1
|
Sun Y, Puspanathan P, Lim T, Lin D. Advances and challenges in gastric cancer testing: the role of biomarkers. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0386. [PMID: 40126094 PMCID: PMC11976707 DOI: 10.20892/j.issn.2095-3941.2024.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer. Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment. Human epidermal growth factor receptor 2 (HER2) was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer. Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies, such as pembrolizumab and nivolumab. More recently, zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries. More targeted therapies, including savolitinib for MET-positive patients, are currently under clinical investigation. However, the clinical application of these diagnostic approaches could be hampered by many existing challenges, including invasive and costly sampling methods, variability in immunohistochemistry interpretation, high costs and long turnaround times for next-generation sequencing, the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers, and tumor heterogeneity. Novel testing and analysis techniques, such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry, and emerging therapeutic strategies, including combination therapies that integrate immune checkpoint inhibitors with targeted therapies, offer potential solutions to some of these challenges. This article reviews recent progress in gastric cancer testing, outlines current challenges, and explores future directions for biomarker testing and targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | - Tony Lim
- Division of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
2
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Žvirblė M, Vaicekauskaitė I, Survila Ž, Bosas P, Dobrovolskienė N, Mlynska A, Sabaliauskaitė R, Pašukonienė V. Liquid-Based Diagnostic Panels for Prostate Cancer: The Synergistic Role of Soluble PD-L1, PD-1, and mRNA Biomarkers. Int J Mol Sci 2025; 26:704. [PMID: 39859417 PMCID: PMC11765789 DOI: 10.3390/ijms26020704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
This study aimed to evaluate the diagnostic potential of soluble Programmed Death Ligand 1 (sPD-L1) and Programmed Death 1 (sPD-1) molecules in plasma, along with urinary mRNA biomarkers-Prostate-Specific Membrane Antigen (PSMA), Prostate Cancer Antigen 3 (PCA3), and androgen receptor (AR) genes-for identifying clinically significant prostate cancer (PCa), defined as pathological stage 3. In a cohort of 68 PCa patients, sPD-L1 and sPD-1 levels were quantified using ELISA, while mRNA transcripts were measured by RT-qPCR. Results highlight the potential of integrating these liquid-based biomarkers. In particular, the combination of sPD-L1, sPD-1, and AR demonstrated the most significant improvement in diagnostic performance, increasing the area under the curve (AUC) from 0.65 to 0.81 and sensitivity from 60% to 88%, compared to AR alone. PSMA demonstrated an AUC of 0.82 and a specificity of 52.8%, which improved to an AUC of 0.85 and a specificity of 94.4% with the inclusion of sPD-L1 and sPD-1. Similarly, PCA3 achieved an AUC of 0.75 and a specificity of 53.8%, increasing to an AUC of 0.78 and a specificity of 76.9% when combined with these biomarkers. Incorporating sPD-L1 into a three-gene panel further elevated the AUC from 0.74 to 0.94. These findings underscore the value of multimodal liquid-based diagnostic panels in improving the management of clinically significant PCa.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/blood
- B7-H1 Antigen/genetics
- B7-H1 Antigen/blood
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/blood
- Programmed Cell Death 1 Receptor/metabolism
- Aged
- RNA, Messenger/genetics
- RNA, Messenger/blood
- RNA, Messenger/metabolism
- Middle Aged
- Receptors, Androgen/genetics
- Glutamate Carboxypeptidase II/genetics
- Glutamate Carboxypeptidase II/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/urine
- Antigens, Surface
Collapse
Affiliation(s)
- Margarita Žvirblė
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
- Institute of Biosciences, Life Sciences Center Vilnius University, Saulėtekio av 7, LT-10257 Vilnius, Lithuania;
| | - Ieva Vaicekauskaitė
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
- Institute of Biosciences, Life Sciences Center Vilnius University, Saulėtekio av 7, LT-10257 Vilnius, Lithuania;
| | - Žilvinas Survila
- Institute of Biosciences, Life Sciences Center Vilnius University, Saulėtekio av 7, LT-10257 Vilnius, Lithuania;
| | - Paulius Bosas
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
| | - Neringa Dobrovolskienė
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
| | - Agata Mlynska
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
- Vilnius Gediminas Technical University, Department of Chemistry and Bioengineering, Saulėtekio al 11, LT-10223 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
- Institute of Biosciences, Life Sciences Center Vilnius University, Saulėtekio av 7, LT-10257 Vilnius, Lithuania;
| | - Vita Pašukonienė
- National Cancer Institute, P. Baublio Str. 3B, LT-08406 Vilnius, Lithuania (P.B.); (N.D.); (A.M.); (R.S.); (V.P.)
| |
Collapse
|
4
|
Pilotto Heming C, Aran V. The potential of circulating cell-free RNA in CNS tumor diagnosis and monitoring: A liquid biopsy approach. Crit Rev Oncol Hematol 2024; 204:104504. [PMID: 39251048 DOI: 10.1016/j.critrevonc.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
Early detection of malignancies, through regular cancer screening, has already proven to have potential to increase survival rates. Yet current screening methods rely on invasive, expensive tissue sampling that has hampered widespread use. Liquid biopsy is noninvasive and represents a potential approach to precision oncology, based on molecular profiling of body fluids. Among these, circulating cell-free RNA (cfRNA) has gained attention due to its diverse composition and potential as a sensitive biomarker. This review provides an overview of the processes of cfRNA delivery into the bloodstream and the role of cfRNA detection in the diagnosis of central nervous system (CNS) tumors. Different types of cfRNAs such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been recognized as potential biomarkers in CNS tumors. These molecules exhibit differential expression patterns in the plasma, cerebrospinalfluid (CSF) and urine of patients with CNS tumors, providing information for diagnosing the disease, predicting outcomes, and assessing treatment effectiveness. Few clinical trials are currently exploring the use of liquid biopsy for detecting and monitoring CNS tumors. Despite obstacles like sample standardization and data analysis, cfRNA shows promise as a tool in the diagnosis and management of CNS tumors, offering opportunities for early detection, personalized therapy, and improved patient outcomes.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Veronica Aran
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil.
