1
|
Liang ZY, Deng YQ, Tao ZZ. A quantum dot-based lateral flow immunoassay for the rapid, quantitative, and sensitive detection of specific IgE for mite allergens in sera from patients with allergic rhinitis. Anal Bioanal Chem 2020; 412:1785-1794. [PMID: 32052065 PMCID: PMC7048869 DOI: 10.1007/s00216-020-02422-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
The prevalence of allergic rhinitis (AR) is increasing worldwide. However, the current systems used to measure levels of immunoglobulin E (IgE) in sera are associated with several disadvantages that limit their further application. Consequently, there is a need to develop novel highly sensitive strategies that can rapidly detect IgE in a quantitative manner. The development of such systems will significantly enhance our ability to diagnose, treat, and even prevent AR. Herein, we describe our experience of using quantum dot-based lateral flow immunoassay (QD-LFIA), combined with a portable fluorescence immunoassay chip detector (PFICD), to detect serum-specific IgE against Dermatophagoides pteronyssinus (Der-p) and Dermatophagoides farinae (Der-f), two common mite allergens in China. Our data showed that our system could detect serum-specific levels of IgE against Der-p and Der-f as low as 0.093 IU/mL and 0.087 IU/mL, respectively. We also established a standard curve to determine serum-specific IgE concentrations that correlated well with the clinical BioIC microfluidics system. The sensitivity of our assay was 96.7% for Der-p and 95.5% for Der-f, while the specificity was 87.2% for Der-p and 85.3% for Der-f. Collectively, our results demonstrate that QD-LFIA is a reliable system that could be applied to detect serum-specific IgE in accordance with clinical demands. This QD-LFIA strategy can be applied at home, in hospitals, and in pharmacies, with reduced costs and time requirements when compared with existing techniques. In the future, this system could be developed to detect other types of allergens and in different types of samples (for example, whole blood). We describe our experiment using a quantum dot-based lateral flow immunoassay combined with a portable fluorescence immunoassay chip detector for both qualitative and quantitative detection of serum-specific IgE against two common mite allergens. This strategy can be applied at home, in hospitals, and in pharmacies, with reduced costs and time requirements. In the future, this system could be developed to detect other types of allergens and in different types of samples. ![]()
Collapse
Affiliation(s)
- Zheng-Yan Liang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, China. .,Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess STG. Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol Cell Probes 2016; 30:331-341. [PMID: 27430150 DOI: 10.1016/j.mcp.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
There is a growing need for low-cost, rapid and reliable diagnostic results in veterinary medicine. Point-of-care (POC) tests have tremendous advantages over existing laboratory-based tests, due to their intrinsic low-cost and rapidity. A considerable number of POC tests are presently available, mostly in dipstick or lateral flow formats, allowing cost-effective and decentralised diagnosis of a wide range of infectious diseases and public health related threats. Although, extremely useful, these tests come with some limitations. Recent advances in the field of microfluidics have brought about new and exciting opportunities for human health diagnostics, and there is now great potential for these new technologies to be applied in the field of veterinary diagnostics. This review appraises currently available POC tests in veterinary medicine, taking into consideration their usefulness and limitations, whilst exploring possible applications for new and emerging technologies, in order to widen and improve the range of POC tests available.
Collapse
Affiliation(s)
- Valentina Busin
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Beth Wells
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom.
| | - Maïwenn Kersaudy-Kerhoas
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Wenmaio Shu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, United Kingdom.
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom.
| |
Collapse
|
3
|
Cox CR, Jensen KR, Mondesire RR, Voorhees KJ. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography. J Microbiol Methods 2015; 118:51-6. [PMID: 26310605 DOI: 10.1016/j.mimet.2015.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022]
Abstract
New, rapid point-of-need diagnostic methods for Bacillus anthracis detection can enhance civil and military responses to accidental or deliberate dispersal of anthrax as a biological weapon. Current laboratory-based methods for clinical identification of B. anthracis require 12 to 120h, and are confirmed by plaque assay using the well-characterized γ typing phage, which requires an additional minimum of 24h for bacterial culture. To reduce testing time, the natural specificity of γ phage amplification was investigated in combination with lateral flow immunochromatography (LFI) for rapid, point-of-need B. anthracis detection. Phage-based LFI detection of B. anthracis Sterne was validated over a range of bacterial and phage concentrations with optimal detection achieved in as little as 2h from the onset of amplification with a threshold sensitivity of 2.5×10(4)cfu/mL. The novel use of γ phage amplification detected with a simple, inexpensive LFI assay provides a rapid, sensitive, highly accurate, and field-deployable method for diagnostic ID of B. anthracis in a fraction of the time required by conventional techniques, and without the need for extensive laboratory culture.
