 10.1016/j.tiv.2017.08.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022]
Abstract
The intestine forms the largest interface between the environment and the human organism. Its integrity and functioning are crucial for the uptake of nutrients while preventing access of harmful antigens. Inflammatory conditions can significantly change the normal functioning of the intestine. In vitro models that adequately reproduce both healthy and inflamed intestinal tissue could provide a useful tool for studying the mechanisms of intestinal inflammation and investigating new therapeutic drugs. We established a co-culture of Caco-2 and PMA-differentiated THP-1 cells that mimics the intestine in healthy and controlled inflamed states. In homoeostatic conditions without stimulation, Caco-2 and THP-1 cells were co-cultured for 48 h without affecting the barrier integrity and with no increase in the release of cytokines, nitric oxide or lactate dehydrogenase. To simulate the inflamed intestine, the Caco-2 barrier was primed with IFN-γ and THP-1 cells were pre-stimulated with LPS and IFN-γ. In these conditions a significant but temporary reduction in barrier integrity was measured, and large concentrations of pro-inflammatory cytokines and cytotoxicity markers detected. With its ability to feature numerous hallmarks of intestinal inflammation the presented co-culture model of epithelial cells and macrophages offers a unique possibility to study exposure effects in relation to the health status of the intestine. A novel, tunable co-culture model of Caco-2 and THP-1 cells was established. The THP-1 differentiation protocol is crucial for a stable co-culture with Caco-2. Synergistic effects of TNF-α and IFN-γ were key to induce inflammation in vitro. The inflamed co-culture shows barrier disruption, cytokine release and cytotoxicity. Downregulation of inflammation is prevented by pretreatment of cells with cytokines.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Sabrina Gioria
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
12
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Olafsdottir A, Thorlacius GE, Omarsdottir S, Olafsdottir ES, Vikingsson A, Freysdottir J, Hardardottir I. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1451-1457. [PMID: 24877713 DOI: 10.1016/j.phymed.2014.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/12/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Astridur Olafsdottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | - Gudny Ella Thorlacius
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | | | | | - Arnor Vikingsson
- Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland
| | - Jona Freysdottir
- Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | - Ingibjorg Hardardottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland.
| |
Collapse
|
14
|
Moscovis S, Hall S, Burns C, Scott R, Blackwell C. Development of an experimental model for assessing the effects of cigarette smoke and virus infections on inflammatory responses to bacterial antigens. Innate Immun 2014; 20:647-58. [PMID: 24137042 DOI: 10.1177/1753425913503893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2023] Open
Abstract
Interactions among major risk factors associated with bacterial infections were assessed in a model system using surrogates for virus infection; IFN-g, and exposure to cigarette smoke; cigarette smoke extract (CSE), nicotine and cotinine. Cytokine responses elicited by LPS from THP-1 cells in the presence of these components, or combinations of components, were assessed by multiplex bead assay, i.e. IL-1β, IL-6, IL-8, IL-10, TNF-α and IFN-γ. IFN-γ-priming significantly increased pro-inflammatory cytokines induced by LPS. CSE suppressed production of pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ, but enhanced production of IL-8. Nicotine and cotinine suppressed all cytokine responses. In combination, IFN-γ masked the inhibitory effects of CSE. In relation to the objectives of the study, we concluded that (a) IFN-γ at biologically relevant concentrations significantly enhanced pro-inflammatory responses; (b) CSE, nicotine and cotinine dysregulated the inflammatory response and that the effects of CSE were different from those of the individual components, nicotine and cotinine; (c) when both IFN-γ and CSE were present, IFN-γ masked the effect of CSE. There is a need for clinical investigations on the increase in IL-8 responses in relation to exposure to cigarette smoke and increased pro-inflammatory responses in relation to recent viral infection.
Collapse
Affiliation(s)
- Sophia Moscovis
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia
| | - Sharron Hall
- Hunter Medical Research Institute, Newcastle, Australia Hunter Area Pathology Service Immunology, New Lambton, Australia
| | - Christine Burns
- Hunter Medical Research Institute, Newcastle, Australia Hunter Area Pathology Service Immunology, New Lambton, Australia
| | - Rodney Scott
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia Human Genetics, John Hunter Hospital, New Lambton, Australia
| | - Caroline Blackwell
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
15
|
The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via Stat1 inhibition and Stat3 activation. Cell Mol Immunol 2014; 12:326-41. [PMID: 25027966 DOI: 10.1038/cmi.2014.50] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022] Open
Abstract
Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF-trophoblast-IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines.