| |
Collapse
|
5
|
Gristina V, Russo G, Bazan Russo TD, Busuito G, Iannì G, Pisapia P, Scimone C, Palumbo L, Incorvaia L, Badalamenti G, Galvano A, Bazan V, Russo A, Troncone G, Malapelle U, Pepe F. Recent advances in the use of liquid biopsy for the diagnosis and treatment of lung cancer. Expert Rev Respir Med 2024; 18:991-1001. [PMID: 39491533 DOI: 10.1080/17476348.2024.2423824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION In the era of precision medicine, liquid biopsy rapidly emerges as an integrative diagnostic tool to successfully stratify solid tumor patients in accordance with molecular fingerprinting. As the matter of fact, a plethora of analytes may be isolated from liquid biosources supporting the potential application of liquid biopsy in several clinical scenarios. Despite this promising role, liquid biopsy is drastically affected by low abundance of analytes in biological matrix requiring highly sensitive technologies, trained personnel, and optimized diagnostic procedures to successfully administrate this revolutionary diagnostic tool in clinical practice. AREAS COVERED This review aims to investigate the recent advancements in technical approaches available to manage liquid biopsy samples, particularly focusing on their application in LC diagnosis and treatment. EXPERT OPINION The rapidly evolving scenario of liquid biopsy-based approaches is revolutionizing clinical administration of lung cancer patients. Of note, the integration of genomic, epigenomic, and transcriptomic markers lays the basis for 'comprehensive' molecular fingerprinting of lung cancer patients. Here, the next-generation technologies are fundamental in molecular profiling in diagnostic routine biofluids.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianluca Russo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Claudia Scimone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| |
Collapse
|
6
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
7
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
8
|
Nicholas C, Beharry A, Bendzsak AM, Bisson KR, Dadson K, Dudani S, Iafolla M, Irshad K, Perdrizet K, Raskin W, Singh R, Tsui DCC, Wang X, Yeung C, Cheema PK, Sheffield BS. Point of Care Liquid Biopsy for Cancer Treatment-Early Experience from a Community Center. Cancers (Basel) 2024; 16:2505. [PMID: 39061145 PMCID: PMC11274424 DOI: 10.3390/cancers16142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsy is rapidly becoming an indispensable tool in the oncologist's arsenal; however, this technique remains elusive in a publicly funded healthcare system, and real-world evidence is needed to demonstrate utility and feasibility. Here, we describe the first experience of an in-house point of care liquid biopsy program at a Canadian community hospital. A retrospective review of consecutive cases that underwent plasma-based next-generation sequencing (NGS) was conducted. Liquid biopsy was initiated at the discretion of clinicians. Sequencing followed a point of care workflow using the Genexus™ integrated sequencer and the Oncomine precision assay, performed by histotechnologists. Results were reported by the attending pathologist. Eligible charts were reviewed for outcomes of interest, including the intent of the liquid biopsy, results of the liquid biopsy, and turnaround time from blood draw to results available. A total of 124 cases, with confirmed or suspected cancer, underwent liquid biopsy between January 2021 and November 2023. The median turnaround time for liquid biopsy results was 3 business days (range 1-12 days). The sensitivity of liquid biopsies was 71%, compared to tissue testing in cases with matched tissue results available for comparison. Common mutations included EGFR (29%), in 86 lung cancer patients, and PIK3CA (22%), identified in 13 breast cancer patients. Healthcare providers ordered liquid biopsies to inform diagnostic investigations and treatment decisions, and to determine progression or resistance mechanisms, as these reasons often overlapped. This study demonstrates that rapid in-house liquid biopsy using point of care methodology is feasible. The technique facilitates precision treatment and offers many additional advantages for cancer care.
