1
|
Dang C, Liu M, Liu P, Liu J, Yu X, Dong Y, Zhao J. Causal relationship between inflammatory factors and gynecological cancer: a Bayesian Mendelian randomization study. Sci Rep 2024; 14:29868. [PMID: 39622847 PMCID: PMC11612437 DOI: 10.1038/s41598-024-80747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cervical cancer, ovarian cancer, and endometrial cancer are the three most common cancers in gynecology. Understanding their respective pathology is currently incomplete. Inflammatory factors play an important role in the pathophysiology of these three cancers, but the causal relationship between inflammatory factors and these three cancers is unclear. METHODS Based on publicly available genetic databases, relevant instrumental variables were extracted according to predefined thresholds, and causal analyses of CRP, 41 circulating inflammatory factors, and three gynecological cancers were performed, mainly using the inverse variance weighted method, while bayesian analysis was performed to improve the accuracy of the results. Finally, heterogeneity, horizontal pleiotropy test, and MR Steiger test were carried out to evaluate the reliability of the findings and the causal inference strength. RESULTS One inflammatory factor (PDGF-BB) and four inflammatory factors (CXCL9, IL-6, CXCL1, and G-CSF) were identified as significantly associated with the risk of ovarian and endometrial cancers, respectively. In comparison, cervical cancer was found to have a negative causal association with one inflammatory factor (G-CSF) and endometrial cancer with two inflammatory factors (CXCL10 and CCL11). CONCLUSIONS Our MR study suggests potential causal relationships between circulating inflammatory regulators and three gynecological cancers from a genetic perspective, which contributes to further understanding of the pathomechanisms of cervical, ovarian and endometrial cancers and highlights the potential of targeting inflammatory factors as therapeutic interventions and predictors.
Collapse
Affiliation(s)
- Chunxiao Dang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Mengmeng Liu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257000, China
| | - Pengfei Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jinxing Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao Yu
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road No. 1, Jinan, 250014, China.
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jingshi Road No. 16369, Jinan, 250014, China.
| |
Collapse
|
2
|
Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed Pharmacother 2024; 180:117590. [PMID: 39423752 DOI: 10.1016/j.biopha.2024.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells originating from the bone marrow, known for their potent immunosuppressive functions that contribute to tumor immune evasion and progression. This paper provides a comprehensive analysis of the multifaceted interactions between MDSCs and tumors, exploring their distinct phenotypes and immunosuppressive mechanisms. Key roles of MDSCs in tumor biology are discussed, including their involvement in the formation of the pre-metastatic niche, facilitation of angiogenesis, enhancement of vascular permeability, suppression of tumor cell apoptosis, and promotion of resistance to cancer therapies. Additionally, the review highlights recent advances in the development of MDSC-targeting therapies, with a focus on their potential to enhance anti-tumor immunity. The therapeutic potential of Traditional Chinese Medicine (TCM) in modulating MDSC quantity and function is also explored, suggesting a novel approach to cancer treatment by integrating traditional and modern therapeutic strategies.
Collapse
Affiliation(s)
- Yafeng Qi
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Liying Zhang
- School of Integrative Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yeyuan Liu
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yangyang Li
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Neweigy HA, Gouida MS, El Nagger MS, Salem ML. Cancer micro-environment immune modulation by Egyptian cobra (Naja haje) crud venom. EGYPTIAN PHARMACEUTICAL JOURNAL 2023; 22:237-250. [DOI: 10.4103/epj.epj_156_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024]
Abstract
Background
Cancer can control immune system suppression mechanisms by activating regulatory T cells; myeloid-derived suppressor cells (MDSCs) and increasing the expression of co-inhibitor proteins. Snake venoms showed anticancer activity by targeting specific molecular pathways.
Objective
Here, we investigate the immunomodulatory effects of Egyptian cobra (Naja haje) venom different doses compared with cisplatin in healthy and cancer murine models.
Materials and methods
Female Balb/c mice aged 2–3 months, are separated into three general groups (control groups, solid (subcutaneous) tumors, and soft (ehrlich ascites) tumors. Mice were inoculated with ehrlich ascites carcinoma cells about 2×106 and 1.5×106 cells subcutaneously and intraperitoneal for 28 and 10 days, respectively.
