1
|
Wang Y, Liu W, Jiao Y, Yang Y, Shan D, Ji X, Zhang R, Zhan Z, Tang Y, Guo D, Yan C, Liu F. Advances in the Differentiation of hiPSCs into Cerebellar Neuronal Cells. Stem Cell Rev Rep 2024; 20:1782-1794. [PMID: 39023738 DOI: 10.1007/s12015-024-10763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wenzhu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yichang Jiao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yitong Yang
- School of Nursing, Jining Medical University, Jining, Shandong, 272067, China
| | - Didi Shan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xinbo Ji
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Rui Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zexin Zhan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yao Tang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Dandan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266103, China.
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Bhartiya M, Kumar A, Singh RK, Radhakrishnan DM, Rajan R, Srivastava AK. Mesenchymal Stem Cell Therapy in the Treatment of Neurodegenerative Cerebellar Ataxias: a Systematic Review and Meta-analysis. CEREBELLUM (LONDON, ENGLAND) 2023; 22:363-369. [PMID: 35451803 DOI: 10.1007/s12311-022-01403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 04/25/2023]
Abstract
The objective of this study is to synthesise the findings of clinical studies in order to derive evidence for use of the mesenchymal stem cell (MSC) therapy in the treatment of neurodegenerative cerebellar ataxias. In order to find relevant studies for the systematic review, we searched through Medline (1985 to July 2020), PubMed and Clinical trial register. We included both single-arm and comparative studies in which MSCs were given as intervention in neurodegenerative ataxia patients at any time after the diagnosis. We used Joanna Briggs Institute (JBI) quality scale to evaluate the methodological qualities of the included studies. Our literature search obtained 81 publications. Three articles comprising a total of 47 patients were included in the meta-analysis. None of them were randomised controlled trials (RCTs). Pooled analysis noted that there was a decrease in the Berg Balance Scale (BBS)/Scale for the Assessment and Rating of Ataxia (SARA) score from pre to post assessment; however, the difference was statistically not significant (standardised mean difference (SMD) - 0.20; 95% CI - 0.78 to 0.38). No significant side effects were reported in any of the studies. We did not observe any statistically significant difference in the pooled mean difference in the International Cooperative Ataxia Rating Scale (ICARS) score between pre and post assessment in patients with ataxia after receiving the stem cells (SMD 0.36, 95% CI - 0.08 to 0.81). Our systematic review and meta-analysis concluded that MSC cell therapy appeared safe but provided insufficient evidence to support the use of MSCs to treat patients with neurodegenerative cerebellar ataxia at present. No l RCTs was available in the literature to test efficacy; therefore, well-designed RCTs are needed to ascertain the effectiveness of MSCs in patients with neurodegenerative cerebellar ataxias.
Collapse
Affiliation(s)
- Manish Bhartiya
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India
| | - Amit Kumar
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India
| | - Rakesh K Singh
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India
| | - Divya M Radhakrishnan
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India
| | - Roopa Rajan
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India
| | - Achal Kumar Srivastava
- Department of Neurology, CN Centre, All India Institute of Medical Sciences, Room No. 60 GF, New Delhi, 110029, India.
| |
Collapse
|
4
|
Artero Castro A, Machuca C, Rodriguez Jimenez FJ, Jendelova P, Erceg S. Short Review: Investigating ARSACS: models for understanding cerebellar degeneration. Neuropathol Appl Neurobiol 2019; 45:531-537. [PMID: 30636067 DOI: 10.1111/nan.12540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that includes progressive cerebellar dysfunction. ARSACS is caused by an autosomal recessive loss-of-function mutation in the SACS gene, which encodes for SACSIN. Although animal models are still necessary to investigate the role of SACSIN in the pathology of this disease, more reliable human cellular models need to be generated to better understand the cerebellar pathophysiology of ARSACS. The discovery of human induced pluripotent stem cells (hiPSC) has permitted the derivation of patient-specific cells. These cells have an unlimited self-renewing capacity and the ability to differentiate into different neural cell types, allowing studies of disease mechanism, drug discovery and cell replacement therapies. In this study, we discuss how the hiPSC-derived cerebellar organoid culture offers novel strategies for targeting the pathogenic mutations related to ARSACS. We also highlight the advantages and challenges of this 3D cellular model, as well as the questions that still remain unanswered.
Collapse
Affiliation(s)
- A Artero Castro
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain
| | - C Machuca
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain.,Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders and Service of Genomics and Translational Genetics, Research Center "Principe Felipe", Valencia, Spain
| | - F J Rodriguez Jimenez
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain
| | - P Jendelova
- Institute of Experimental Medicine, Department of Neuroscience, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - S Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", Valencia, Spain.,National Stem Cell Bank-Valencia Node, Platform for Proteomics, Genotyping and Cell Lines, PRB3, ISCIII, Research Center "Principe Felipe", Valencia, Spain
| |
Collapse
|