Collapse
Affiliation(s)
- Champica Nicholas
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Andrea Beharry
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Anna M. Bendzsak
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Kassandra R. Bisson
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Keith Dadson
- Thermo Fisher Scientific, Burlington, ON L7L 5Z1, Canada
| | - Shaan Dudani
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Marco Iafolla
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kashif Irshad
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Kirstin Perdrizet
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - William Raskin
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Raviya Singh
- Division of Medical Oncology, Scarborough Health Network, Scarborough, ON M1P 2V5, Canada
| | - David Chun Cheong Tsui
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Xin Wang
- Division of Medical Oncology, UHN Princess Margaret Cancer Centre, Toronto, ON M5S 1A1, Canada
| | - Ching Yeung
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Parneet K. Cheema
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Brandon S. Sheffield
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| |
Collapse
|
9
|
Ye F, Wechsler J, Bouzidi A, Uzan G, Naserian S. Fast and efficient isolation of murine circulating tumor cells using screencell technology for pre-clinical analyzes. Sci Rep 2024; 14:15019. [PMID: 38951573 PMCID: PMC11217394 DOI: 10.1038/s41598-024-66032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Circulating tumor cells (CTCs) represent a rare and heterogeneous population of cancer cells that are detached from the tumor site and entered blood or lymphatic circulation. Once disseminated in distant tissues, CTCs could remain dormant or create a tumor mass causing serious danger for patients. Many technologies exist to isolate CTCs from patients' blood samples, mostly based on microfluidic systems or by sorting them according to their surface antigens, notably EpCAM, and/or cytokeratins for carcinoma. ScreenCell has developed an easy-to-use, antigen-independent, rapid, cost-effective, and efficient technology that isolates CTCs according to their bigger size compared to the blood cells. This study provides the technical information necessary to isolate and characterize CTCs from mouse blood. By using blood samples from transgenic mice with breast cancer or from WT mice in which we spiked cancer cells, we showed that ScreenCell technology is compatible with standard EDTA blood collection tubes. Furthermore, the ScreenCell Cyto kit could treat up to 500 µl and the ScreenCell MB kit up to 200 µl of mouse blood. As the ScreenCell MB kit captures unaltered live CTCs, we have shown that their DNA could be efficiently extracted, and the isolated cells could be grown in culture. In conclusion, ScreenCell provides a rapid, easy, antigen-independent, cost-effective, and efficient technology to isolate and characterize CTCs from the blood samples of cancer patients and murine models. Thanks to this technology CTCs could be captured fixed or alive. Murine cancer models are extensively used in pre-clinical studies. Therefore, this study demonstrates the crucial technical points necessary while manipulating mouse blood samples using ScreenCell technology.
Collapse
Affiliation(s)
- Fei Ye
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France
| | | | - Amira Bouzidi
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France.
| |
Collapse
|
10
|
Khan R, Qureshi A, Azhar M, Hassan ZU, Gul S, Ahmad S. Recent Progress of Fluorescent Carbon Dots and Graphene Quantum Dots for Biosensors: Synthesis of Solution Methods and their Medical Applications. J Fluoresc 2024:10.1007/s10895-024-03809-3. [PMID: 38869710 DOI: 10.1007/s10895-024-03809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
In the fields of health and biology, fluorescent nanomaterials have emerged as highly potential and very useful candidates for use in biosensor applications. These typical highly powerful nanomaterials are carbon dots (CDs) and graphene quantum dots (GQDs) among many other metallic nanomaterials. In the context of medical biosensors, this review article investigates the techniques of synthesis, and many uses of these nanomaterials, the obstacles that they face, and the potential for their future. We cover the significance of fluorescent nanomaterials, their use in the medical field, as well as the several techniques of synthesis for CDs and GQDs, including ultrasonication, hydrothermal, electrochemical method, surface modification, and solvothermal. In addition, we also discuss their biomedical applications, which include biomolecule detection, disease diagnosis and examine the obstacles and prospective possibilities for development of ultra-bright, ultra-sensitive, and selective biosensors for use in in-vivo research.Fluorescent carbon dots and graphene quantum dots is synthesized by using several types of raw material and methods. These Carbon dots and graphene quantum dots are used in the medical field includes detection of biomaterials, detection of cancer, virus and mutation in DNA.
Collapse
Affiliation(s)
- Rafaqat Khan
- Department of Chemistry, Government Postgraduate College, Manshera, 21300, Pakistan
| | - Amina Qureshi
- Department of Chemistry, Government Postgraduate College, Manshera, 21300, Pakistan
| | - Muhammad Azhar
- Department of Chemistry, Government Postgraduate College, Manshera, 21300, Pakistan
| | - Zia Ul Hassan
- Department of Chemistry, Government Postgraduate College, Manshera, 21300, Pakistan
| | - Sagheer Gul
- Department of Chemistry, Government Postgraduate College, Manshera, 21300, Pakistan
| | - Saeed Ahmad
- Department of Physics, Government Postgraduate College, Manshera, 21300, Pakistan.