Results
MDSCs decreased nonsignificantly in control groups treated with cisplatin, 1/10, 1/30 LD50 also, in ascites tumor group treated with 1/30 LD50 (P=0.055). While it increased non-significantly in healthy control treated with 1/20 LD50, all treated solid tumor groups and in ascites tumor groups treated with cisplatin and 1/20 LD50, on the other hand, Regulatory T cells in control groups decreased significantly in groups treated with cisplatin and 1/30 LD50 on the other hand it increased nonsignificantly in groups treated with 1/20 and 1/10 LD50. In solid tumor groups, T regs increased with no statistical significance in all treated solid tumor groups also, in ascites tumor groups treated with 1/20 LD50 and cisplatin.
Conclusion
Low doses of (Naja haje) crud venom reduce MDSCs and T reg in the microenvironment of tumor while higher doses increase them, further investigation will be needed.
Collapse
|
4
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
5
|
Zhao F, Gong W, Song J, Shen Z, Cui D. The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Front Immunol 2022; 13:1021634. [PMID: 36189262 PMCID: PMC9520533 DOI: 10.3389/fimmu.2022.1021634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of bone marrow derived heterogeneous cells, which is known for their immunosuppressive functions especially in tumors. Recently, MDSCs have receiving increasing attention in pathological conditions like infection, inflammation and autoimmune diseases. Inflammatory bowel diseases (IBD) are a series of immune-dysfunctional autoimmune diseases characterized by relapsing intestinal inflammation. The role of MDSCs in IBD remains controversial. Although most studies in vitro demonstrated its anti-inflammatory effects by inhibiting the proliferation and function of T cells, it was reported that MDSCs failed to relieve inflammation but even promoted inflammatory responses in experimental IBD. Here we summarize recent insights into the role of MDSCs in the development of IBD and the potential of MDSCs-targeted therapy.
Collapse
Affiliation(s)
- Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaojiao Song
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| |
Collapse
|
6
|
Kimura M, Uchiyama T, Mabuchi S. The first case of granulocyte colony-stimulating factor producing vulvar cancer. J OBSTET GYNAECOL 2022; 42:1572-1574. [DOI: 10.1080/01443615.2021.1978065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Tomoko Uchiyama
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
7
|
Roškar L, Roškar I, Rižner TL, Smrkolj Š. Diagnostic and Therapeutic Values of Angiogenic Factors in Endometrial Cancer. Biomolecules 2021; 12:7. [PMID: 35053155 PMCID: PMC8773847 DOI: 10.3390/biom12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological malignancy in developed countries and requires a relatively invasive diagnostic evaluation and operative therapy as the primary therapeutic approach. Angiogenesis is one of the main processes needed for cancer growth and spread. The production of angiogenic factors (AFs) appears early in the process of carcinogenesis. The detection of AFs in plasma and tissue and a better understanding of the angiogenic properties of EC may contribute not only to earlier but also more specific diagnosis and consequently tailored and individual therapeutic approaches. AFs and their receptors also have high potential as binding sites for targeted cancer therapy. In this review, we discuss angiogenesis in EC and the characteristics of the AFs that most contribute to angiogenesis in EC. We also highlight therapeutic strategies that target angiogenesis as potential EC therapy.
Collapse
Affiliation(s)
- Luka Roškar
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Irena Roškar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.R.); (T.L.R.)
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.R.); (T.L.R.)
| | - Špela Smrkolj
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Spehner L, Boustani J, Cabel L, Doyen J, Vienot A, Borg C, Kim S. Present and Future Research on Anal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3895. [PMID: 34359795 PMCID: PMC8345786 DOI: 10.3390/cancers13153895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma of the anus is an orphan disease, and after more than three decades of no substantial advances in disease knowledge and treatment, it is finally gaining momentum with the arrival of a taxane-based chemotherapy and immunotherapy. Currently, about 20 combination clinical trials with an anti-PD1/L1 are ongoing in localized and advanced stages, in association with radiotherapy, chemotherapy, tumor vaccines, anti-CTLA4, anti-EGFR, or antiangiogenic molecules. Moreover, a new biomarker with high sensitivity and specificity such as HPV circulating tumor DNA (HPV ctDNA) by liquid biopsy, is improving not only the prognostic measurement but also the treatment strategy guidance for this disease. Finally, better understanding of potential targets is reshaping the present and future clinical research in this unique, HPV genotype-16-related disease in the great majority of patients.