Collapse
|
16
|
Prach M, Stone V, Proudfoot L. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicol Appl Pharmacol 2013; 266:19-26. [DOI: 10.1016/j.taap.2012.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/19/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023]
|
17
|
Hodgson PD, Aich P, Stookey J, Popowych Y, Potter A, Babiuk L, Griebel PJ. Stress significantly increases mortality following a secondary bacterial respiratory infection. Vet Res 2012; 43:21. [PMID: 22435642 PMCID: PMC3348069 DOI: 10.1186/1297-9716-43-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 03/21/2012] [Indexed: 11/26/2022] Open
Abstract
A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection.
Collapse
Affiliation(s)
- Paul D Hodgson
- Vaccine & Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vinokurov MG, Astashkin EI, Yurinskaya MM, Glezer MG, Sobolev KE, Grachev SV. Trimetazidine blocks store-operated Ca(2+) channels in HL-60 and THP-1 cell lines and inhibits the secretion of tumor necrosis factor. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 441:417-20. [PMID: 22227695 DOI: 10.1134/s0012496611060147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 11/22/2022]
Affiliation(s)
- M G Vinokurov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Su D, Le-Thi-Phuong T, Coutelier JP. Modulation of lipopolysaccharide receptor expression by lactate dehydrogenase-elevating virus. J Gen Virol 2012; 93:106-112. [DOI: 10.1099/vir.0.037218-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactate dehydrogenase-elevating virus (LDV) exacerbates mouse susceptibility to endotoxin shock through enhanced tumour necrosis factor (TNF) production by macrophages exposed to lipopolysaccharide (LPS). However, the in vivo enhancement of TNF production in response to LPS induced by the virus largely exceeds that found in vitro with cells derived from infected animals. Infection was followed by a moderate increase of Toll-like receptor (TLR)-4/MD2, but not of membrane CD14 expression on peritoneal macrophages. Peritoneal macrophages from LDV-infected mice unresponsive to type I interferons (IFNs) did not show enhanced expression of TLR-4/MD2 nor of CD14, and did not produce more TNF in response to LPS than cells from infected normal counterparts, although the in vivo response of these animals to LPS was strongly enhanced. In contrast, the virus triggered a sharp increase of soluble CD14 and of LPS-binding protein serum levels in normal mice. However, production of these LPS soluble receptors was similar in LDV-infected type I IFN-receptor deficient mice and in their normal counterparts. Moreover, serum of LDV-infected mice that contained these soluble receptors had little effect if any on cell response to LPS. These results suggest that enhanced response of LDV-infected mice to LPS results mostly from mechanisms independent of LPS receptor expression.
Collapse
Affiliation(s)
- Dan Su
- The Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Thao Le-Thi-Phuong
- The Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Jean-Paul Coutelier
- The Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| |
Collapse
|
20
|
Gadeock S, Tran JNSN, Georgiou JG, Jalilian I, Taylor RM, Wiley JS, Sluyter R. TGF-β1 prevents up-regulation of the P2X7 receptor by IFN-γ and LPS in leukemic THP-1 monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2058-66. [PMID: 20670615 DOI: 10.1016/j.bbamem.2010.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium(+) uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium(+) uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium(+) uptake in a concentration-dependent fashion with a maximum effect at 5ng/ml and with an IC(50) of ~0.4ng/ml. Moreover, ATP-induced YO-PRO-1(2+) uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.