| |
Collapse
|
11
|
Akanyibah FA, Zhu Y, Wan A, Ocansey DKW, Xia Y, Fang AN, Mao F. Effects of DNA methylation and its application in inflammatory bowel disease (Review). Int J Mol Med 2024; 53:55. [PMID: 38695222 DOI: 10.3892/ijmm.2024.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)‑23/IL‑12, wingless‑related integration site, IL‑6‑associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm‑associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm‑associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision‑making and encouraging therapeutic alternatives.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| | - Yi Zhu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Aijun Wan
- Zhenjiang College, Zhenjiang, Jiangsu 212028, P.R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - An-Ning Fang
- Basic Medical School, Anhui Medical College, Hefei, Anhui 230061, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
12
|
Xiong N, Wu H, Yu Z. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies. Front Oncol 2024; 14:1405491. [PMID: 38863622 PMCID: PMC11165151 DOI: 10.3389/fonc.2024.1405491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in oncology due to its aggressive nature, limited treatment options, and poorer prognosis compared to other breast cancer subtypes. This comprehensive review examines the therapeutic and diagnostic landscape of TNBC, highlighting current strategies, emerging therapies, and future directions. Targeted therapies, including PARP inhibitors, immune checkpoint inhibitors, and EGFR inhibitors, hold promise for personalized treatment approaches. Challenges in identifying novel targets, exploring combination therapies, and developing predictive biomarkers must be addressed to optimize targeted therapy in TNBC. Immunotherapy represents a transformative approach in TNBC treatment, yet challenges in biomarker identification, combination strategies, and overcoming resistance persist. Precision medicine approaches offer opportunities for tailored treatment based on tumor biology, but integration of multi-omics data and clinical implementation present challenges requiring innovative solutions. Despite these challenges, ongoing research efforts and collaborative initiatives offer hope for improving outcomes and advancing treatment strategies in TNBC. By addressing the complexities of TNBC biology and developing effective therapeutic approaches, personalized treatments can be realized, ultimately enhancing the lives of TNBC patients. Continued research, clinical trials, and interdisciplinary collaborations are essential for realizing this vision and making meaningful progress in TNBC management.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Meizhou Municipal Engineering and Technology Research Centre for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, China
| | - Zhikang Yu
- Research Experiment Centre, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
13
|
de Miranda FS, Slaibi-Filho J, Calasans dos Santos G, Carmo NT, Kaneto CM, Borin TF, Luiz WB, Gastalho Campos LC. MicroRNA as a promising molecular biomarker in the diagnosis of breast cancer. Front Mol Biosci 2024; 11:1337706. [PMID: 38813102 PMCID: PMC11134088 DOI: 10.3389/fmolb.2024.1337706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction: Breast cancer represents the most prevalent malignancy among women. Recent advancements in translational research have focused on the identification of novel biomarkers capable of providing valuable insights into patient outcomes. Furthermore, comprehensive investigations aimed at discovering novel miRNAs, unraveling their biological functions, and deciphering their target genes have significantly contributed to our understanding of the roles miRNAs play in tumorigenesis. Consequently, these investigations have facilitated the way for the development of miRNA-based approaches for breast cancer prognosis, diagnosis, and treatment. However, conducting a more extensive array of studies, particularly among diverse ethnic groups, is imperative to expand the scope of research and validate the significance of miRNAs. This study aimed to assess the expression patterns of circulating miRNAs in plasma as a prospective biomarker for breast cancer patients within a population primarily consisting of individuals from Black, Indigenous, and People of Color (BIPOC) communities. Methods: We evaluated 49 patients with breast cancer compared to 44 healthy women. Results and discussion: All miRNAs analyzed in the plasma of patients with breast cancer were downregulated. ROC curve analysis of miR-21 (AUC = 0.798, 95% CI: 0.682-0.914, p <0.0001), miR-1 (AUC = 0.742, 95% CI: 0.576-0.909, p = 0.004), miR-16 (AUC = 0.721, 95% CI: 0.581-0.861, p = 0.002) and miR-195 (AUC = 0.672, 95% CI: 0.553-0.792, p = 0.004) showed better diagnostic accuracy in discrimination of breast cancer patients in comparison with healthy women. miR-210, miR-21 showed the highest specificities values (97.3%, 94.1%, respectively). Following, miR-10b and miR-195 showed the highest sensitivity values (89.3%, and 77.8%, respectively). The panel with a combination of four miRNAs (miR-195 + miR-210 + miR-21 + miR-16) had an AUC of 0.898 (0.765-0.970), a sensitivity of 71.4%, and a specificity of 100.0%. Collectively, our results highlight the miRNA combination in panels drastically improves the results and showed high accuracy for the diagnosis of breast cancer displaying good sensitivity and specificity.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - José Slaibi-Filho
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Gabriel Calasans dos Santos
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Nathalia Teixeira Carmo
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Martins Kaneto
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Thaiz Ferraz Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Wilson Barros Luiz
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luciene Cristina Gastalho Campos
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
14
|
Heussner RT, Whalen RM, Anderson A, Theison H, Baik J, Gibbs S, Wong MH, Chang YH. Quantitative image analysis pipeline for detecting circulating hybrid cells in immunofluorescence images with human-level accuracy. Cytometry A 2024; 105:345-355. [PMID: 38385578 PMCID: PMC11217923 DOI: 10.1002/cyto.a.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population found in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application to PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analysis of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a β-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images, and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC data set including nine patients and two disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the data set and had a tendency to underestimate CHC counts for regions of interest (ROIs) containing relatively large amounts of cells (>50,000) when using the conventional enumeration method. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the β-VAE embeddings achieved an F1 score of 0.80, matching the average performance of human annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.
Collapse
Affiliation(s)
- Robert T. Heussner
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Riley M. Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashley Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Heather Theison
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Baik
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Summer Gibbs
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Zhang Y, Han X, Luo J, Zhang Q, He X. Viscoelasticity quantification of cancerous tongue using intraoral optical coherence elastography: a preliminary study. BIOMEDICAL OPTICS EXPRESS 2024; 15:3480-3491. [PMID: 38855658 PMCID: PMC11161336 DOI: 10.1364/boe.519078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
Quantifying the biomechanical properties of the tongue is significant for early diagnosis of tongue carcinoma. Therefore, an intraoral optical coherence elastography system based on a miniature probe was proposed here to evaluate the viscoelasticity of in vivo tongue for the first time. Results of experiments with Sprague-Dawley rats indicate that considerable elasticity diversity occurred between cancerous and normal tongues, and the corresponding ratio of their Young's modulus was evaluated to be 3.74. It is also found that, viscosity in diseased tissue is smaller than that in normal tissue. Additionally, healthy, transitional and cancerous regions in the cancerous tongue can be distinguished easily by calculating viscoelasticity characteristics. Based on this preliminary attempt, our method with advantages of noninvasive, high-resolution, high-sensitivity and real-time detection and convenient operation may have good potential to become a useful tool for tongue carcinoma assessment after further optimization.