Collapse
Affiliation(s)
- Laurie Spehner
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
| | - Jihane Boustani
- Department of Radiotherapy, University Hospital of Besançon, 25030 Besançon, France;
| | - Luc Cabel
- Department of Medical Oncology, Curie Institute, 75005 Paris, France;
| | - Jérôme Doyen
- Department of Medical Oncology, Centre Antoine-Lacassagne, 06189 Nice, France;
| | - Angélique Vienot
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
| | - Christophe Borg
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
| | - Stefano Kim
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
- Department of Oncology and Radiotherapy, Nord Franche Comté Hospital, 25209 Montbéliard, France
| |
Collapse
|
9
|
Mabuchi S, Sasano T. Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells 2021; 10:cells10051073. [PMID: 33946532 PMCID: PMC8147228 DOI: 10.3390/cells10051073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Uterine cervical and endometrial cancers are the two most common gynecological malignancies. As demonstrated in other types of solid malignancies, an increased number of circulating or tumor-infiltrating myeloid-derived suppressor cells (MDSCs) have also been observed in uterine cervical and endometrial cancers, and increased MDSCs are associated with an advanced stage, a short survival, or a poor response to chemotherapy or radiotherapy. In murine models of uterine cervical and endometrial cancers, MDSCs have been shown to play important roles in the progression of cancer. In this review, we have introduced the definition of MDSCs and their functions, discussed the roles of MDSCs in uterine cervical and endometrial cancer progression, and reviewed treatment strategies targeting MDSCs, which may exhibit growth-inhibitory effects and enhance the efficacy of existing anticancer treatments.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
- Correspondence: ; Tel.: +81-744-29-8877; Fax: +81-744-23-6557
| | - Tomoyuki Sasano
- Department of Obstetrics and Gynecology, Osaka Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan;
| |
Collapse
|
10
|
Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 2021; 251:105-124. [PMID: 33797140 DOI: 10.1002/dvdy.339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) plays a crucial role in tumor progression. It can inhibit early cancer stages but promotes tumor growth and development at the late stages of tumorigenesis. TGF-β1 has a potent immunosuppressive function within the tumor microenvironment that largely contributes to tumor cells' immune escape and reduction in cancer immunotherapy responses. Likewise, myeloid-derived suppressor cells (MDSCs) have been postulated as leading tumor promoters and a hallmark of cancer immune evasion mechanisms. This review attempts to analyze the prominent roles of both TGF-β1 and MDSCs and their interplay in cancer immunity. Furthermore, therapies against either TGF-β1 or MDSCs, and their potential synergistic combination with immunotherapies are discussed. Simultaneous TGF-β1 and MDSCs inhibition suggest a potential improvement in immunotherapy or subverted tumor immune resistance.
Collapse
Affiliation(s)
- Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Sonja S Mojsilovic
- Laboratory for Immunochemistry, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Bjelica
- Department of Hematology, Clinical Hospital Centre Dragisa Misovic, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular oncology group, Institute for Medical Research, University of Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
11
|
Shimura K, Mabuchi S, Komura N, Yokoi E, Kozasa K, Sasano T, Kawano M, Matsumoto Y, Watabe T, Kodama M, Hashimoto K, Sawada K, Hatazawa J, Kimura T. Prognostic significance of bone marrow FDG uptake in patients with gynecological cancer. Sci Rep 2021; 11:2257. [PMID: 33500424 PMCID: PMC7838412 DOI: 10.1038/s41598-021-81298-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
We investigated the prognostic significance and the underlying mechanism of increased bone marrow (BM) 2-(18F) fluoro-2-deoxy-D-glucose as a tracer (FDG)-uptake in patients with gynecological cancer. A list of patients diagnosed with cervical, endometrial, and ovarian cancer from January 2008 to December 2014 were identified. Then, through chart reviews, 559 patients who underwent staging by FDG-positron emission tomography (PET)/computed tomography (CT) and subsequent surgical resection were identified, and their clinical data were reviewed retrospectively. BM FDG-uptake was evaluated using maximum standardized uptake value (SUVmax) and BM-to-aorta uptake ratio (BAR). As a result, we have found that increased BAR was observed in 20 (8.7%), 21 (13.0%), 21 (12.6%) of cervical, endometrial, and ovarian cancer, respectively, and was associated with significantly shorter survival. Increased BAR was also closely associated with increased granulopoiesis. In vitro and in vivo experiments revealed that tumor-derived granulocyte colony-stimulating factor (G-CSF) was involved in the underlying causative mechanism of increased BM FDG-uptake, and that immune suppression mediated by G-CSF-induced myeloid-derived suppressor cells (MDSCs) is responsible for the poor prognosis of this type of cancer. In conclusion, increased BM FDG-uptake, as represented by increased BAR, is an indicator of poor prognosis in patients with gynecological cancer.