Collapse
Affiliation(s)
- Safina Gadeock
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Miao HL, Qiu ZD, Hao FL, Bi YH, Li MY, Chen M, Chen NP, Zhou F. Significance of MD-2 and MD-2B expression in rat liver during acute cholangitis. World J Hepatol 2010; 2:233-8. [PMID: 21161002 PMCID: PMC2999288 DOI: 10.4254/wjh.v2.i6.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of myeloid differentiation protein-2 (MD-2), MD-2B (a splicing isoform of MD-2 that can block Toll-like receptor 4 (TLR4)/MD-2 LPS-mediated signal transduction) and TLR4 in the liver of acute cholangitis rats. METHODS Male Sprague-Dawley rats (SPF level) were randomly divided into four groups: (A) sham-operated group; (B) simple common bile duct ligation group; (C) acute cholangitis group; and (D) acute cholangitis anti-TLR4 intervention group (n = 25 per group). Rat liver tissue samples were used to detect TLR4, MD-2 and MD-2B mRNA expression by fluorescence quantitative PCR in parallel with pathological changes. RESULTS In acute cholangitis, liver TLR4 and MD-2 mRNA expression levels at 6, 12, 24, 48 and 72 h were gradually up-regulated but MD-2B mRNA expression gradually down-regulated (P < 0.05). After TLR4 antibody treatment, TLR4 and MD-2 mRNA expression were lower compared with the acute cholangitis group (P < 0.05). However, MD-2B mRNA expression was higher than in the acute cholangitis group (P < 0.05). MD-2 and TLR4 mRNA expressions were positively correlated (r = 0.94981, P < 0.05) and MD-2B mRNA expression was negatively correlated with MD-2 and TLR4 mRNA (r = -0.89031, -0.88997, P < 0.05). CONCLUSION In acute cholangitis, MD-2 plays an important role in the process of TLR4- mediated inflammatory response to liver injury while MD-2B plays a negative regulatory role.
Collapse
Affiliation(s)
- Hui-Lai Miao
- Hui-Lai Miao, Zhi-Dong Qiu, Ming-Yi Li, Ming Chen, Nian-Ping Chen, Department of Hepatobiliary Surgery, the Affiliated Hospital of Guangdong Medical College, Zhanjing 524001, Guangdong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang L, Chen WZ, Wu MP. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index. Cytokine 2009; 49:194-200. [PMID: 19819722 DOI: 10.1016/j.cyto.2009.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/10/2009] [Accepted: 08/25/2009] [Indexed: 12/01/2022]
Abstract
The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
23
|
Chiang HI, Berghman LR, Zhou H. Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonellaenteritidis. Genet Mol Biol 2009; 32:507-15. [PMID: 21637513 PMCID: PMC3036038 DOI: 10.1590/s1415-47572009000300013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 04/23/2009] [Indexed: 11/22/2022] Open
Abstract
The NF-kB pathway plays an important role in regulating the immunity response in animals. In this study, small interfering RNAs (siRNA) were used to specifically inhibit NF-kB 1 expression and to elucidate the role of NF-kB in the signal transduction pathway of the Salmonella challenge in the chicken HD11 cell line. The cells were transfected with either NF-kB 1 siRNA, glyceraldehyde 3-phosphate dehydrogenase siRNA (positive control) or the negative control siRNA for 24 h, followed by Salmonella enteritidis (SE) challenge or non-challenge for 1 h and 4 h. Eight candidate genes related to the signal pathway of SE challenge were selected to examine the effect of NF-kB 1 inhibition on their expressions by mRNA quantification. The results showed that, with a 36% inhibition of NF-kB 1 expression, gene expression of both Toll-like receptor (TLR) 4 and interleukin (IL)-6 was consistently and significantly increased at both 1 h and 4 h following SE challenge, whereas the gene expression of MyD88 and IL-1β was increased at 1 h and 4 h, respectively. These findings suggest a likely inhibitory regulation by NF-kB 1, and could lay the foundation for studying the gene network of the innate immune response of SE infection in chickens.
