1
|
Wan M, Wang Y, Liu X, Li Y, Deng C, Sun C. Identification of RAD51AP1 as a key gene in hepatitis B virus-associated hepatocellular carcinoma. Heliyon 2025; 11:e41594. [PMID: 39850418 PMCID: PMC11755046 DOI: 10.1016/j.heliyon.2024.e41594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments. Methods HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm. Then, in vitro experiments including CCK-8 assay, wound healing, and Transwell assay were performed to explore the functions and mechanisms. Results RAD51AP1 was identified as a specific key gene linked to the progression of HBV-associated HCC. High expression of RAD51AP1 was associated with worse overall survival (OS) in patients with HBV-associated HCC, but not in patients with non-HBV-associated HCC. Mechanistically, RAD51AP1 forms a potential ceRNA axis with LINC01419 and miR-8070, where LINC01419 acts as a molecular sponge for miR-8070 to upregulate RAD51AP1. HBV infection can enhance the LINC01419/miR-8070/RAD51AP1 axis, and LINC01419 overexpression conversely promotes HBV replication. The ceRNA axis and HBV synergistically promote the proliferation and metastasis of HBV-associated HCC cells. Furthermore, LINC01419 or RAD51AP1 knockdown, and miR-8070 overexpression in HepG2.2.15 cells significantly attenuated the Wnt/β-catenin signaling. Conclusions The LINC01419/miR-8070/RAD51AP1 axis promotes the HBV-associated HCC progression through an HBV-boosted positive feedback loop and Wnt/β-catenin signaling. These findings provide novel insights into the underlying mechanisms and may offer potential diagnostic and therapeutic targets in HBV-associated HCC.
Collapse
Affiliation(s)
- Meiling Wan
- Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yonghong Wang
- Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoling Liu
- Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Cunliang Deng
- Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Changfeng Sun
- Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Farrokhi Yekta R, Rezaei Tavirani M, Arefi Oskouie A, Amiri-Dashatan N. Biomarker Panels Associated with Diagnosis and Overall Survival in Hepatocellular Carcinoma Revealed from Protein-Protein and mRNA-miRNA Interaction Networks. Asian Pac J Cancer Prev 2025; 26:249-262. [PMID: 39874008 DOI: 10.31557/apjcp.2025.26.1.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer. METHODS Three gene transcript collections (GSE57957, GSE76427, and GSE84402) were retrieved from the GEO database, and significantly expressed genes were identified through a comprehensive screening process. Subsequently, key potential biomarkers were identified using various methods, including functional pathway enrichment, protein-protein interaction network analysis, mRNA-miR interaction study, and ROC curve and survival analysis. RESULTS After analyzing the expression of hub proteins and miRs, 12 proteins were found to have AUC values greater than 0.9 and log-rank KM-plot p values less than 0.05. Therefore, these proteins can be considered as potential diagnostic and prognostic biomarkers. Among these proteins, the top 5 were CDC6, PTTG1, CDCA5, RACGAP1, and RAD51AP1. The microRNAs with the highest diagnostic significance (AUC≥0.8) were hsa-mir-101-3p, hsa-mir-195-5p, hsa-mir-130a-3p, hsa-mir-26b-5p, hsa-mir-29c-3p, hsa-mir-26a-5p, and hsa-mir-34a-5p. Notably, hsa-mir-34a-5p, hsa-mir-195-5p, and hsa-mir-130a-3p also showed prognostic potential as predictors of overall survival in HCC patients. CONCLUSION Harnessing the potential of these biomarkers will enable healthcare professionals to make informed decisions, leading to improved care and more favorable outcomes in the fight against HCC. However, the next step is to thoroughly validate these potential markers in large cohorts.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Arefi Oskouie
- Department of Basic Sciences, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Sarker A, Aziz MA, Hossen MB, Mollah MMH, Al-Amin, Mollah MNH. Discovery of key molecular signatures for diagnosis and therapies of glioblastoma by combining supervised and unsupervised learning approaches. Sci Rep 2024; 14:27545. [PMID: 39528802 PMCID: PMC11554889 DOI: 10.1038/s41598-024-79391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This study suggested GBM-causing ten key genes (ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, SMC4, MCM10, and RAD51AP1) from nine transcriptomics datasets by combining supervised and unsupervised learning results. Differential expression patterns of key genes (KGs) between GBM and control samples were verified by different independent databases. Gene regulatory network (GRN) detected some important transcriptional and post-transcriptional regulators for KGs. The KGs-set enrichment analysis unveiled some crucial GBM-causing molecular functions, biological processes, cellular components, and pathways. The DNA methylation analysis detected some hypo-methylated CpG sites that might stimulate the GBM development. From the immune infiltration analysis, we found that almost all KGs are associated with different immune cell infiltration levels. Finally, we recommended KGs-guided four repurposable drug molecules (Fluoxetine, Vatalanib, TGX221 and RO3306) against GBM through molecular docking, drug likeness, ADMET analyses and molecular dynamics simulation studies. Thus, the discoveries of this study could serve as valuable resources for wet-lab experiments in order to take a proper treatment plan against GBM.
