1
|
Davidson B, Lozano AM. Focused ultrasound: focused on tremor. Expert Rev Med Devices 2025; 22:467-475. [PMID: 40184524 DOI: 10.1080/17434440.2025.2489493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/06/2025]
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) has emerged as a leading noninvasive therapy for tremor, offering a precise, lesion-based alternative to deep brain stimulation (DBS) and traditional lesioning techniques. By using phased ultrasound arrays to focus energy at intracranial targets, MRgFUS allows for real-time visualization and monitoring, improving safety and efficacy. Initially developed for essential tremor (ET), MRgFUS-VIM-thalamotomy has gained widespread acceptance and is now a first-line option for tremor-dominant Parkinson's disease (TDPD) and other tremor syndromes. AREAS COVERED This review discusses the fundamental physics of focused ultrasound, key anatomical targets, and the clinical application of MRgFUS thalamotomy, pallidotomy, and subthalamotomy. Skull density ratio (SDR) and energy efficiency are highlighted as crucial factors affecting treatment outcomes. The evolution of MRgFUS as a bilateral treatment, along with the exploration of novel targets such as the pallidothalamic tract, is examined. Additionally, we discuss advancements in FUS neuromodulation, which could complement lesioning by providing temporary or reversible symptom relief. EXPERT OPINION MRgFUS is poised to further revolutionize tremor treatment with frameless technology, staged bilateral procedures, and the integration of neuromodulation. Future developments may allow for precise, adaptive therapies that enhance both efficacy and patient experience.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Manuel TJ, Bancel T, Tiennot T, Didier M, Santin M, Daniel M, Attali D, Tanter M, Lehéricy S, Pyatigorskaya N, Aubry JF. Ultra-short time-echo based ray tracing for transcranial focused ultrasound aberration correction in human calvaria. Phys Med Biol 2025; 70:075006. [PMID: 38776944 DOI: 10.1088/1361-6560/ad4f44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Magnetic resonance guided transcranial focused ultrasound holds great promises for treating neurological disorders. This technique relies on skull aberration correction which requires computed tomography (CT) scans of the skull of the patients. Recently, ultra-short time-echo (UTE) magnetic resonance (MR) sequences have unleashed the MRI potential to reveal internal bone structures. In this study, we measure the efficacy of transcranial aberration correction using UTE images.Approach.We compare the efficacy of transcranial aberration correction using UTE scans to CT based correction on four skulls and two targets using a clinical device (Exablate Neuro, Insightec, Israel). We also evaluate the performance of a custom ray tracing algorithm using both UTE and CT estimates of acoustic properties and compare these against the performance of the manufacturer's proprietary aberration correction software.Main results.UTE estimated skull maps in Hounsfield units (HU) had a mean absolute error of 242 ± 20 HU (n= 4). The UTE skull maps were sufficiently accurate to improve pressure at the target (no correction: 0.44 ± 0.10, UTE correction: 0.79 ± 0.05, manufacturer CT: 0.80 ± 0.05), pressure confinement ratios (no correction: 0.45 ± 0.10, UTE correction: 0.80 ± 0.05, manufacturer CT: 0.81 ± 0.05), and targeting error (no correction: 1.06 ± 0.42 mm, UTE correction 0.30 ± 0.23 mm, manufacturer CT: 0.32 ± 0.22) (n= 8 for all values). When using CT, our ray tracing algorithm performed slightly better than UTE based correction with pressure at the target (UTE: 0.79 ± 0.05, CT: 0.84 ± 0.04), pressure confinement ratios (UTE: 0.80 ± 0.05, CT: 0.84 ± 0.04), and targeting error (UTE: 0.30 ± 0.23 mm, CT: 0.17 ± 0.15).Significance.These 3D transcranial measurements suggest that UTE sequences could replace CT scans in the case of MR guided focused ultrasound with minimal reduction in performance which will avoid ionizing radiation exposure to the patients and reduce procedure time and cost.