Collapse
Affiliation(s)
- Kotaro Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, 634-8522, Japan.
| | - Naoko Komura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Yokoi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsumi Kozasa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Sasano
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuri Matsumoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Abstract
Tumor cells frequently disseminate to distant organ sites, where they encounter permissive or restrictive environments that enable them to grow and colonize or enter a dormant state. Tumor dormancy is not strictly defined, but generally describes a tumor cell that is non-proliferative or in a state of balanced equilibrium, in which the proliferation rate of the tumor cell or cells is equal to its rate of cell death. The mechanisms that regulate tumor cell entry into and exit from dormancy are poorly understood, but microenvironmental features as well as tumor cell intrinsic factors play an important role in mediating this transition. Upon homing to distant metastatic sites, tumor cells may disseminate into various niches, most frequently the perivascular, hematopoietic stem cell, or endosteal/osteogenic niche. Tumor cells sense the cytokines, growth factors, and chemo-attractants from each of these niches, and tumor cell expression of cognate ligands and receptors can determine whether a tumor cell enters or exits dormancy. In addition to the secreted factors and cell-cell interactions that regulate dormancy, the cellular milieu also impacts upon disseminated tumor cells to promote or restrain their growth in distant metastatic sites. In this chapter we will discuss the role of the osteogenic and perivascular niche on dormant tumor cells, as well as the impact of hypoxia (low oxygen tensions) and the immune system on the restriction and outgrowth of dormant, disseminated tumor cells.
Collapse
|
13
|
Importance of myeloid derived suppressor cells in cancer from a biomarker perspective. Cell Immunol 2020; 361:104280. [PMID: 33445053 DOI: 10.1016/j.cellimm.2020.104280] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Myeloid derived suppressor cells (MDSC) are a heterogenous population of immature myeloid cells that accumulate in tumor bearing host and migrate to lymphoid organs and tumor tissues. This process is controlled by a set of defined pro-inflammatory cytokines and chemokines, which are upregulated in malignancies. MDSC have strong immunosuppressive potential and constitute a major component of the tumor microenvironment (TME). Tumor cells take advantage of the suppressive mechanisms of MDSC to establish an immunosuppressive TME which inhibits antitumor immune responses thereby promoting cancer progression. An immunosuppressive TME acts as a significant barrier to immunotherapeutic interventions. Pre-clinical and clinical studies have demonstrated that enrichment and activation of MDSC is correlated with tumor progression, recurrence and metastasis. In this review we discuss the potential impact of MDSC on tumor progression and its role as a biomarker of prognostic significance in cancer with a special focus on hepatocellular cancer (HCC).