Collapse
Affiliation(s)
- Arnob Sarker
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Manir Hossain Mollah
- Department of Physical Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Al-Amin
- Department of Zoology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
5
|
Zeng SH, Yan ZQ, Ren Q, Lin LH, Chen Z. Knocking down RAD51AP1 enhances chemosensitivity by inhibiting the self-renewal of CD133 positive ovarian cancer stem-like cells. Discov Oncol 2024; 15:410. [PMID: 39235706 PMCID: PMC11377390 DOI: 10.1007/s12672-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
PURPOSE This study was designed to investigate the function of RAD51AP1 in the self-renewal and chemosensitivity of CD133 positive (CD133+) ovarian cancer (OC) stem-like cells. METHODS CD133+ (CD133 positive) OVCAR4 and CD133 negative (CD133-) OVCAR4 cells were separated from OVCAR4 by flow cytometry. Then, the separated CD133+OVCAR4 cells were divided into the following groups: Vector group; RAD51AP1 group; siNC group; si-RAD51AP1 group. Next, sphere-formation assay and colony forming assay were used to evaluate the self-renewal and proliferation ability of cells; western blot to detect the expression of RAD51AP1, transforming growth factor beta 1 (TGF-β1) and SMAD4 proteins in tissues and cells; qRT-PCR to assess the mRNA levels of sex-determining region Y-box 2 (SOX2), octamer-binding transcription factor 4 (OCT4), NANOG and Kruppel-like factor 4 (KLF4). RESULTS The performance of CD133+OVCAR4 cells was much better than that of CD133-OVCAR4 cells in sphere-formation assay and colony forming assay. Besides, compared with adjacent group and CD133-OVCAR4 cells, the expression level of RAD51AP1 increased significantly in OC group and CD133+OVCAR4 cells. Moreover, the over-expression of RAD51AP1 promoted the self-renewal and proliferation of CD133+OVCAR4 cells. On the contrary, knocking down the expression level of RAD51AP1 could inhibit the self-renewal and proliferation of CD133+OVCAR4 cells and improve the sensitivity of cells to chemotherapy drugs. CONCLUSION The findings of this study showed that RAD51AP1 was highly expressed in OC tissue and CD133+OVCAR4 cells, and regulated the self-renewal and chemosensitivity of tumor cells through the TGF-β1/SMAD4 signaling pathway.
Collapse
Affiliation(s)
- Si-Heng Zeng
- Department of Gynecology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200170, China
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Zhi-Qiang Yan
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Qing Ren
- Department of Gynecology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Li-Hui Lin
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China
| | - Zhen Chen
- Department of Gynecology, Hainan West Central Hospital, Danzhou, 571700, China.
