1
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Barraza SJ, Sindac JA, Dobry CJ, Delekta PC, Lee PH, Miller DJ, Larsen SD. Synthesis and biological activity of conformationally restricted indole-based inhibitors of neurotropic alphavirus replication: Generation of a three-dimensional pharmacophore. Bioorg Med Chem Lett 2021; 46:128171. [PMID: 34098081 PMCID: PMC8272561 DOI: 10.1016/j.bmcl.2021.128171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
We have previously reported the development of indole-based CNS-active antivirals for the treatment of neurotropic alphavirus infection, but further optimization is impeded by a lack of knowledge of the molecular target and binding site. Herein we describe the design, synthesis and evaluation of a series of conformationally restricted analogues with the dual objectives of improving potency/selectivity and identifying the most bioactive conformation. Although this campaign was only modestly successful at improving potency, the sharply defined SAR of the rigid analogs enabled the definition of a three-dimensional pharmacophore, which we believe will be of value in further analog design and virtual screening for alternative antiviral leads.
Collapse
Affiliation(s)
- Scott J Barraza
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Janice A Sindac
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Craig J Dobry
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Philip C Delekta
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pil H Lee
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - David J Miller
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
3
|
Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem 2020; 207:112790. [PMID: 32937282 PMCID: PMC7457942 DOI: 10.1016/j.ejmech.2020.112790] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Humans have been suffered from viral infections over the centuries, such as influenza, HSV, and HIV, which have killed millions of people worldwide. However, the availability of effective treatments for infectious diseases remains limited until now, as most of the viral pathogens resisted to many medical treatments. Marine microbes are currently one of the most copious sources of pharmacologically active natural products, which have constantly provided promising antivirus agents. To date, a large number of marine microbial secondary metabolites with antiviral activities have been widely reported. In this review, we have summarized the potential antivirus compounds from marine microorganisms over the last decade. In addition, the structures, bioactivities, and origins of these compounds were discussed as well.
Collapse
Affiliation(s)
- Mengqi Yi
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Sixiao Lin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
4
|
Ferreira-Ramos AS, Li C, Eydoux C, Contreras JM, Morice C, Quérat G, Gigante A, Pérez Pérez MJ, Jung ML, Canard B, Guillemot JC, Decroly E, Coutard B. Approved drugs screening against the nsP1 capping enzyme of Venezuelan equine encephalitis virus using an immuno-based assay. Antiviral Res 2019; 163:59-69. [PMID: 30639438 DOI: 10.1016/j.antiviral.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Alphaviruses such as the Venezuelan equine encephalitis virus (VEEV) are important human emerging pathogens transmitted by mosquitoes. They possess a unique viral mRNA capping mechanism catalyzed by the viral non-structural protein nsP1, which is essential for virus replication. The alphaviruses capping starts by the methylation of a GTP molecule by the N7-guanine methyltransferase (MTase) activity; nsP1 then forms a covalent link with m7GMP releasing pyrophosphate (GT reaction) and the m7GMP is next transferred onto the 5'-diphosphate end of the viral mRNA to form a cap-0 structure. The cap-0 structure decreases the detection of foreign viral RNAs, prevents RNA degradation by cellular exonucleases, and promotes viral RNA translation into proteins. Additionally, reverse-genetic studies have demonstrated that viruses mutated in nsP1 catalytic residues are both impaired towards replication and attenuated. The nsP1 protein is thus considered an attractive antiviral target for drug discovery. We have previously demonstrated that the guanylylation of VEEV nsP1 can be monitored by Western blot analysis using an antibody recognizing the cap structure. In this study, we developed a high throughput ELISA screening assay to monitor the GT reaction through m7GMP-nsP1 adduct quantitation. This assay was validated using known nsP1 inhibitors before screening 1220 approved compounds. 18 compounds inhibiting the nsP1 guanylylation were identified, and their IC50 determined. Compounds from two series were further characterized and shown to inhibit the nsP1 MTase activity. Conversely, these compounds barely inhibited a cellular MTase demonstrating their specificity towards nsP1. Analogues search and SAR were also initiated to identify the active pharmacophore features. Altogether the results show that this HT enzyme-based assay is a convenient way to select potent and specific hit compounds targeting the viral mRNA capping of Alphaviruses.
Collapse
Affiliation(s)
| | - Changqing Li
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Cécilia Eydoux
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | | | - Gilles Quérat
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Alba Gigante
- Instituto de Química Médica (IQM, CSIC), Madrid, Spain
| | | | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.
| |
Collapse
|
5
|
Queiroz SRDA, Silva Júnior JVJ, Silva ANMRD, Carvalho AGDO, Santos JJDS, Gil LHVG. Development and characterization of a packaging cell line for pseudo-infectious yellow fever virus particle generation. Rev Soc Bras Med Trop 2018. [PMID: 29513845 DOI: 10.1590/0037-8682-0220-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Pseudo-infectious yellow fever viral particles (YFV-PIVs) have been used to study vaccines and viral packaging. Here, we report the development of a packaging cell line, which expresses the YFV prM/E proteins. METHODS HEK293 cells were transfected with YFV prM/E and C (84 nt) genes to generate HEK293-YFV-PrM/E-opt. The cells were evaluated for their ability to express the heterologous proteins and to package the replicon repYFV-17D-LucIRES, generating YFV-PIVs. RESULTS The expression of prM/E proteins was confirmed, and the cell line trans-packaged the replicon for recovery of a reporter for the YFV-PIVs. CONCLUSIONS HEK293-YFV-prM/E-opt trans-packaging capacity demonstrates its possible biotechnology application.
Collapse
|
6
|
Lowell AN, Santoro N, Swaney SM, McQuade TJ, Schultz PJ, Larsen MJ, Sherman DH. Microscale Adaptation of In Vitro Transcription/Translation for High-Throughput Screening of Natural Product Extract Libraries. Chem Biol Drug Des 2015; 86:1331-8. [PMID: 26147927 DOI: 10.1111/cbdd.12614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 01/10/2023]
Abstract
Novel antimicrobials that effectively inhibit bacterial growth are essential to fight the growing threat of antibiotic resistance. A promising target is the bacterial ribosome, a 2.5 MDa organelle susceptible to several biorthogonal modes of action used by different classes of antibiotics. To promote the discovery of unique inhibitors, we have miniaturized a coupled transcription/translation assay using E. coli and applied it to screen a natural product library of ~30 000 extracts. We significantly reduced the scale of the assay to 2 μL in a 1536-well plate format and decreased the effective concentration of costly reagents. The improved assay returned 1327 hits (4.6% hit rate) with %CV and Z' values of 8.5% and 0.74, respectively. This assay represents a significant advance in molecular screening, both in miniaturization and its application to a natural product extract library, and we intend to apply it to a broad array of pathogenic microbes in the search for novel anti-infective agents.
Collapse
Affiliation(s)
- Andrew N Lowell
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - Nicholas Santoro
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Center for Chemical Genomics, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - Steven M Swaney
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Center for Chemical Genomics, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - Thomas J McQuade
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Center for Chemical Genomics, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - Pamela J Schultz
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - Martha J Larsen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Center for Chemical Genomics, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Department of Chemistry and Medicinal Chemistry, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Department of Microbiology and Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA.,Department of Chemistry, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109-2216, USA
| |
Collapse
|