Collapse
Affiliation(s)
- Hsin-I Chiang
- Department of Poultry Science, Texas AM University, College Station, TX USA
| | | | | |
Collapse
|
24
|
Crozat K, Vivier E, Dalod M. Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol Rev 2009; 227:129-49. [PMID: 19120481 DOI: 10.1111/j.1600-065x.2008.00736.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Because it reaches full functional efficacy rapidly upon encounter with a pathogen, the innate immune system is considered as the first line of defense against infections. The sensing of microbes or of transformed or infected cells, through innate immune recognition receptors (referred to as activating I2R2), initiates pro-inflammatory responses and innate immune effector functions. Other I2R2 with inhibitory properties bind self-ligands constitutively expressed in host. However, this dichotomy in the recognition of foreign or induced self versus constitutive self by I2R2 is not always respected in certain non-infectious conditions reminiscent of immunopathologies. In this review, we discuss that immune mechanisms have evolved to avoid inappropriate inflammatory disorders in individuals. Molecular crossregulation exists between components of I2R2 signaling pathways, and intricate interactions between cells from both innate and adaptive immune systems set the bases of controlled immune responses. We also pinpoint that, like T or B cells, some cells of the innate immune system must go through education processes to prevent autoreactivity. In addition, we illustrate how gene expression profiling of immune cell types is a useful tool to find functional homologies between cell subsets of different species and to speculate about unidentified functions of these cells in the responses to pathogen infections.
Collapse
Affiliation(s)
- Karine Crozat
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
25
|
Beurel E, Jope RS. Glycogen synthase kinase-3 promotes the synergistic action of interferon-gamma on lipopolysaccharide-induced IL-6 production in RAW264.7 cells. Cell Signal 2009; 21:978-85. [PMID: 19258035 PMCID: PMC2664530 DOI: 10.1016/j.cellsig.2009.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/16/2009] [Indexed: 11/25/2022]
Abstract
Macrophages are the major effector cells of the innate immune system. Their function requires the integration of signals from pathogens, such as those induced by lipopolysaccharide (LPS), and from the host, such as those induced by interferon-gamma (IFN-gamma). The priming by IFN-gamma of Toll-like receptor-induced macrophage activation has long been recognized, but the mechanisms underlying this priming action remain unclear. We report in this study that the priming of macrophage-derived RAW264.7 cells by IFN-gamma is highly dependent on glycogen synthase kinase-3 (GSK3). Cooperative interactions of GSK3 and signal transducer and activator of transcription-3 (STAT3) were revealed by the findings that GSK3 inhibitors, or knockdown of the GSK3 beta isoform, strongly reduced the activation of STAT3, but not STAT1, induced by IFN-gamma without affecting upstream signaling events, and GSK3 was associated with STAT3. Direct inhibition of STAT3 activation abolished the synergistic action of IL-6 production by IFN-gamma administered with LPS. Similarly, inhibition of GSK3 abolished the synergistic stimulation of IFN-gamma on IL-6 production, and GSK3 was recruited to the IFN-gamma receptor by co-treatment with IFN-gamma and LPS. These results demonstrate the dependency of macrophage priming by IFN-gamma on STAT3 and GSK3, providing novel targets for intervention.
Collapse
Affiliation(s)
- Eléonore Beurel
- Departments of Cell Biology, Pharmacology and Psychiatry and Behavioral Neurobiology Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Richard S. Jope
- Departments of Cell Biology, Pharmacology and Psychiatry and Behavioral Neurobiology Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| |
Collapse
|
26
|
Rockwell CE, Morrison DC, Qureshi N. Lipid A-mediated tolerance and cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 667:81-99. [PMID: 20665202 DOI: 10.1007/978-1-4419-1603-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The term "tolerance" from an immunological perspective, broadly encompasses a number of phenomena, but generally refers to a diminished responsiveness to LPS and/or other microbial products. With the discovery that many of the immunological, physiological and/or pathophysiological effects of LPS can be attributed to the lipid A moiety of the LPS molecule, a number of different lipid A analogs were synthesized with the goal of developing a drug that could be used clinically to treat cancer. In many instances, the development of tolerance to the lipid A congeners confounded the utility of these analogs as cancer therapeutics. In certain circumstances, however, the development of tolerance in patients has been utilized therapeutically to protect immunosuppressed