Collapse
|
14
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Komura N, Mabuchi S, Shimura K, Yokoi E, Kozasa K, Kuroda H, Takahashi R, Sasano T, Kawano M, Matsumoto Y, Kodama M, Hashimoto K, Sawada K, Kimura T. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer. Cancer Immunol Immunother 2020; 69:2477-2499. [PMID: 32561967 DOI: 10.1007/s00262-020-02628-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the role of myeloid-derived suppressor cells (MDSC) in the induction of cancer stem-like cells (CSC) and programmed death ligand 1 (PD-L1) expression in ovarian cancer. CSC were defined as tumor cells expressing high levels of aldehyde dehydrogenase 1 (ALDH 1). We inoculated G-CSF-expressing or Mock-expressing ovarian cancer cells into mice, and the frequencies of MDSC and CSC in tumors of these models were compared by flow cytometry. To directly demonstrate the role of MDSC in the induction of CSC and the increase in PD-L1 expression, we performed in vitro co-culture. MDSC and CSC (ALDH-high cells) were more frequently observed in G-CSF-expressing cell-derived tumors than in Mock-expressing cell-derived tumors. Co-culture experiments revealed that MDSC increased the number of CSC via the production of PGE2. Moreover, PGE2 produced by MDSC increased tumor PD-L1 expression via the mammalian target of rapamycin (mTOR) pathway in ovarian cancer cells. In an in vitro experiment in which ovarian cancer cells were co-cultured with MDSC, higher expression of PD-L1 was observed in CSC than in non-CSC (ALDH-low cells). Furthermore, by immunofluorescence staining, we found that PD-L1 was co-expressed with ALDH1 in in vivo mouse models. In conclusion, PGE2 produced by MDSC increases the stem cell-like properties and tumor PD-L1 expression in epithelial ovarian cancer. Depleting MDSC may be therapeutically effective against ovarian cancer by reducing the number of CSC and tumor PD-L1 expression.
Collapse
Affiliation(s)
- Naoko Komura
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Mabuchi
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan. .,Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, 634-8522, Japan.
| | - Kotaro Shimura
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eriko Yokoi
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsumi Kozasa
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromasa Kuroda
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryoko Takahashi
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoyuki Sasano
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mahiru Kawano
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuri Matsumoto
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Kodama
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kae Hashimoto
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenjiro Sawada
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
16
|
Radiation Damage to Tumor Vasculature Initiates a Program That Promotes Tumor Recurrences. Int J Radiat Oncol Biol Phys 2020; 108:734-744. [PMID: 32473180 DOI: 10.1016/j.ijrobp.2020.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Abstract
This review, mostly of preclinical data, summarizes the evidence that radiation at doses relevant to radiation therapy initiates a pathway that promotes the reconstitution of the tumor vasculature leading to tumor recurrence. The pathway is not specific to tumors; it promotes repair of damaged and ischemic normal tissues by attracting proangiogenic cells from the bone marrow. For irradiated tumors the pathway comprises: (1) loss of endothelial cells and reduced tumor blood perfusion leading to increased tumor hypoxia and increased levels of hypoxia inducible factor-1 (HIF-1). Alternatively, increased HIF-1 levels may arise by reactive oxygen species (ROS) production caused by tumor reoxygenation. (2) Increased HIF-1 levels lead to increased levels in the tumor of the chemokine stromal cell-derived factor-1 (SDF-1, CXCL12), which captures monocytes/macrophages expressing the CXCR4 receptor of CXCL12. (3) The increased levels of tumor-associated macrophages (TAMs) become highly proangiogenic (M2 polarized) and restore the tumor vasculature, thereby promoting tumor recurrence. The relevance of this pathway for radiation therapy is that it can be blocked in a number of different ways including by inhibitors of monocytes/macrophages, of HIF-1, of CXCL12, of CXCR4, and of CSF-1R, the latter of which is responsible for the M2 polarization of the TAMs. All of these inhibitors produce a robust enhancement of the radiation response of a wide variety of preclinical tumor models. Further, the same inhibitors actually provide protection against radiation damage of several normal tissues. Some of these pathway inhibitors are available clinically, and a first-in-human trial of the CXCR4 inhibitor, plerixafor, with radiation therapy of glioblastoma has yielded promising results, including an impressive increase in local tumor control. Further clinical trials are warranted.