Collapse
Affiliation(s)
- Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R., China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R., China
- School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing, P. R., China
| | - Jiahui Luo
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R., China
| | - Qin Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R., China
| | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R., China
- School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing, P. R., China
| |
Collapse
|
16
|
Shavali M, Moradi A, Tahmaseb M, Mohammadian K, Ganji SM. Circulating-tumour DNA methylation of HAND1 gene: a promising biomarker in early detection of colorectal cancer. BMC Med Genomics 2024; 17:117. [PMID: 38689296 PMCID: PMC11061902 DOI: 10.1186/s12920-024-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the significant global health concerns with an increase in cases. Regular screening tests are crucial for early detection as it is often asymptomatic in the initial stages. Liquid biopsies, a non-invasive approach that examines biomarkers in biofluids, offer a promising future in diagnosing and screening cancer. Circulating-tumour DNA (ctDNA) is the genetic material in biofluids released into the circulatory system by cells. ctDNA is a promising marker for monitoring patients since cancer cells display distinct DNA methylation patterns compared to normal cells. The potential of our research to contribute to early detection and improved patient outcomes is significant. AIMS The primary objective of this research project was to explore the HAND1 methylation levels in plasma ctDNA as a potential biomarker for diagnosing CRC and evaluate the methylation level of the well-established gene SPET9 to compare it with the methylation level of HAND1. MATERIALS AND METHODS Plasma samples were collected from 30 CRC patients and 15 healthy individuals, with CRC samples obtained pre-treatment. ctDNA was extracted and treated with bisulfite for methylation status assessment. Quantitative methylation-specific PCR (qMS-PCR) was performed for HAND1 and SEPT9, using β-actin (ACTB gene) as a reference. The study aims to evaluate the potential of these genes as diagnostic biomarkers for CRC, contributing to early detection and improved patient outcomes. RESULTS Our study yielded significant results: 90% of CRC patients (27 out of 30) had hypermethylation in the SEPT9 gene, and 83% (25 out of 30) exhibited hypermethylation in the HAND1 gene. The methylation levels of both genes were significantly higher in CRC patients than in healthy donors. These findings underscore the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC, potentially leading to early detection and improved patient outcomes. CONCLUSION These findings highlight the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC. However, further research and validation studies are needed to confirm these findings and to explore their clinical utility in CRC diagnosis and management.
Collapse
Affiliation(s)
- Mehrdad Shavali
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Arash Moradi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15, P.O. Box 14965/161, Tehran, Tehran - Karaj Highway, Iran
| | - Mohammad Tahmaseb
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Kamal Mohammadian
- Department of Radiation Oncology, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15, P.O. Box 14965/161, Tehran, Tehran - Karaj Highway, Iran.
| |
Collapse
|
17
|
Elvin JA. Understanding the Landscape of Clinically Available Molecular Testing. Surg Oncol Clin N Am 2024; 33:217-230. [PMID: 38401906 DOI: 10.1016/j.soc.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Over the past three decades, the landscape of clinically available molecular tests has evolved due to advancements in basic science cancer research and the subsequent utilization of this knowledge to develop DNA, RNA, and protein-based molecular assays for oncology that can be employed for routine clinical use in diagnostics laboratories. Molecular testing of tumors is revealing gaps in previous histopathologic classification systems and opportunities for new, personalized treatment paradigms. Awareness of validated molecular assay options and their general advantages and limitations is crucial for oncology care providers to ensure the optimal test(s) are selected for each patient's circumstances.
Collapse
Affiliation(s)
- Julia A Elvin
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc 400 Summer Street, Boston, MA 02210, USA.
| |
Collapse
|
18
|
Bao Y, Zhang D, Guo H, Ma W. Beyond blood: Advancing the frontiers of liquid biopsy in oncology and personalized medicine. Cancer Sci 2024; 115:1060-1072. [PMID: 38308498 PMCID: PMC11007055 DOI: 10.1111/cas.16097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Liquid biopsy is emerging as a pivotal tool in precision oncology, offering a noninvasive and comprehensive approach to cancer diagnostics and management. By harnessing biofluids such as blood, urine, saliva, cerebrospinal fluid, and pleural effusions, this technique profiles key biomarkers including circulating tumor DNA, circulating tumor cells, microRNAs, and extracellular vesicles. This review discusses the extended scope of liquid biopsy, highlighting its indispensable role in enhancing patient outcomes through early detection, continuous monitoring, and tailored therapy. While the advantages are notable, we also address the challenges, emphasizing the necessity for precision, cost-effectiveness, and standardized methodologies in its broader application. The future trajectory of liquid biopsy is set to expand its reach in personalized medicine, fueled by technological advancements and collaborative research.