patients from sepsis. Although numerous studies have been designed to investigate the development of tolerance, the underlying molecular mechanism remains unclear. This may be due, in part, to differences in the experimental models used, the sources and types of microbes and microbial products studied, kinetics of responses, and/or other experimental conditions. Nonetheless, a number of different signaling pathways have been identified as potentially modulating and/or triggering the development of tolerance. Though complex and incompletely understood, the capacity of tolerance to impact lipid A-based therapeutics, either positively or negatively, is inarguable, thus underscoring the necessity for further investigation toward elucidating the mechanisms contributing to the development of tolerance to lipid A and its analogs.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Basic Medical Science, School of Medicine, Shock/Trauma Research Center, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
27
|
Dueñas AI, Aceves M, Fernández-Pisonero I, Gómez C, Orduña A, Crespo MS, García-Rodríguez C. Selective attenuation of Toll-like receptor 2 signalling may explain the atheroprotective effect of sphingosine 1-phosphate. Cardiovasc Res 2008; 79:537-44. [PMID: 18411230 DOI: 10.1093/cvr/cvn087] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Vascular inflammation is a major atherogenic factor and Toll-like receptor (TLR) 2 ligands, including bacterial and serum lipoproteins, seem to be involved in atherogenesis. On this basis, we analysed the effect of lipoproteins and different lipid components on TLR2-dependent signalling. METHODS AND RESULTS In TLR2-transfected human embryonic kidney 293 cells and human monocytes, oxidized low-density lipoproteins inhibited nuclear factor (NF)-kappaB-driven transcriptional activity and chemokine gene expression in response to TLR2 ligands. Sphingosine 1-phosphate (S1P) and oxidized palmitoyl-arachidonoyl-phosphatidylcholine, but not lipoprotein-carried lysophospholipids, inhibited TLR2 activation. Silencing experiments in TLR2-transfected 293 cells showed that the S1P-mediated attenuation effect is mediated by S1P receptors type 1 and type 2. To address the physiological significance of these findings, additional experiments were performed in human peripheral blood monocytes and monocyte-derived macrophages. In both cell types, S1P selectively attenuated TLR2 signalling, as NF-kappaB and extracellular signal-regulated kinase activation, but not c-Jun amino terminal kinase phosphorylation, were inhibited by physiologically relevant concentrations of S1P. Moreover, the attenuation of TLR2 signalling was partially reverted by pharmacological inhibition of phosphoinositide 3-kinase (PI3K) and Ras pathways. In addition, S1P inhibited the chemokine gene expression elicited by TLR2, but not by TLR4 ligands. CONCLUSION These findings disclose a cross-talk mechanism between lipoprotein components and TLR in which engagement of S1P receptors exert selective attenuation of TLR2-dependent activation via PI3K and Ras signalling. A corollary to these data is that the negative cross-talk of S1P receptors and TLR2 signalling might be involved in the atheroprotective effects of S1P.
Collapse
Affiliation(s)
- Ana I Dueñas
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, C/Sanz y Forés s/n, 47003-Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Pearl-Yafe M, Fabian I, Halperin D, Flatau E, Werber S, Shalit I. Interferon-gamma and bacterial lipopolysaccharide act synergistically on human neutrophils enhancing interleukin-8, interleukin-1beta, tumor necrosis factor-alpha, and interleukin-12 p70 secretion and phagocytosis via upregulation of toll-like receptor 4. Shock 2007; 27:226-31. [PMID: 17304101 DOI: 10.1097/01.shk.0000239765.80033.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In human neutrophils, interferon (IFN)-gamma enhanced the expression of toll-like receptor 4 (TLR4), a crucial component of the signaling receptor complex for bacterial lipopolysaccharide (LPS). Lipopolysaccharide alone did not affect TLR4 expression, but costimulation with IFN-gamma and LPS induced higher levels of TLR4 expression than stimulation with IFN-gamma alone. Using the protein synthesis inhibitor cycloheximide and measuring the expression of CD35 in neutrophils stimulated with IFN-gamma and LPS alone or in combination, we could demonstrate that IFN-gamma enhances TLR4 by de novo protein synthesis, whereas the addition of LPS acts synergistically by enhancing vesicular mobilization to the cell surface. Costimulation with IFN-gamma and LPS induced neutrophil activation and enhanced secretion of the cytokines, interleukin (IL)-8, IL-1beta, tumor necrosis factor-alpha, and IL-12 p70, and phagocytosis of latex beads, processes that were blocked by a monoclonal antibody specific for TLR4. These data suggest that IFN-gamma primes neutrophils to respond to LPS.
