1
|
Chen X, Jiang T, Xue J, Gu M, Wang M, Liu K. Chromosome-level genome assembly of the freshwater bivalve Anodonta woodiana. Sci Data 2025; 12:731. [PMID: 40316565 DOI: 10.1038/s41597-025-05078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
The freshwater bivalve Anodonta (Sinanodonta) woodiana originated in the Yangtze River basin of China and is now widely distributed in Asia, Europe, North America, and Africa. This species has important economic and ecological value. Using Illumina, PacBio, and Hi-C technology, a high-quality chromosome-level genome of A. woodiana was assembled. The genome size was 2.80 Gb, with a contig N50 of 4.01 Mb and a scaffold N50 of 143.34 Mb. In total, 1609 contigs, accounting for 99.57% of the total assembled genome, were anchored into 19 chromosomes. In total, 1.51 Gb repeat sequences were annotated and 44,785 protein-coding genes were predicted. This study is the first to reveal the genome of A. woodiana and the genus Anodonta, which will effectively contribute to investigations of this species' biology, molecular mechanisms in response to environmental stress, and resource management.
Collapse
Affiliation(s)
- Xiubao Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Tao Jiang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junren Xue
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Mengying Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Meiyi Wang
- College of Marine Science and Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
2
|
Silveira T, Moreno Abril SI, Lucas CG, Remião MH. Editorial: Application of fishes as biological models in genetic studies. Front Genet 2023; 13:1092160. [PMID: 36685980 PMCID: PMC9849242 DOI: 10.3389/fgene.2022.1092160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Tony Silveira
- Biological Sciences Institute, Federal University of Rio Grande, Rio Grande, Brazil
| | - Sandra Isabel Moreno Abril
- Marine Research Centre, University of Vigo, Vigo, Spain
- Department of Ecology and Animal Biology, University of Vigo, Vigo, Spain
| | - Caroline Gomes Lucas
- Division of Animal Sciences, Animal Science Research Center, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
| | - Mariana Härter Remião
- Structural Genomics Laboratory, Technological Developmental Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
4
|
Wang M, Ge J, Ma X, Su S, Tian C, Li J, Yu F, Li H, Song C, Gao J, Xu P, Tang Y, Xu G. Exploration of the regulatory mechanisms of regeneration, anti-oxidation, anti-aging and the immune response at the post-molt stage of Eriocheir sinensis. Front Physiol 2022; 13:948511. [PMID: 36237529 PMCID: PMC9552667 DOI: 10.3389/fphys.2022.948511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Eriocheir sinensis is widely appreciated by the surrounding population due to its culinary delicacy and rich nutrients. The E. sinensis breeding industry is very prosperous and molting is one of the important growth characteristics. Research on the regulation of molting in E. sinensis is still in the initial stages. There is currently no relevant information on the regulatory mechanisms of heart development following molting. Comparative transcriptome analysis was used to study developmental regulation mechanisms in the heart of E. sinensis at the post-molt and inter-molt stages. The results indicated that many regulatory pathways and genes involved in regeneration, anti-oxidation, anti-aging and the immune response were significantly upregulated after molting in E. sinensis. Aside from cardiac development, the differentially expressed genes (DEGs) were relevant to myocardial movement and neuronal signal transduction. DEGs were also related to the regulation of glutathione homeostasis and biological rhythms in regard to anti-oxidation and anti-aging, and to the regulation of immune cell development and the immune response. This study provides a theoretical framework for understanding the regulation of molting in E. sinensis and in other economically important crustaceans.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Can Tian
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| |
Collapse
|
5
|
Corral‐Lou A, Perea S, Perdices A, Doadrio I. Quaternary geomorphological and climatic changes associated with the diversification of Iberian freshwater fishes: The case of the genus
Cobitis
(Cypriniformes, Cobitidae). Ecol Evol 2022; 12:e8635. [PMID: 35261740 PMCID: PMC8888266 DOI: 10.1002/ece3.8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
We studied the population genetic structure of Cobitis vettonica, an endangered freshwater fish species endemic to the Iberian Peninsula, in order to propose a biogeographic model of the responses of species to the multiple changes that occurred in the Iberian hydrological system during the Quaternary period. We also deciphered the relationship of C. vettonica with its sister species C. paludica, particularly in sympatric areas, and provide genetic information for conservation purposes. To achieve this goal, we analyzed both mitochondrial and nuclear data (the cytochrome b and the nuclear recombination activating 1 genes) and a battery of single‐nucleotide polymorphisms (SNPs) of 248 individuals of C. vettonica or C. paludica from 38 localities, including some sympatric ones, covering the entire distribution area of C. vettonica. We highlight the important role played by the hydrogeomorphological processes and climatic changes that occurred in the Iberian Peninsula during the Quaternary on both the population structure of C. vettonica and its relationship with its sister species C. paludica. Our results support the genetic introgression of populations at the eastern limit of the distribution of C. vettonica. Furthermore, we postulate genetic introgression in sympatric areas. Finally, we propose the establishment or expansion of four Operational Conservation Units (OCUs) for C. vettonica, and highlight the threat faced by its populations due to the low level of genetic diversity detected for some of its populations and genetic introgression with C. paludica, which could eventually displace C. vettonica, resulting in a loss of diversity in this species.