Collapse
Affiliation(s)
- Ying Bao
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Dejing Zhang
- Department of General SurgeryPuyang Oilfield General HospitalPuyangChina
| | - Huihui Guo
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell InstituteUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
19
|
Sequeira JP, Salta S, Freitas R, López-López R, Díaz-Lagares Á, Henrique R, Jerónimo C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers (Basel) 2024; 16:1363. [PMID: 38611041 PMCID: PMC11011064 DOI: 10.3390/cancers16071363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most frequently occurring malignancies. Although most cases are not life-threatening, approximately 20% endure an unfavorable outcome. PSA-based screening reduced mortality but at the cost of an increased overdiagnosis/overtreatment of low-risk (lrPCa) and favorable intermediate-risk (firPCa) PCa. PCa risk-groups are usually identified based on serum Prostate-Specific Antigen (PSA), the Gleason score, and clinical T stage, which have consistent although variable specificity or subjectivity. Thus, more effective and specific tools for risk assessment are needed, ideally making use of minimally invasive methods such as liquid biopsies. In this systematic review we assessed the clinical potential and analytical performance of liquid biopsy-based biomarkers for pre-treatment risk stratification of PCa patients. METHODS Studies that assessed PCa pre-treatment risk were retrieved from PubMed, Scopus, and MedLine. PCa risk biomarkers were analyzed, and the studies' quality was assessed using the QUADAS-2 tool. RESULTS The final analysis comprised 24 full-text articles, in which case-control studies predominated, mostly reporting urine-based biomarkers (54.2%) and biomarker quantification by qPCR (41.7%). Categorization into risk groups was heterogeneous, predominantly making use of the Gleason score. CONCLUSION This systematic review unveils the substantial clinical promise of using circulating biomarkers in assessing the risk for prostate cancer patients. However, the standardization of groups, categories, and biomarker validation are mandatory before this technique can be implemented. Circulating biomarkers might represent a viable alternative to currently available tools, obviating the need for tissue biopsies, and allowing for faster and more cost-effective testing, with superior analytical performance, specificity, and reproducibility.
Collapse
Affiliation(s)
- José Pedro Sequeira
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Doctoral Program in Biomedical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Doctoral Program in Pathology and Molecular Genetics, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Freitas
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Urology & Urology Clinic, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rafael López-López
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
20
|
Cortiana V, Van de Kieft A, Chorya H, Gambill J, Park CH, Leyfman Y. Innovations in Thoracic Oncology and the Promise of Liquid Biopsies with Dr. Luis Raez. Cancers (Basel) 2024; 16:799. [PMID: 38398189 PMCID: PMC10886586 DOI: 10.3390/cancers16040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Thoracic oncology continues to pose a great threat to human health as one of the most common forms of cancer. Liquid biopsies present a transformative approach to treating patients affected by these types of diseases by providing a less invasive genetic overview of the tumor, aiding in both diagnostic and treatment measures. The primary objective of this article is to examine the prospects of liquid biopsies in managing thoracic malignancies and to present barriers to their usage as demonstrated by Dr. Luis Raez. In examining why molecular diagnostics continue to be employed together with more traditional methods, this article presents the next steps in the clinical application of blood-based cancer screening. Future cancer diagnosis and treatment aim to prioritize circulating biomarker analyses based on their potential for the detection and monitoring of thoracic cancers. Liquid biopsies are favored thanks to their reduced invasiveness with respect to traditional treatments. The further study of clinical biomarkers and technological advancements are thus pivotal to enhance the clinical applicability of this method. In conclusion, this blood-based analysis offers a promising route by which the diagnosis, treatments, and outcomes of thoracic cancer can be improved.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Eugene T, Roy Sg J, S N, Rappai M. Assessment of the Efficacy of Circulating Tumor Cells by Liquid Biopsy in the Diagnosis and Prediction of Tumor Behavior of Gliomas: A Systematic Review. Cureus 2024; 16:e54101. [PMID: 38357405 PMCID: PMC10865163 DOI: 10.7759/cureus.54101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
In the realm of glioma management, the ability to accurately diagnose and predict tumor behavior remains a formidable task. Emerging as a beacon of hope, liquid biopsy (LB), with its potential to detect circulating tumor (CT) cells, offers a novel and promising avenue for addressing these challenges. This systematic review delves into the effectiveness of LB in transforming the landscape of glioma analysis as well as prognosis, shedding light on its clinical significance and implications. We conducted a comprehensive literature search from 2015 to 2023, using multiple sources. We assessed titles and abstracts first, followed by full-text review if they met our criteria. We included those studies that fulfill the inclusion criteria of the study. For bias assessment, we used a two-part tool for specific domains and a quality assessment tool for diagnostic accuracy studies. In this review, we incorporated eight studies. A total of 498 patients were identified across eight studies. The average sensitivity was 72.28% in seven of these studies, while the average specificity was 91.52% in the same seven studies. Our review revealed a sensitivity of 72.28% and an impressive specificity of 91.52%. This underscores the potential of LB as a valuable prognostic tool for detecting CT cells. However, the early detection of tumor cells and the prediction of tumor behavior in gliomas continue to be topics of debate, necessitating further research for more precise and reliable outcomes.
