1
|
Kong XX, Xu JS, Hu YT, Jiao YR, Chen S, Yu CX, Dai SQ, Gao ZB, Hao XR, Li J, Ding KF. Circulation immune cell landscape in canonical pathogenesis of colorectal adenocarcinoma by CyTOF analysis. iScience 2024; 27:109229. [PMID: 38455977 PMCID: PMC10918214 DOI: 10.1016/j.isci.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Current studies on the immune microenvironment of colorectal cancer (CRC) were mostly limited to the tissue level, lacking relevant studies in the peripheral blood, and failed to describe its alterations in the whole process of adenocarcinoma formation, especially of adenoma carcinogenesis. Here, we constructed a large-scale population cohort and used the CyTOF to explore the changes of various immune cell subsets in peripheral blood of CRC. We found monocytes and basophils cells were significantly higher in adenocarcinoma patients. Compared with early-stage CRC, effector CD4+T cells and naive B cells were higher in patients with lymph node metastasis, whereas the basophils were lower. We also performed random forest algorithm and found monocytes play the key role in carcinogenesis. Our study draws a peripheral blood immune cell landscape of the occurrence and development of CRC at the single-cell level and provides a reference for other researchers.
Collapse
Affiliation(s)
- Xiang-Xing Kong
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Sheng Xu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye-Ting Hu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Rong Jiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng-Xuan Yu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si-Qi Dai
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zong-Bao Gao
- Zhejiang Puluoting Health Tech CO. LTD, Hangzhou, China
| | - Xu-Ran Hao
- Zhejiang Puluoting Health Tech CO. LTD, Hangzhou, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke-Feng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
3
|
Lobbes LA, Schütze MA, Droeser R, Arndt M, Pozios I, Lauscher JC, Hering NA, Weixler B. Muscarinic Acetylcholine Receptor M3 Expression and Survival in Human Colorectal Carcinoma-An Unexpected Correlation to Guide Future Treatment? Int J Mol Sci 2023; 24:ijms24098198. [PMID: 37175905 PMCID: PMC10179005 DOI: 10.3390/ijms24098198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.
Collapse
Affiliation(s)
- Leonard A Lobbes
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcel A Schütze
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Raoul Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, CH-4058 Basel, Switzerland
| | - Marco Arndt
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C Lauscher
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
4
|
Construction of Lymph Node Metastasis-Related Prognostic Model and Analysis of Immune Infiltration Mode in Lung Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3887857. [PMID: 35836921 PMCID: PMC9274234 DOI: 10.1155/2022/3887857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is a major cause for global cancer-related deaths. Research reports demonstrate that lymph node metastasis (LNM) is pertinent to the survival rate of LUAD patients, and crux lies in the lack of biomarkers that could distinguish patients with LNM. We aimed to verify the LNM-related prognostic biomarkers in LUAD. Methods We firstly accessed the expression data of mRNA from The Cancer Genome Atlas (TCGA) database and then obtained samples with LNM (N+) and without LNM (N-). Differential expression analysis was conducted to acquire differentially expressed genes (DEGs). Univariate-LASSO-multivariate Cox regression analyses were performed on DEGs to build a risk model and obtain optimal genes. Afterwards, effectiveness and independence of risk model were assessed based on TCGA-LUAD and GSE31210 datasets. Moreover, a nomogram was established combining clinical factors and riskscores. Nomogram performance was measured by calibration curves. The infiltration abundance of immune cells was scored with CIBERSORT to explore the differences between high- and low-risk groups. Lastly, gene set enrichment analysis (GSEA) was used to investigate differences in immune features between the two risk groups. Results Nine optimal feature genes closely related to LNM in LUAD were identified to construct a risk model. Prognostic ability of the risk model was verified in independent databases. Patients were classified into high- and low-risk groups in accordance with their median riskscores. CIBERSORT score displayed differences in immune cell infiltration like T cells CD4 memory resting between high/low-risk groups. LNM-related genes may also be closely relevant to immune features. Additionally, GSEA indicated that differential genes in the two risk groups were enriched in genes related to immune cells. Conclusion This research built a risk model including nine optimal feature genes, which may be potential biomarkers for LUAD.
Collapse
|