Collapse
Affiliation(s)
- Andrea Corral‐Lou
- Biodiversity and Evolutionary Biology Department Museo Nacional de Ciencias Naturales, CSIC Madrid Spain
- Consultores en Biología de la Conservación S.L. Madrid Spain
| | - Silvia Perea
- Biodiversity and Evolutionary Biology Department Museo Nacional de Ciencias Naturales, CSIC Madrid Spain
- Instituto de Biología Departamento de Zoología Universidad Nacional Autónoma de México Ciudad de México México
| | - Anabel Perdices
- Biodiversity and Evolutionary Biology Department Museo Nacional de Ciencias Naturales, CSIC Madrid Spain
| | - Ignacio Doadrio
- Biodiversity and Evolutionary Biology Department Museo Nacional de Ciencias Naturales, CSIC Madrid Spain
| |
Collapse
|
6
|
Genomic Hatchery Introgression in Brown Trout (Salmo trutta L.): Development of a Diagnostic SNP Panel for Monitoring the Impacted Mediterranean Rivers. Genes (Basel) 2022; 13:genes13020255. [PMID: 35205298 PMCID: PMC8872556 DOI: 10.3390/genes13020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Brown trout (Salmo trutta L.) populations have been restocked during recent decades to satisfy angling demand and counterbalance the decline of wild populations. Millions of fertile brown trout individuals were released into Mediterranean and Atlantic rivers from hatcheries with homogeneous central European stocks. Consequently, many native gene pools have become endangered by introgressive hybridization with those hatchery stocks. Different genetic tools have been used to identify and evaluate the degree of introgression starting from pure native and restocking reference populations (e.g., LDH-C* locus, microsatellites). However, due to the high genetic structuring of brown trout, the definition of the "native pool" is hard to achieve. Additionally, although the LDH-C* locus is useful for determining the introgression degree at the population level, its consistency at individual level is far from being accurate, especially after several generations were since releases. Accordingly, the development of a more powerful and cost-effective tool is essential for an appropriate monitoring to recover brown-trout-native gene pools. Here, we used the 2b restriction site-associated DNA sequencing (2b-RADseq) and Stacks 2 with a reference genome to identify single-nucleotide polymorphisms (SNPs) diagnostic for hatchery-native fish discrimination in the Atlantic and Mediterranean drainages of the Iberian Peninsula. A final set of 20 SNPs was validated in a MassARRAY® System genotyping by contrasting data with the whole SNP dataset using samples with different degree of introgression from those previously recorded. Heterogeneous introgression impact was confirmed among and within river basins, and was the highest in the Mediterranean Slope. The SNP tool reported here should be assessed in a broader sample scenario in Southern Europe considering its potential for monitoring recovery plans.
Collapse
|
7
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Morin PA, Forester BR, Forney KA, Crossman CA, Hancock-Hanser BL, Robertson KM, Barrett-Lennard LG, Baird RW, Calambokidis J, Gearin P, Hanson MB, Schumacher C, Harkins T, Fontaine MC, Taylor BL, Parsons KM. Population structure in a continuously distributed coastal marine species, the harbor porpoise, based on microhaplotypes derived from poor-quality samples. Mol Ecol 2021; 30:1457-1476. [PMID: 33544423 DOI: 10.1111/mec.15827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
Harbor porpoise in the North Pacific are found in coastal waters from southern California to Japan, but population structure is poorly known outside of a few local areas. We used multiplexed amplicon sequencing of 292 loci and genotyped clusters of single nucleotide polymoirphisms as microhaplotypes (N = 271 samples) in addition to mitochondrial (mtDNA) sequence data (N = 413 samples) to examine the genetic structure from samples collected along the Pacific coast and inland waterways from California to southern British Columbia. We confirmed an overall pattern of strong isolation-by-distance, suggesting that individual dispersal is restricted. We also found evidence of regions where genetic differences are larger than expected based on geographical distance alone, implying current or historical barriers to gene flow. In particular, the southernmost population in California is genetically distinct (FST = 0.02 [microhaplotypes]; 0.31 [mtDNA]), with both reduced genetic variability and high frequency of an otherwise rare mtDNA haplotype. At the northern end of our study range, we found significant genetic differentiation of samples from the Strait of Georgia, previously identified as a potential biogeographical boundary or secondary contact zone between harbor porpoise populations. Association of microhaplotypes with remotely sensed environmental variables indicated potential local adaptation, especially at the southern end of the species' range. These results inform conservation and management for this nearshore species, illustrate the value of genomic methods for detecting patterns of genetic structure within a continuously distributed marine species, and highlight the power of microhaplotype genotyping for detecting genetic structure in harbor porpoises despite reliance on poor-quality samples.
Collapse
Affiliation(s)
- Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Karin A Forney
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Moss Landing, CA, USA.,Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, NS, Canada.,Cetacean Research Program, Vancouver Aquarium, Vancouver, BC, Canada
| | | | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | | | | | | | - Pat Gearin
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | | | | | - Michael C Fontaine
- MIVEGEC Research Unit (Université de Montpellier, CNRS, IRD) & Centre for Research on the Ecology and Evolution of Diseases (CREES), Centre IRD de Montpellier, Montpellier, France.,Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Barbara L Taylor
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Kim M Parsons
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA.,Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| |
Collapse
|
9
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|