Collapse
Affiliation(s)
- Michal Pearl-Yafe
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Schroder K, Sweet MJ, Hume DA. Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology 2006; 211:511-24. [PMID: 16920490 DOI: 10.1016/j.imbio.2006.05.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/23/2006] [Indexed: 11/23/2022]
Abstract
Macrophages are major effector cells of the innate immune system, and appropriate regulation of macrophage function requires the integration of multiple signalling inputs derived from the recognition of host factors (e.g. interferon-gamma/IFNgamma) and pathogen products (e.g. toll-like receptor/TLR agonists). The profound effects of IFNgamma pre-treatment ("priming") on TLR-induced macrophage activation have long been recognised, but many of the mechanisms underlying the priming phenotype have only recently been identified. This review summarises the known mechanisms of integration between the IFNgamma and TLR signalling pathways. Synergy occurs at multiple levels, ranging from signal recognition to convergence of signals at the promoters of target genes. In particular, the cross-talk between the IFNgamma, and LPS and CpG DNA signalling pathways is discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, QLD Bioscience Precinct, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
30
|
El-Obeid A, Hassib A, Pontén F, Westermark B. Effect of herbal melanin on IL-8: a possible role of Toll-like receptor 4 (TLR4). Biochem Biophys Res Commun 2006; 344:1200-6. [PMID: 16650380 DOI: 10.1016/j.bbrc.2006.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 11/25/2022]
Abstract
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.
Collapse
Affiliation(s)
- Adila El-Obeid
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
31
|
Dueñas AI, Aceves M, Orduña A, Díaz R, Sánchez Crespo M, García-Rodríguez C. Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS. Int Immunol 2006; 18:785-95. [PMID: 16574669 DOI: 10.1093/intimm/dxl015] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a virulent Gram-negative intracellular pathogen. To address the signaling routes involved in the response of host cells to LPS from F. tularensis live vaccine strain (LVS), experiments were performed in transiently transfected 293 cells. Induction of kappaB-driven transcriptional activity by 2.5 mug ml(-1) F. tularensis LPS isolated by phenol-water and ether-water extraction, was observed in cells transfected with Toll-like receptor (TLR) 4 and MD-2, although CD14 was required for optimal induction. Conversely, TLR2, TLR2/TLR1 or TLR2/TLR6 transfected cells did not show kappaB-driven transcriptional activity in the presence of F. tularensis LPS. In human monocytic cells, F. tularensis LPS activated extracellular signal-regulated kinases and the production of pro-inflammatory proteins. Concentrations of 5-10 mug ml(-1) F. tularensis LPS elicited a similar pattern of mRNA and protein induction than 0.1 mug ml(-1) E. coli LPS, including the expression of CXC chemokines (IL-8, Gro and IFN-gamma-inducible protein-10); CC chemokines (monocyte chemoattractant protein-1 and -2, macrophage-derived chemoattractant, macrophage inflammatory protein-1alpha and -1beta and RANTES (regulated upon activation, normal T cell expressed and secreted) and pro-inflammatory cytokines (IL-6 and tumor necrosis factor alpha). Altogether, these data indicate that LPS from F. tularensis LVS signals via TLR4 at higher concentrations than those required for E. coli LPS, which may explain the inflammatory reaction and the low endotoxic response associated to vaccination with LVS in humans.
Collapse
Affiliation(s)
- Ana I Dueñas
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Acne vulgaris is a common cutaneous disorder of the pilosebaceous follicle, affecting more than 45 million people in the United States alone. The pathogenesis of acne is multifactorial, involving abnormal hyperkeratinization, increased sebum production, hormones, cutaneous microbes, and immunological mechanisms. Many of the immunological processes that contribute to the formation of acne lesions take place at the very site of disease, the skin. Skin is an important component of the innate immune system, providing both physical barriers and rapid cellular responses by keratinocytes, Langerhans cells, and other infiltrating inflammatory cells. In this review, we discuss the ability of the innate immune system to use Toll-like receptors (TLRs) to recognize microbial patterns and initiate immune responses in cutaneous disorders. Because TLRs are vital players in infectious and inflammatory diseases, they are potential therapeutic targets. Indeed, the ability of TLRs to combat disease already has been harnessed through the development of drugs that act as TLR agonists. A better understanding of TLRs will allow for the development of new therapeutic options for cutaneous inflammatory diseases such as acne.