| |
Collapse
|
6
|
Wei Y, Lan C, Wang X, Zhou X, Liao X, Huang H, Wei Z, Li T, Peng T, Zhu G. RAD51AP1 as an Immune-Related Prognostic Biomarker and Therapeutic Response Predictor in Hepatocellular Carcinoma. Int J Gen Med 2023; 16:4377-4392. [PMID: 37789880 PMCID: PMC10543100 DOI: 10.2147/ijgm.s431206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Background RAD51 associated protein 1 (RAD51AP1) is shown to regulate cell proliferation and cancer progression. However, the immune-infiltrating correlation and the therapeutics guidance of RAD51AP1 in hepatocellular carcinoma (HCC) still need further investigation. Methods In this study, comprehensive bioinformatic analysis of RAD51AP1 on differential expression, clinicopathologic correlation, prognostic value, and function enrichment were performed in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO; GSE14520 and GSE76427), and International Cancer Genome Consortium (ICGC) datasets. Besides, the Guangxi cohort containing 50 pairs HCC and adjacent non-cancerous samples from First Affiliated Hospital of Guangxi Medical University was served as validation cohort. Moreover, we explored the predictive value of RAD51AP1 to therapeutics response and its underlying correlation with HCC immunoinfiltration. Results RAD51AP1 was significantly overexpressed in HCC tissues and had a high diagnostic value of HCC. The shorter survival time and poorer clinical features were showed when RAD51AP1 upregulated, and then a nomogram featuring RAD51AP1 expression and other clinicopathologic factors was established to predict prognosis. In CIBERSORT analysis, higher T cells follicular helper but lower T cells CD4+ memory resting infiltration levels were exhibited when RAD51AP1 upregulated. The ssGSEA analysis demonstrated that high-RAD51AP1 expression subgroup had higher macrophages, Th2 and Treg cells infiltration levels, but lower type II IFN response function. Furthermore, high-RAD51AP1 expression subgroup exhibited the upregulated expression levels of immune-related checkpoint genes, but lower IPS and TIDE scores which suggested a possibly better immunotherapy response. The drug sensitivity analysis showed the high-expression subgroup may be more susceptible to Bexarotene, Doxorubicin, Gemcitabine and Tipifarnib. Conclusion Taken together, RAD51AP1 is a potential diagnostic and prognostic biomarker. It may be related to the immunosuppressive microenvironment and could be an underlying HCC treatment strategy. However, the conclusions still require further validation studies.
Collapse
Affiliation(s)
- Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiangkun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Zhongliu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| |
Collapse
|
7
|
LIU R, LI M, HU Z, SONG Z, CHEN J. [Research Advances of RAD51AP1 in Tumor Progression and Drug Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:701-708. [PMID: 37985156 PMCID: PMC10600754 DOI: 10.3779/j.issn.1009-3419.2023.102.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 11/22/2023]
Abstract
The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.
Collapse
|
8
|
Abe H, Kamimura K, Okuda S, Watanabe Y, Inoue J, Aoyagi Y, Wakai T, Kominami R, Terai S. BCL11B expression in hepatocellular carcinoma relates to chemosensitivity and clinical prognosis. Cancer Med 2023; 12:15650-15663. [PMID: 37293953 PMCID: PMC10417273 DOI: 10.1002/cam4.6167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION B-cell lymphoma/leukemia 11B (BCL11B) is a subunit of SWI/SNF chromatin remodeling complexes and functions in cell cycle regulation and apoptosis upon DNA replication stress and damages via transcription. Many malignancies were reported to exhibit changes in BCL11B gene expression; however, no study has focused on the relationship between BCL11B and hepatocellular carcinoma, which potentially exhibits DNA replication stress and damages upon its oncogenesis. Thus, in this study, we examined the molecular characterization of BCL11B expression in hepatocellular carcinoma. METHODS AND RESULTS The cumulative progression-free survival and overall survival were significantly longer in the clinical cases of BCL11B-negative hepatocellular carcinoma than BCL11B-positve cases. Microarray and real-time PCR analyses in hepatocellular carcinoma cell lines indicated a correlation between BCL11B and GATA6, a gene reported to be correlated with oncogenic activities and resistance to anthracycline, which is often used for hepatocellular carcinoma chemotherapy. Consequently, BCL11B-overexpressing cell lines exhibited resistance to anthracycline in cell growth assays and the resistance has been evidenced by the increased expression of BCL-xL in cell lines. The results were supported by the analyses of human HCC samples showing the correlation between BCL11B and GATA6 expressions. DISCUSSIONS AND CONCLUSION Our results indicated that overexpression of BCL11B amplifies GATA6 expression in hepatocellular carcinoma in vitro and in vivo that leads to anti-apoptotic signal activation, and induces resistance to chemotherapy, which influenced the postoperative prognosis.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
- Department of General MedicineNiigata University School of MedicineNiigataNiigataJapan
| | - Shujiro Okuda