Collapse
Affiliation(s)
- Christopher R Cox
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| | - Kirk R Jensen
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| | | | - Kent J Voorhees
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| |
Collapse
|
4
|
Gou H, Deng J, Pei J, Wang J, Liu W, Zhao M, Chen J. Rapid and sensitive detection of type II porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip. J Virol Methods 2014; 209:86-94. [PMID: 25241142 DOI: 10.1016/j.jviromet.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/30/2014] [Accepted: 09/09/2014] [Indexed: 12/01/2022]
Abstract
Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was combined with a vertical flow (VF) nucleic acid detection strip to develop a universal assay for the detection of type II porcine reproductive and respiratory syndrome virus (PRRSV). The loop primers were labeled separately with biotin and fluorescein isothiocyanate (FITC) in this assay. Using optimized parameters, the whole reaction could be completed in <50 min in a completely enclosed environment. The detection limit of this assay was found to be 1 pg RNA, 30 tissue culture infective dose 50 (TCID50) virus, or 230 copies of recombinant plasmid DNA, which is relatively higher than that of RT-LAMP analyzed by agarose gel, RT-LAMP visualized by calcein, and the conventional RT-polymerase chain reaction (PCR). No false-positive results were obtained in the specificity assay. The efficiency of the RT-LAMP method was tested by analyzing 43 clinical samples, and the results were compared with those obtained by RT-PCR analysis, with the respective positive rates of 32.56% and 27.91%. This result confirmed that the method described is a rapid, accurate, and sensitive method for universal type II PRRSV detection. Also, this method can be used for the rapid detection of type II PRRSV during the early phase of an outbreak, especially for rapid veterinary diagnosis on the spot and in rural areas.
Collapse
Affiliation(s)
- Hongchao Gou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieru Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jingjing Pei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjun Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Gao M, Cui J, Ren Y, Suo S, Li G, Sun X, Su D, Opriessnig T, Ren X. Development and evaluation of a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of type II porcine reproductive and respiratory syndrome virus. J Virol Methods 2012; 185:18-23. [PMID: 22659065 DOI: 10.1016/j.jviromet.2012.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of type II porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequence alignment, four primers were designed amplifying the M gene of type II PRRSV and were subsequently utilized in an RT-LAMP assay. The RT-LAMP product had a ladder-like pattern of bands and the optimal reaction condition for this assay was determined to be 40 min at 63°C. Comparative analysis indicated that the RT-LAMP method was more sensitive than a conventional RT-PCR assay and comparable to a real-time PCR assay. In addition, the RT-LAMP assay was capable of detecting type II PRRSV in field samples and differentiating type II PRRSV from seven other porcine viruses which are all associated frequently with similar clinical symptoms.
Collapse
Affiliation(s)
- Ming Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Development of a serotype colloidal gold strip using monoclonal antibody for rapid detection type Asia1 foot-and-mouth disease. Virol J 2011; 8:418. [PMID: 21880157 PMCID: PMC3183032 DOI: 10.1186/1743-422x-8-418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/01/2011] [Indexed: 11/25/2022] Open
Abstract
Background In this study, we developed a rapid, one step colloid gold strip (CGS) capable of specifically detecting type Asia1 foot-and-mouth disease virus (FMDV). We have produced two monoclonal antibodies (mAb) to type Asia1 FMD (named 1B8 and 5E2). On the test strip, the purified 1B8 labelled with the colloidal gold was used as the detector, and the purified 5E2 and goat anti-mouse antibodies were wrapped onto nitrocellulose (NC) membranes as the test and the control line, respectively. The rapid colloidal gold stereotype diagnostic strip was housed in a plastic case. Results In specificity and sensitivity assay, there was no cross-reaction of the antigen with the other type of FMD and SVDV. The detection sensitivity was found to be as high as 10-5 dilution of Asia1/JSL/05 (1 × 107.2TCID50/50 μL). There was excellent agreement between the results obtained by CGS and reverse indirect hemagglutination assay (RIHA), and the agreement can reach to 98.75%. Conclusion We developed colloidal gold strips that have good qualities and does not require specialized equipment or technicians. This method provided a feasible, convenient, rapid, and effective for detecting type Asia1 FMDV in the fields.
Collapse
|
7
|
Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53. [PMID: 20843198 DOI: 10.1586/erm.10.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identification of pathogens or antibody response to pathogens in human and animals modulates the treatment strategies for naive population and subsequent infections. Diseases can be controlled and even eradicated based on the epidemiology and effective prophylaxis, which often depends on development of efficient diagnostics. In addition, combating newly emerging diseases in human as well as animal healthcare is challenging and is dependent on developing safe and efficient diagnostics. Detection of antibodies directed against specific antigens has been the method of choice for documenting prior infection. Other than zoonosis, development of inexpensive vaccines and diagnostics is a unique problem in animal healthcare. The advent of recombinant DNA technology and its application in the biotechnology industry has revolutionized animal healthcare. The use of recombinant DNA technology in animal disease diagnosis has improved the rapidity, specificity and sensitivity of various diagnostic assays. This is because of the absence of host cellular proteins in the recombinant derived antigen preparations that dramatically decrease the rate of false-positive reactions. Various recombinant products are used for disease diagnosis in veterinary medicine and this article discusses recombinant-based viral disease diagnostics currently used for detection of pathogens in livestock and poultry.