Collapse
Affiliation(s)
- Jamie E McInturff
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 90095, USA
| | | |
Collapse
|
33
|
Methe H, Kim JO, Kofler S, Weis M, Nabauer M, Koglin J. Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation 2005; 111:2654-61. [PMID: 15883205 DOI: 10.1161/circulationaha.104.498865] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease in which monocytes and macrophages have been suggested to play an essential role. The underlying signaling mechanisms are unknown thus far. We hypothesized that the human isoform of Toll-like receptor (hTLR)-4 is involved in monocyte activation of patients with accelerated forms of atherosclerosis. METHODS AND RESULTS Expression of hTLR4 on circulating monocytes from 30 controls, 20 patients with stable angina (SA), 40 patients with unstable angina (UA), and 28 patients with acute myocardial infarction (AMI) was compared with the use of flow-cytometry and reverse transcription-polymerase chain reaction. Regulation of interleukin (IL)-12 and B7-1 as downstream events of TLR4 activation was analyzed after lipopolysaccharide stimulation of monocytes. TLR4-transfected Chinese hamster ovary (CHO) cells were used to identify potential hTLR4 ligands in the serum of patients with UA or AMI. Circulating hTLR4+/CD14+ monocytes were approximately 2.5-fold increased above controls and patients with SA in the UA and AMI groups (P<0.0001). This was paralleled by enhanced transcript levels of TLR4 and Myd88 in patients with UA and AMI (P<0.0001) and increased expression of IL-12 (UA 35.5+/-7.8, AMI 31.8+/-7.7 versus SA 2.2+/-0.5, controls 2.1+/-0.3 pg/mL; P<0.0002) and B7-1 (UA 27.3+/-14.4, AMI 22.6+/-11.1 versus SA 3.4+/-2.5, controls 2.4+/-2.3%; P<0.0001). Compared with serum from patients with UA and AMI, challenging TLR4-transfected CHO cells with serum from SA patients yielded only a weak response (P<0.0001). Coincubation with anti-heat shock protein 60 inhibited CHO cell activation. CONCLUSIONS UA and AMI are associated with enhanced expression and signaling events downstream of hTLR4 in circulating monocytes. These observations suggest hTLR4 activation as a signaling mechanism in immune-mediated progression of atherosclerosis.
Collapse
Affiliation(s)
- Heiko Methe
- Department of Cardiology, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang DJ, Jiang JX, Chen YH, Zhu PF. Expression of lipopolysaccharide-associated receptors in different human intestinal epithelial cells. Shijie Huaren Xiaohua Zazhi 2004; 12:2099-2102. [DOI: 10.11569/wcjd.v12.i9.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of lipopolysaccharide (LPS)-associated receptors-CD14, Toll-like receptor 4 (TLR4) and MD-2 in human intestinal epithelial cells (IECs) and to discuss the molecular mechanism by which IECs tolerated to LPS.
METHODS: The expression of CD14, TLR4 and MD-2 mRNA of human normal intestinal epithelial cells (HNIEC) and human intestinal epithelial cell line (HIC) was detected by RNase protection assay (RPA). The expression of CD14, TLR4 and MD-2 proteins on normal human small intestinal and colonic epithelial cells was detected by immunohis-tochemistry, and THP1 cells were used as positive control.
RESULTS: HNIEC expressed very low CD14, TLR4 and MD-2 mRNA and HICs did not express them. Neither normal human small intestinal nor colonic epithelial cells expressed TLR4, CD14 and MD2 proteins.
CONCLUSION: Low or loss of expression of TLR4, CD14 and MD-2 on IECs may be an important molecular mechanism by which IECs tolerate to lipopolysaccharide, and this will be helpful to understand the pathogenesis of inflammatory bowel disease.