- Division of Bioinformatics, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Yu Watanabe
- Division of Bioinformatics, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied BiosciencesTokyo University of AgricultureTokyoJapan
| | - Yutaka Aoyagi
- Department of Gastroenterology and HepatologyNiigata Medical CenterNiigataNiigataJapan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Ryo Kominami
- Department of Molecular Genetics, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| |
Collapse
|
9
|
Ong KH, Lai HY, Sun DP, Chen TJ, Huang SKH, Tian YF, Chou CL, Shiue YL, Chan TC, Li CF, Kuo YH. Prognostic Significance of DNA Topoisomerase II Alpha (TOP2A) in Cholangiocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:75. [PMID: 37114547 DOI: 10.31083/j.fbl2804075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with an increasing incidence worldwide. Although radiation therapy has improved the therapeutic efficiency of CCA treatment, differential expression of genes among cholangiocarcinoma subtypes has been revealed through precise sequencing. However, no specific molecular therapeutic targets or biomarkers have been figured out for use in precision medicine, and the exact mechanism by which antitumorigenic effects occur is still unclear. Therefore, it is necessary to conduct further studies on the development and mechanisms associated with CCA. METHODS We examined the clinical data and pathological features of patients with cholangiocarcinomas. We investigated the associations between DNA Topoisomerase II Alpha (TOP2A) expression and patient outcomes, such as metastasis-free survival (MFS) and disease-specific survival (DSS), as well as clinical characteristics and pathological results. RESULTS TOP2A expression was shown to be upregulated in CCA tissue sections by immunohistochemistry staining and data mining. Moreover, we observed that the TOP2A expression correlated with clinical features, such as the primary tumor stage, histological variants, and patients with hepatitis. Furthermore, high expression of TOP2A was associated with worse survival outcomes in terms of the overall survival (p < 0.0001), disease-specific survival (p < 0.0001), and metastasis-free survival (p < 0.0001) compared with patients in the low TOP2A expression group. This indicates that a high level of TOP2A expression is related to an unfavorable prognosis. CONCLUSIONS Our results show that TOP2A is highly expressed in CCA tissues, and its upregulation is correlated with the primary disease stage and poor prognosis significantly. Consequently, TOP2A is a prognostic biomarker and a novel therapeutic target for the treatment of CCA.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, China Medical University, 404333 Taichung, Taiwan
| | - Ding-Ping Sun
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, 711 Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, 710 Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 704 Tainan, Taiwan
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Department of Medical Research, Chi Mei Medical Center, 710 Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 704 Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 71004 Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, 71710 Tainan, Taiwan
| |
Collapse
|
10
|
Hu YY, Ma CC, Ai KX. Knockdown of RAD51AP1 suppressed cell proliferation and invasion in esophageal squamous cell carcinoma. Discov Oncol 2022; 13:101. [PMID: 36197550 PMCID: PMC9535060 DOI: 10.1007/s12672-022-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal cancer is a common malignant tumor of digestive tract with esophageal squamous cell carcinoma (ESCC) being the main histological subtype. This study aimed to identify potential hub gene associated with the pathophysiology of ESCC through bioinformatics analysis and experiment validation. METHODS Three microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. The overlapping differentially expressed genes (DEGs) were analyzed by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway analyses were performed to predict the potential functions of DEGs. Nine hub genes were identified using protein-protein interaction (PPI) network and Cytoscape software. We selected RAD51-associated protein 1 (RAD51AP1) for further research because of its poor prognosis and it has not been sufficiently studied in ESCC. The effects of RAD51AP1 on proliferation, apoptosis, migration and invasion of ESCC cells were determined by in vitro functional assays. RESULTS RAD51AP1 expression was significantly upregulated in ESCC tissues compared with normal tissues by using The Cancer Genome Atlas (TCGA) database. High expression of RAD51AP1 was associated with worse survival in ESCC patients. RAD51AP1 expression was positively associated with the enrichment of Th2 cells and T helper cells. Furthermore, CCK-8 and colony formation assays showed knockdown of RAD51AP1 inhibited the proliferation of ESCC cells. Flow cytometry analysis indicated knockdown of RAD51AP1 induced cell cycle arrest and apoptosis in ESCC cells. Transwell assay revealed knockdown of RAD51AP1 suppressed the migration and invasion of ESCC cells. CONCLUSIONS Finally, our results demonstrated that RAD51AP1 silencing significantly inhibited cell proliferation and invasion in ESCC, thereby highlighting its potential as a novel target for ESCC treatment.