Collapse
|
8
|
Ngom B, Guo Y, Wang X, Bi D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem 2010; 397:1113-35. [PMID: 20422164 DOI: 10.1007/s00216-010-3661-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/10/2023]
Abstract
Recent progress in the laboratory has been a result of improvements in rapid analytical techniques. An update of the applications of lateral flow tests (also called immunochromatographic assay or test strip) is presented in this review manuscript. We emphasized the description of this technology in the detection of a variety of biological agents and chemical contaminants (e.g. veterinary drugs, toxins and pesticides). It includes outstanding data, such as sample treatment, sensitivity, specificity, accuracy and reproducibility. Lateral flow tests provide advantages in simplicity and rapidity when compared to the conventional detection methods.
Collapse
Affiliation(s)
- Babacar Ngom
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
9
|
Chen C, Cui S, Zhang C, Li J, Wang J. Development and validation of reverse transcription loop-mediated isothermal amplification for detection of PRRSV. Virus Genes 2009; 40:76-83. [DOI: 10.1007/s11262-009-0419-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
10
|
Development and validation of an immunogold chromatographic test for on-farm detection of PRRSV. J Virol Methods 2009; 160:178-84. [PMID: 19427332 DOI: 10.1016/j.jviromet.2009.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 11/22/2022]
Abstract
An immunochromatographic test strip was developed to detect porcine reproductive and respiratory syndrome virus (PRRSV). The test uses two gold-labeled monoclonal antibodies: D5 against recombinant nucleocapsid protein (rN) and E9 against recombinant M protein (rM). In the test, PRRSV binds to a mixture of D5 and E9 labeled with colloidal gold; the complexes move through a membrane and are captured by rabbit anti-rM and anti-rN antibodies at a test line, producing a reddish-purple band because of the increased concentration of gold. Unbound monoclonal antibodies move past the test line to be captured by goat anti-mouse antibodies, producing a band at a control line. In samples without PRRSV or with low virus concentration, a band appears only at the control line. A crossover-trial demonstrated that the test strip was highly specific for PRRSV. The test strip detection limit was between 7.8x10(3) and 1.6x10(4) TCID(50)/ml. Analysis of 100 clinical samples indicated that the sensitivity, specificity, and accuracy of the immunochromatographic test strip relative to reverse transcription polymerase chain reaction (RT-PCR) were 97.0, 93.9, and 96.0%, respectively. Because the test is simple and rapid, it can be used by an unskilled person to detect PRRSV in the field.
Collapse
|
11
|
A simple and rapid immunochromatographic strip test for detecting antibody to porcine reproductive and respiratory syndrome virus. J Virol Methods 2008; 152:38-42. [DOI: 10.1016/j.jviromet.2008.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/20/2022]
|
12
|
Nielsen K, Yu WL, Kelly L, Bermudez R, Renteria T, Dajer A, Gutierrez E, Williams J, Algire J, de Eschaide ST. Development of a lateral flow assay for rapid detection of bovine antibody to Anaplasma marginale. J Immunoassay Immunochem 2008; 29:10-8. [PMID: 18080877 DOI: 10.1080/15321810701734693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A rapid lateral flow assay for detection of bovine antibody to Anaplasma marginale was developed. The assay used a recombinant peptide of major surface protein 5 as the antigen and a monoclonal antibody specific for bovine IgG(1) conjugated with colloidal gold beads for detection. Serum and anticoagulated blood samples were obtained from cattle in an area where anaplasmosis was endemic. The samples were selected based on positive identification of the organism in blood smears. The unclotted blood samples were used for PCR determination of the presence of A. marginale while the sera were tested by a commercial competitive enzyme immunoassay (CELISA) and by the lateral flow assay (LFA). Similar samples, collected at a Canadian sales barn, were tested by the CELISA and LFA and 10% were tested by PCR for the presence of A. marginale nucleic acid. In addition, stored serum samples from a second endemic area were tested by CELISA and LFA. Of the 114 smear positive samples, all were positive by CELISA and LFA. All samples were also positive by PCR. Samples from Canadian sources (n=524) were negative in the CELISA but 11 sera gave false positive reactions in the LFA. All samples tested were PCR negative. Of 113 samples from herds with anaplasmosis, 53 were positive in the CELISA and 50 were LFA positive.
Collapse
Affiliation(s)
- K Nielsen
- Canadian Food Inspection Agency, Ottawa Laboratory (Fallowfield), Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|