Collapse
|
17
|
Yang HJ, Xue JM, Li J, Wan LH, Zhu YX. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis. Mol Genet Genomic Med 2020; 8:e1200. [PMID: 32181600 PMCID: PMC7284022 DOI: 10.1002/mgg3.1200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer as one of the most common malignant tumors lead to bad prognosis among women. Some researches already focus on the carcinogenesis and pathogenesis of cervical cancer, but it is still necessary to identify more key genes and pathways. Methods Differentially expressed genes were identified by GEO2R from the gene expression omnibus (GEO) website, then gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzed by DAVID. Meanwhile, protein–protein interaction network was constructed by STRING, and both key genes and modules were found in visualizing network through Cytoscape. Besides, GEPIA did the differential expression of key genes and survival analysis. Finally, the expression of genes related to prognosis was further explored by UNLCAN, oncomine, and the human protein atlas. Results Totally 57 differentially expressed genes were founded, not only enriched in G1/S transition of mitotic cell cycle, mitotic nuclear division, and cell division but also participated in cytokine–cytokine receptor interaction, toll‐like receptor signaling pathway, and amoebiasis. Additionally, 12 hub genes and 3 key modules were screened in the Cytoscape visualization network. Further survival analysis showed that TYMS (OMIM accession number 188350), MCM2 (OMIM accession number 116945), HELLS (OMIM accession number 603946), TOP2A (OMIM accession number 126430), and CXCL8 (OMIM accession number 146930) were associated with the prognosis of cervical cancer. Conclusion This study aim to better understand the characteristics of some genes and signaling pathways about cervical cancer by bioinformatics, and could provide further research ideas to find new mechanism, more prognostic factors, and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Hua-Ju Yang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jin-Min Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Ling-Hong Wan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Yu-Xi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| |
Collapse
|
18
|
Yokoi E, Mabuchi S, Komura N, Shimura K, Kuroda H, Kozasa K, Takahashi R, Sasano T, Kawano M, Matsumoto Y, Kodama M, Hashimoto K, Sawada K, Kimura T. The role of myeloid-derived suppressor cells in endometrial cancer displaying systemic inflammatory response: clinical and preclinical investigations. Oncoimmunology 2019; 8:e1662708. [PMID: 31741758 DOI: 10.1080/2162402x.2019.1662708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022] Open
Abstract
Systemic inflammatory responses including thrombocytosis, leukocytosis, or neutrophilia have gained attention as prognostic indicators in patients with various solid malignancies.current study, we aimed to investigate the clinical implications and underlying biological mechanism of the systemic inflammatory response in endometrial cancer. Clinical data from 900 patients with endometrial cancer were analyzed to investigate the association between pretreatment leukocytosis, thrombocytosis, and treatment outcome. Clinical samples, endometrial cancer cell lines, and a mouse model of endometrial cancer were used to examine the mechanisms responsible for systemic inflammatory response in endometrial cancer, focusing on the role of tumor-derived granulocyte colony-stimulating factor (G-CSF) and MDSCs. Then, we showed that pretreatment concurrent leukocytosis and thrombocytosis is associated with significantly shorter survival and decreased chemosensitivity among patients with endometrial cancer. In vitro and in vivo experiments revealed that tumor-derived G-CSF and G-CSF-mediated IL-6 production from the tumor microenvironment are involved in the development of leukocytosis and thrombocytosis in patients with endometrial cancer. Moreover, increased tumor-infiltrating MDSCs induced by tumor-derived G-CSF, MDSC-mediated T cell suppression, and MDSC-mediated cancer stem cell induction are responsible for progression and chemoresistance in this type of endometrial cancer. MDSC depletion using an anti-Gr-1 neutralizing antibody or inhibition of MDSC activity by celecoxib inhibited tumor growth and enhanced chemosensitivity in endometrial cancer displaying concurrent leukocytosis and thrombocytosis. In conclusion, Pretreatment concurrent leukocytosis and thrombocytosis are associated with significantly shorter survival and decreased chemosensitivity among patients with endometrial cancer. Combining MDSC-targeting treatments with current standard chemotherapies might have therapeutic efficacy for these patients.