Collapse
Affiliation(s)
- Yang-Yang Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China
| | - Chen-Chao Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China
| | - Kai-Xing Ai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
11
|
Smith MA, Van Alsten SC, Walens A, Damrauer JS, Maduekwe UN, Broaddus RR, Love MI, Troester MA, Hoadley KA. DNA Damage Repair Classifier Defines Distinct Groups in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14174282. [PMID: 36077818 PMCID: PMC9454479 DOI: 10.3390/cancers14174282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary DNA repair pathways have been implicated in hepatocellular carcinoma outcomes. We found that hepatocellular carcinomas (HCC) could be separated into two groups (high and low) based on the overall expression of genes involved in DNA repair. Among the low repair group, there were three subgroups, one of which shared features of the high repair group. Given the important role of liver in metabolism and detoxification and its regenerative capacity, proliferation and DNA damage responses are critical in subdividing major biological categories of liver tumors. High repair samples showed more proliferative and regenerative signatures and had poorer outcomes versus the low repair that were more associated with the genes involved in normal liver biology. These biological groups suggest that dysregulation in endogenous liver processes promotes a pro-tumorigenic microenvironment that may facilitate tumor progression or identify tumors that require more substantial clinical intervention. Abstract DNA repair pathways have been associated with variability in hepatocellular carcinoma (HCC) clinical outcomes, but the mechanism through which DNA repair varies as a function of liver regeneration and other HCC characteristics is poorly understood. We curated a panel of 199 genes representing 15 DNA repair pathways to identify DNA repair expression classes and evaluate their associations with liver features and clinicopathologic variables in The Cancer Genome Atlas (TCGA) HCC study. We identified two groups in HCC, defined by low or high expression across all DNA repair pathways. The low-repair group had lower grade and retained the expression of classical liver markers, whereas the high-repair group had more clinically aggressive features, increased p53 mutant-like gene expression, and high liver regenerative gene expression. These pronounced features overshadowed the variation in the low-repair subset, but when considered separately, the low-repair samples included three subgroups: L1, L2, and L3. L3 had high DNA repair expression with worse progression-free (HR 1.24, 95% CI 0.81–1.91) and overall (HR 1.63, 95% CI 0.98–2.71) survival. High-repair outcomes were also significantly worse compared with the L1 and L2 groups. HCCs vary in DNA repair expression, and a subset of tumors with high regeneration profoundly disrupts liver biology and poor prognosis.
Collapse
Affiliation(s)
- Markia A. Smith
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C. Van Alsten
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ugwuji N. Maduekwe
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
12
|
Selemenakis P, Sharma N, Uhrig ME, Katz J, Kwon Y, Sung P, Wiese C. RAD51AP1 and RAD54L Can Underpin Two Distinct RAD51-Dependent Routes of DNA Damage Repair via Homologous Recombination. Front Cell Dev Biol 2022; 10:866601. [PMID: 35652094 PMCID: PMC9149245 DOI: 10.3389/fcell.2022.866601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5′-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.
Collapse
Affiliation(s)
- Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jeffrey Katz
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Filipe A, Katopodis P, Chudasama D, Kerslake R, Jeyaneethi J, Anikin V, Silva E, Kyrou I, Randeva HS, Sisu C, Hall M, Karteris E. Differential Expression of RAD51AP1 in Ovarian Cancer: Effects of siRNA In Vitro. J Pers Med 2022; 12:jpm12020201. [PMID: 35207688 PMCID: PMC8876735 DOI: 10.3390/jpm12020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: DNA double strand breaks can affect genome integrity potentially leading to cancer. RAD51-associated protein 1 (RAD51AP1), an accessory protein to RAD51, is critical for homologous recombination, a key DNA damage response pathway. Emerging studies indicate a novel role for RAD51AP1 in carcinogenesis. Here we provide additional insight into the role of RAD51AP1 in ovarian cancer (OvCa). Methods: Gene expression and patient phenotype data were obtained from TCGA and GTEX project consortia for bioinformatics analysis. Immunohistochemistry of OvCa tissue microarray was undertaken. Functional analyses were performed in a SKOV3 OvCa cell line with down-regulation of RAD51AP1 using siRNA. Results: RAD51AP1 is overexpressed at gene level in primary and recurrent OvCa compared to controls. At protein level, RAD51AP1 was up-regulated in low grade serous tumors compared to high grade OvCa. There was higher expression of RAD51AP1 in OvCa metastatic to lymph nodes compared to primary cancer samples. Gene enrichment analyses identified 12 differentially expressed genes (DEGs) related to OvCa, eight of which are also common in tissue from patients with type 2 diabetes mellitus (T2DM). Conclusions: RAD51AP1 is overexpressed in OvCa, Given the link between OvCa and T2DM, the eight-gene signature shows potential for predictive value.