Collapse
|
35
|
Vitiello M, D'Isanto M, Galdiero M, Raieta K, Tortora A, Rotondo P, Peluso L, Galdiero M. Interleukin-8 production by THP-1 cells stimulated by Salmonella enterica serovar Typhimurium porins is mediated by AP-1, NF-κB and MAPK pathways. Cytokine 2004; 27:15-24. [PMID: 15207247 DOI: 10.1016/j.cyto.2004.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 02/16/2004] [Accepted: 03/16/2004] [Indexed: 11/30/2022]
Abstract
Interleukin-8 (IL-8) is released in response to inflammatory stimuli, such as bacterial products. Either porins or lipopolysaccharide (LPS) stimulated THP-1 cells to release IL-8 after 24 h. We have previously reported that stimulation of monocytic cells with Salmonella enterica serovar Typhimurium porins led to the activation of mitogen-activated protein kinase cascades and of protein tyrosine kinases (PTKs). In this report, we demonstrate, using two potent and selective inhibitors of MEK activation by Raf-1 (PD-098059) and p38 (SB-203580), that both ERK1/2 and p38 pathways play a key role in the production of IL-8 by porins and LPS. Porin-stimulated expression of activating protein 1 (AP-1) and correlated IL-8 release is also inhibited by PD-098059 or SB-203580 indicating that the Raf-1/MEK1-MEK2/MAPK cascade is required for their activation. Also PTKs modulate the pathway that control IL-8 gene expression, in fact its expression is abolished by tyrphostin. By using N-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) an inhibitor of nuclear factor-kappaB (NF-kappaB) activity, we also observed IL-8 release modulation. Our results elucidate some of the molecular mechanisms by which AP-1 and NF-kappaB regulate IL-8 release and open new strategies for the design of specific molecules that will modulate IL-8 effects in various infectious diseases.
Collapse
Affiliation(s)
- M Vitiello
- Dipartimento di Patologia Generale, Facoltà di Medicina e Chirurgia, Seconda Università di Napoli, 80138 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mukhopadhyay S, Peiser L, Gordon S. Activation of murine macrophages byNeisseria meningitidisand IFN-γ in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. J Leukoc Biol 2004; 76:577-84. [PMID: 15218052 DOI: 10.1189/jlb.0104014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Innate and adaptive immune activation of macrophages (Mphi) by microorganisms and antigen-activated lymphoid cells, respectively, plays an important role in host defense and immunopathology. Antigen-presenting cells express a range of pattern recognition receptors including the class A types I and II scavenger receptors (SR-A) and Toll-like receptors (TLR). Recognition of microbial products by SR-A and TLR controls uptake, killing, altered gene expression, and the adaptive immune response; however, the contribution of each receptor and interplay with cytokine stimuli such as interferon-gamma (IFN-gamma) are not defined. We used Neisseria meningitidis (NM), a potent activator of innate immunity, and IFN-gamma, a prototypic T helper cell type 1 proinflammatory cytokine, to compare surface antigens, secretion of mediators, and receptor functions in elicited peritoneal Mphi from wild-type and genetically modified mouse strains. We show that these stimuli regulate major histocompatibility complex type II (MHC-II) and costimulatory molecules differentially, as well as expression of the mannose receptor and of Mphi receptor with collagenous structure (MARCO), a distinct SR-A, which provides a selective marker for innate activation. In combination, NM inhibited up-regulation of MHC-II by IFN-gamma while priming enhanced release of tumor necrosis factor alpha and nitric oxide. The SR-A contributes to phagocytosis of the organisms but not to their ability to induce CD80, CD86, and MARCO or to inhibit MHC-II. Conversely, studies with lipopolysaccharide (LPS)-deficient organisms and/or TLR-4 mutant mice showed that LPS and TLR-4 are at least partially required to induce CD80, CD86, and MARCO, but LPS is not required to inhibit MHC-II. These studies provide an experimental model and identify surface markers for analysis of innate and acquired immune activation of Mphi.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/immunology
- B7-1 Antigen/drug effects
- B7-1 Antigen/immunology
- B7-2 Antigen
- CD36 Antigens/immunology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Histocompatibility Antigens Class II/immunology
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- In Vitro Techniques
- Inflammation Mediators/immunology
- Interferon-gamma/immunology
- Interferon-gamma/pharmacology
- Lectins, C-Type/immunology
- Lipopolysaccharides/immunology
- Lipopolysaccharides/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Knockout
- Neisseria meningitidis/immunology
- Phenotype
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/immunology
- Scavenger Receptors, Class A
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/immunology
- Up-Regulation/immunology
Collapse
|