Collapse
Affiliation(s)
- Eriko Yokoi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan
| | - Naoko Komura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kotaro Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromasa Kuroda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsumi Kozasa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoko Takahashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Matsumoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Stenzel AE, Abrams SI, Moysich KB. A Call for Epidemiological Research on Myeloid-Derived Suppressor Cells in Ovarian Cancer: A Review of the Existing Immunological Evidence and Suggestions for Moving Forward. Front Immunol 2019; 10:1608. [PMID: 31354741 PMCID: PMC6629929 DOI: 10.3389/fimmu.2019.01608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, there have been encouraging findings suggesting that myeloid-derived suppressor cells (MDSCs) may be a good target for studying immune suppression in ovarian cancer. MDSCs are an abundance of immature myeloid cells that have demonstrated the ability to decrease tumor-infiltrating immune cells, increase the accrual of tumor-associated macrophages and regulatory T cells, as well as secrete various pro-inflammatory mediators and growth stimulating cytokines. Most studies on this topic utilized murine models, but there are limited reports in human subjects which have important limitations. With the majority of ovarian cancer patients presenting with distant metastases and a corresponding 5-year relative survival rate of < 30%, continued efforts are obligatory toward identifying potential prognostic factors. Given the difficulty of studying exposures in this patient population, as well as the existing immunologic characteristics of this cancer, there is growing interest in further identifying genetic and immunologic associations with patient survival. Furthermore, prognostic factors that may necessitate therapeutic intervention may significantly alter disease outlook. In this review paper, we address the current literature on MDSCs and their immunosuppressive behavior in ovarian cancer patients. While the previous studies on these cells in ovarian cancer have demonstrated some potential prognostic significance, there are many limitations to such studies including small sample sizes, inconsistent staging and histology, as well as inconsistent surface markers for the identification of MDSCs. Additionally, such studies include minimal patient characteristics involved with the clinical course of ovarian cancer. Here, we have proposed improving on studies analyzing MDSCs as a potential prognostic factor in ovarian cancer patients, as well as further identifying the potential of this novel prognostic factor in future care, through the use of a comprehensive epidemiologic model.
Collapse
Affiliation(s)
- Ashley E Stenzel
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
20
|
Otsuka I. Cutaneous Metastasis after Surgery, Injury, Lymphadenopathy, and Peritonitis: Possible Mechanisms. Int J Mol Sci 2019; 20:E3286. [PMID: 31277406 PMCID: PMC6651228 DOI: 10.3390/ijms20133286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous metastases from internal malignancies are uncommon. Umbilical metastasis, also known as Sister Joseph nodule (SJN), develops in patients with carcinomatous peritonitis or superficial lymphadenopathy, while non-SJN skin metastases develop after surgery, injury, and lymphadenopathy. In this review, the possible mechanisms of skin metastases are discussed. SJNs develop by the contiguous or lymphatic spread of tumor cells. After surgery and injury, tumor cells spread by direct implantation or hematogenous metastasis, and after lymphadenopathy, they spread by extranodal extension. The inflammatory response occurring during wound healing is exploited by tumor cells and facilitates tumor growth. Macrophages are crucial drivers of tumor-promoting inflammation, which is a source of survival, growth and angiogenic factors. Angiogenesis is promoted by the vascular endothelial growth factor (VEGF), which also mediates tumor-associated immunodeficiency. In the subcutaneous tissues that surround metastatic lymph nodes, adipocytes promote tumor growth. In the elderly, age-associated immunosuppression may facilitate hematogenous metastasis. Anti-VEGF therapy affects recurrence patterns but at the same time, may increase the risk of skin metastases. Immune suppression associated with inflammation may play a key role in skin metastasis development. Thus, immune therapies, including immune checkpoint inhibitors reactivating cytotoxic T-cell function and inhibiting tumor-associated macrophage function, appear promising.
Collapse
Affiliation(s)
- Isao Otsuka
- Department of Obstetrics and Gynecology, Kameda Medical Center, Kamogawa 296-8602, Japan.
| |
Collapse
|
21
|
Cho Y, Milane L, Amiji MM. Genetic and epigenetic strategies for advancing ovarian cancer immunotherapy. Expert Opin Biol Ther 2019; 19:547-560. [DOI: 10.1080/14712598.2019.1602605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngwoo Cho
- School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Science, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
22
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
Mabuchi S, Sasano T, Komura N. Premetastatic niche and tumor-related leukocytosis: a close relationship that cannot be ignored in uterine cancer patients. Oncotarget 2018; 9:36889-36890. [PMID: 30651921 PMCID: PMC6319344 DOI: 10.18632/oncotarget.26425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Seiji Mabuchi
- Seiji Mabuchi: Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Sasano
- Seiji Mabuchi: Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoko Komura
- Seiji Mabuchi: Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|