Collapse
Affiliation(s)
- Alice Filipe
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Periklis Katopodis
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Dimple Chudasama
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Jeyarooban Jeyaneethi
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State, Medical University, 119146 Moscow, Russia
| | - Elisabete Silva
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
| | - Marcia Hall
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Mount Vernon Cancer Centre, Northwood, London HA6 2RN, UK
- Correspondence: (M.H.); (E.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.F.); (P.K.); (D.C.); (R.K.); (J.J.); (E.S.); (C.S.)
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Harefield UB9 6JH, UK;
- Correspondence: (M.H.); (E.K.)
| |
Collapse
|
14
|
Ding R, Chen T, Zhang Y, Chen X, Zhuang L, Yang Z. HMGCS2 in metabolic pathways was associated with overall survival in hepatocellular carcinoma: A LASSO-derived study. Sci Prog 2021; 104:368504211031749. [PMID: 34260294 PMCID: PMC10358623 DOI: 10.1177/00368504211031749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This integrated bioinformatic study aimed to investigate potential prognostic candidates in hepatocellular carcinoma (HCC). In the GSE14520, GSE101685, and The Cancer Genome Atlas (TCGA) datasets, differentially expressed genes (DEGs) were identified and functional pathways of common DEGs were enriched. The least absolute shrinkage and selection operator (LASSO) model was used to screen the potential parameters associated with overall survival (OS) in HCC patients. Metabolic pathways were the most significantly enriched functional pathways of common DEGs in these three datasets. After LASSO model analysis, HMGCS2, UGP2, BCLC staging and TNM staging were screened as potential prognostic candidates for OS in HCC patients in GSE14520. HMGCS2 in the metabolic pathway was significantly downregulated in tumor tissues and peripheral blood mononuclear cells in HCC patients (all p < 0.05). Cox regression model indicated that HMGCS2 might be associate with OS in HCC patients in GSE14520 and in the TCGA (p = 0.029 and p = 0.05, respectively). Kaplan-Meier analysis demonstrated that HMGCS2 downregulation in tumors contributed to an unfavorable OS in HCC patients, both in GSE14520 and in the TCGA (p = 0.0001 and p = 0.0002, respectively). Additionally, HMGCS2 was significantly downregulated in HCC patients with high alpha-fetoprotein (AFP), main tumor size >5 cm, multinodular, advanced tumor staging including BCLC, TNM and CLIP (all p < 0.05). HMGCS2 was involved in metabolic pathways, and downregulated HMGCS2 in tumors was associated with unfavorable OS in HCC patients.
Collapse
Affiliation(s)
- Rongrong Ding
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tianyou Chen
- Department of Interventional Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Qian Y, Wang H, Zhang Y, Wang JW, Fan YC, Gao S, Wang K. Hypermethylation of Cyclin D2 Predicts Poor Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma after Hepatectomy. TOHOKU J EXP MED 2021; 254:233-243. [PMID: 34334537 DOI: 10.1620/tjem.254.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prognosis of patients with hepatocellular carcinoma remains poor because of progression of hepatocellular carcinoma and high recurrence rates. Cyclin D2 (CCND2) plays a vital role in regulating the cell cycle; indeed, aberrant methylation of CCND2 is involved in the development of hepatocellular carcinoma. Therefore, we aimed to investigate levels of CCND2 methylation in patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma and to evaluate its prognostic significance after hepatectomy. In total, 257 subjects were enrolled (166 hepatocellular carcinoma patients undergoing surgical resection, 61 chronic hepatitis B (CHB) patients, and 30 healthy controls). CCND2 methylation in peripheral blood mononuclear cells was measured quantitatively using MethyLight. We found that CCND2 methylation levels in patients with HBV-associated hepatocellular carcinoma were significantly higher than in CHB patients (P < 0.001) or healthy controls (P < 0.001). Within the hepatocellular carcinoma group, CCND2 methylation levels were higher in patients with portal vein invasion, early tumor recurrence, TNM III/IV stage, and tumor size ≥ 5 cm (P < 0.05). Furthermore, higher levels of CCND2 methylation were associated with worse overall survival and disease-free survival (P = 0.005 and P < 0.001, respectively). Multivariate analysis identified CCND2 methylation as an independent prognostic factor for early tumor recurrence (P = 0.021), overall survival (P = 0.022), and disease-free survival (P < 0.001) in hepatocellular carcinoma patients after resection. In conclusion, hypermethylation of CCND2 may have clinical utility for predicting a high risk of poor prognosis and early tumor recurrence in patients with HBV-associated hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - He Wang
- Department of Hepatopathy, Qingdao Sixth People's Hospital
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| |
Collapse
|