Collapse
Affiliation(s)
- Teena Eugene
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Jano Roy Sg
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Nivethitha S
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Meethu Rappai
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
22
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
23
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
24
|
Baran K, Kordiak J, Jabłoński S, Brzeziańska-Lasota E. Panel of miR-150 and linc00673, regulators of CCR6/CCL20 may serve as non-invasive diagnostic marker of non-small cell lung cancer. Sci Rep 2023; 13:9642. [PMID: 37316552 DOI: 10.1038/s41598-023-36485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Fernandes G, Rodrigues A, Matos C, Barata F, Cirnes L, Ferreira L, Lopes JA, Felizardo M, Fidalgo P, Brito U, Parente B. Liquid biopsy in the management of advanced lung cancer: Implementation and practical aspects. Cancer Treat Res Commun 2023; 36:100725. [PMID: 37321073 DOI: 10.1016/j.ctarc.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide. In recent years, the discovery of actionable molecular alterations has changed the treatment paradigm of the disease. Tissue biopsies have been the gold standard for the identification of targetable alterations but present several limitations, calling for alternatives to detect driver and acquired resistance alterations. Liquid biopsies reveal great potential in this setting and also in the evaluation and monitoring of treatment response. However, several challenges currently hamper its widespread adoption in clinical practice. This perspective article evaluates the potential and challenges associated with liquid biopsy testing, considering a Portuguese expert panel dedicated to thoracic oncology point of view, and providing practical insights for its implementation based on the experience and applicability in the Portuguese context.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal, Faculdade de Medicina da Universidade do Porto, Porto, Portugal, IBMC/i3S - Instituto de Biologia Molecular e Celular/Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | | | - Cláudia Matos
- Lung Unit, Champalimaud Foundation, Lisboa, Portugal
| | - Fernando Barata
- Pulmonology Department, Centro Hospitalar e Universitário de Coimbra, EPE - Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | | | | | - José Albino Lopes
- Pulmonology Department, ULSAM, Viana do Castelo, Portugal; Unidade CUF de Oncologia, Hospital CUF Porto, Porto Portugal
| | | | - Paula Fidalgo
- Medical Oncology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ulisses Brito
- Pulmonology Department, Centro Hospitalar e Universitário do Algarve, Faro, Portugal
| | | |
Collapse
|
26
|
Kurniali PC, Storandt MH, Jin Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J Pers Med 2023; 13:jpm13040694. [PMID: 37109080 PMCID: PMC10145886 DOI: 10.3390/jpm13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells shed from the primary tumor into circulation, with clusters of CTCs responsible for cancer metastases. CTC detection and isolation from the bloodstream are based on properties distinguishing CTCs from normal blood cells. Current CTC detection techniques can be divided into two main categories: label dependent, which depends upon antibodies that selectively bind cell surface antigens present on CTCs, or label-independent detection, which is detection based on the size, deformability, and biophysical properties of CTCs. CTCs may play significant roles in cancer screening, diagnosis, treatment navigation, including prognostication and precision medicine, and surveillance. In cancer screening, capturing and evaluating CTCs from peripheral blood could be a strategy to detect cancer at its earliest stage. Cancer diagnosis using liquid biopsy could also have tremendous benefits. Full utilization of CTCs in the clinical management of malignancies may be feasible in the near future; however, several challenges still exist. CTC assays currently lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers of detectable CTCs. As assays improve and more trials evaluate the clinical utility of CTC detection in guiding therapies, we anticipate increased use in cancer management.
Collapse
Affiliation(s)
- Peter C Kurniali
- Sanford Cancer Center, 701 E Rosser Ave, Bismarck, ND 58501, USA
- Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
27
|
Pilotto Heming C, Niemeyer Filho P, Moura-Neto V, Aran V. Recent advances in the use of liquid biopsy to fight central nervous system tumors. Cancer Treat Res Commun 2023; 35:100709. [PMID: 37088042 DOI: 10.1016/j.ctarc.2023.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Brain tumors are considered one of the deadliest types of cancer, being challenging to treat, especially due to the blood-brain barrier, which has been linked to treatment resistance. The genomic classification of brain tumors has been helping in the diagnostic precision, however tumor heterogeneity in addition to the difficulties to obtain tissue biopsies, represent a challenge. The biopsies are usually obtained either via neurosurgical removal or stereotactic tissue biopsy, which can be risky procedures for the patient. To overcome these challenges, liquid biopsy has become an interesting option by constituting a safer procedure than conventional biopsy, which may offer valuable cellular and molecular information representative of the whole organism. Besides, it is relatively easy to obtain such as in the case of blood (venipuncture) and urine sample collection. In the present comprehensive review, we discuss the newest information regarding liquid biopsy in the brain tumors' field, methods employed, the different sources of bio-fluids and their potential circulating targets.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil.
| |
Collapse
|
28
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
29
|
Tatischeff I. Extracellular Vesicle-DNA: The Next Liquid Biopsy Biomarker for Early Cancer Diagnosis? Cancers (Basel) 2023; 15:cancers15051456. [PMID: 36900248 PMCID: PMC10000627 DOI: 10.3390/cancers15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
After a short introduction about the history of liquid biopsy, aimed to noninvasively replace the common tissue biopsy as a help for cancer diagnosis, this review is focused on extracellular vesicles (EVs), as the main third component, which is now coming into the light of liquid biopsy. Cell-derived EV release is a recently discovered general cellular property, and EVs harbor many cellular components reflecting their cell of origin. This is also the case for tumoral cells, and their cargoes might therefore be a "treasure chest" for cancer biomarkers. This has been extensively explored for a decade, but the EV-DNA content escaped this worldwide query until recently. The aim of this review is to gather the pilot studies focused on the DNA content of circulating cell-derived EVs, and the following five years of studies about the circulating tumor EV-DNA. The recent preclinical studies about the circulating tEV-derived gDNA as a potential cancer biomarker developed into a puzzling controversy about the presence of DNA into exosomes, coupled with an increased unexpected non vesicular complexity of the extracellular environment. This is discussed in the present review, together with the challenges that need to be solved before any efficient clinical transfer of EV-DNA as a quite promising cancer diagnosis biomarker.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS and UPMC Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France
| |
Collapse
|
30
|
Overcoming EGFR Resistance in Metastatic Colorectal Cancer Using Vitamin C: A Review. Biomedicines 2023; 11:biomedicines11030678. [PMID: 36979659 PMCID: PMC10045351 DOI: 10.3390/biomedicines11030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 02/26/2023] Open
Abstract
Targeted monoclonal antibody therapy against Epidermal Growth Factor Receptor (EGFR) is a leading treatment modality against metastatic colorectal cancer (mCRC). However, with the emergence of KRAS and BRAF mutations, resistance was inevitable. Cells harboring these mutations overexpress Glucose Transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which enables intracellular vitamin C transport, leading to reactive oxygen species generation and finally cell death. Therefore, high dose vitamin C is proposed to overcome this resistance. A comprehensive search strategy was adopted using Pubmed and MEDLINE databases (up to 11 August 2022). There are not enough randomized clinical trials to support its use in the clinical management of mCRC, except for a subgroup analysis from a phase III study. High dose vitamin C shows a promising role in overcoming EGFR resistance in mCRC with wild KRAS mutation with resistance to anti-epidermal growth factor inhibitors and in patients with KRAS and BRAF mutations.
Collapse
|
31
|
Song MK, Park SI, Cho SW. Circulating biomarkers for diagnosis and therapeutic monitoring in bone metastasis. J Bone Miner Metab 2023; 41:337-344. [PMID: 36729305 DOI: 10.1007/s00774-022-01396-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023]
Abstract
Bone is a frequent site of metastasis for multiple types of solid tumors in organs such as prostate, breast, lung, etc., accounting for significant morbidities and mortalities of afflicted patients. One of the major problems of bone metastasis is lack of biomarkers for early diagnosis and for monitoring therapeutic responses. Medical imaging modalities such as computerized tomography, magnetic resonance imaging, and radioactive isotope-based bone scans are currently standard clinical practices, yet these imaging techniques are limited to detect early lesions or to accurately monitor the metastatic disease progression during standard and/or experimental therapies. Accordingly, development of novel blood biomarkers rationalizes extensive basic research and clinical development. This review article covers the up-to-date information on protein- and cell-based biomarkers of bone metastasis that are currently used in the clinical practices and also are under development.
Collapse
Affiliation(s)
- Min-Kyoung Song
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
32
|
Sharma T, Nisar S, Masoodi T, Macha MA, Uddin S, Akil AAS, Pandita TK, Singh M, Bhat AA. Current and emerging biomarkers in ovarian cancer diagnosis; CA125 and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:85-114. [PMID: 36707207 DOI: 10.1016/bs.apcsb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ovarian cancer (OC) is one of the most common causes of cancer-related death in women worldwide. Its five-year survival rates are worse than the two most common gynecological cancers, cervical and endometrial. This is because it is asymptomatic in the early stages and usually detected in the advanced metastasized stage. Thus, survival is increasingly dependent on timely diagnosis. The delay in detection is contributed partly by the occurrence of non-specific clinical symptoms in the early stages and the lack of effective biomarkers and detection approaches. This underlines the need for biomarker identification and clinical validation, enabling earlier diagnosis, effective prognosis, and response to therapy. Apart from the traditional diagnostic biomarkers for OC, several new biomarkers have been delineated using advanced high-throughput molecular approaches in recent years. They are currently being clinically evaluated for their true diagnostic potential. In this chapter, we document the commonly utilized traditional screening markers and recently identified emerging biomarkers in OC diagnosis, focusing on secretory and protein biomarkers. We also briefly reviewed the recent advances and prospects in OC diagnosis.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
33
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
34
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
35
|
Addressing the Clinical Feasibility of Adopting Circulating miRNA for Breast Cancer Detection, Monitoring and Management with Artificial Intelligence and Machine Learning Platforms. Int J Mol Sci 2022; 23:ijms232315382. [PMID: 36499713 PMCID: PMC9736108 DOI: 10.3390/ijms232315382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.
Collapse
|
36
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractRecent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient’s clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
|
37
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
38
|
Chen M, Hou L, Hu L, Tan C, Wang X, Bao P, Ran Q, Chen L, Li Z. Platelet detection as a new liquid biopsy tool for human cancers. Front Oncol 2022; 12:983724. [PMID: 36185270 PMCID: PMC9515491 DOI: 10.3389/fonc.2022.983724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is still a leading cause of death worldwide and liquid biopsy is a powerful tool that can be applied to different stages of cancer screening and treatment. However, as the second most abundant cell type in the bloodstream, platelets are isolated through well-established and fast methods in clinic but their value as a BioSource of cancer biomarkers is relatively recent. Many studies demonstrated the bidirectional interaction between cancer cells and platelets. Platelets transfer various proteins (e.g., growth factors, cytokine, chemokines) and RNAs (e.g., mRNA, lncRNA, miRNA, circRNA) into the tumor cells and microenvironment, leading the stimulation of tumor growth and metastasis. In turn, the platelet clinical characteristics (e.g., count and volume) and contents (e.g., RNA and protein) are altered by the interactions with cancer cells and this enables the early cancer detection using these features of platelets. In addition, platelet-derived microparticles also demonstrate the prediction power of being cancer biomarkers. In this review, we focus on the clinical applications of platelet detection using the platelet count, mean platelet volume, platelet RNA and protein profiles for human cancers and discuss the gap in bringing these implementations into the clinic.
Collapse
Affiliation(s)
- Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Lijia Hou
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| |
Collapse
|