Collapse
Affiliation(s)
- Thomas J Manuel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Bancel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Tiennot
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Mélanie Didier
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Mathieu Santin
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Maxime Daniel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Université Paris Cité, 75014 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Stéphane Lehéricy
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Nadya Pyatigorskaya
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| |
Collapse
|
3
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Natera-Villalba E, Ruiz-Yanzi MA, Gasca-Salas C, Matarazzo M, Martínez-Fernández R. MR-guided focused ultrasound in movement disorders and beyond: Lessons learned and new frontiers. Parkinsonism Relat Disord 2024; 122:106040. [PMID: 38378311 DOI: 10.1016/j.parkreldis.2024.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The development of MR-guided focused ultrasound (MRgFUS) has provided a new therapeutic tool for neuropsychiatric disorders. In contrast to previously available neurosurgical techniques, MRgFUS allows precise impact on deep brain structures without the need for incision and yields an immediate effect. In its high-intensity modality (MRgHIFU), it produces accurate therapeutic thermoablation in previously selected brain targets. Importantly, the production of the lesion is progressive and highly controlled in real-time by both neuroimaging and clinical means. MRgHIFU ablation is already an accepted and widely used treatment for medically-refractory Parkinson's disease and essential tremor. Notably, other neurological disorders and diverse brain targets, including bilateral treatments, are currently under examination. Conversely, the low-intensity modality (MRgLIFU) shows promising prospects in neuromodulation and transient blood-brain barrier opening (BBBO). In the former circumstance, MRgLIFU could serve as a powerful clinical and research tool for non-invasively modulating brain activity and function. BBBO, on the other hand, emerges as a potentially impactful method to influence disease pathogenesis and progression by increasing brain target engagement of putative therapeutic agents. While promising, these applications remain experimental. As a recently developed technology, MRgFUS is not without challenges and questions to be addressed. Further developments and broader experience are necessary to enhance MRgFUS capabilities in both research and clinical practice, as well as to define device constraints. This clinical mini-review aims to provide an overview of the main evidence of MRgFUS application and to highlight unmet needs and future potentialities of the technique.
Collapse
Affiliation(s)
- Elena Natera-Villalba
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; PhD Medicine Program, Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Agustina Ruiz-Yanzi
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain
| | - Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain; University CEU-San Pablo, Madrid, Spain
| | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Raúl Martínez-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain; University CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
5
|
Sofokleous P, Damianou C. High-quality Agar and Polyacrylamide Tumor-mimicking Phantom Models for Magnetic Resonance-guided Focused Ultrasound Applications. J Med Ultrasound 2024; 32:121-133. [PMID: 38882616 PMCID: PMC11175378 DOI: 10.4103/jmu.jmu_68_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Tissue-mimicking phantoms (TMPs) have been used extensively in clinical and nonclinical settings to simulate the thermal effects of focus ultrasound (FUS) technology in real tissue or organs. With recent technological developments in the FUS technology and its monitoring/guided techniques such as ultrasound-guided FUS and magnetic resonance-guided FUS (MRgFUS) the need for TMPs are more important than ever to ensure the safety of the patients before being treated with FUS for a variety of diseases (e.g., cancer or neurological). The purpose of this study was to prepare a tumor-mimicking phantom (TUMP) model that can simulate competently a tumor that is surrounded by healthy tissue. METHODS The TUMP models were prepared using polyacrylamide (PAA) and agar solutions enriched with MR contrast agents (silicon dioxide and glycerol), and the thermosensitive component bovine serum albumin (BSA) that can alter its physical properties once thermal change is detected, therefore offering real-time visualization of the applied FUS ablation in the TUMPs models. To establish if these TUMPs are good candidates to be used in thermoablation, their thermal properties were characterized with a custom-made FUS system in the laboratory and a magnetic resonance imaging (MRI) setup with MR-thermometry. The BSA protein's coagulation temperature was adjusted at 55°C by setting the pH of the PAA solution to 4.5, therefore simulating the necrosis temperature of the tissue. RESULTS The experiments carried out showed that the TUMP models prepared by PAA can change color from transparent to cream-white due to the BSA protein coagulation caused by the thermal stress applied. The TUMP models offered a good MRI contrast between the TMPs and the TUMPs including real-time visualization of the ablation area due to the BSA protein coagulation. Furthermore, the T2-weighted MR images obtained showed a significant change in T2 when the BSA protein is thermally coagulated. MR thermometry maps demonstrated that the suggested TUMP models may successfully imitate a tumor that is present in soft tissue. CONCLUSION The TUMP models developed in this study have numerous uses in the testing and calibration of FUS equipment including the simulation and validation of thermal therapy treatment plans with FUS or MRgFUS in oncology applications.
Collapse
Affiliation(s)
- Panagiotis Sofokleous
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
6
|
Cummins DD, Bernabei JM, Wang DD. Focused Ultrasound for Treatment of Movement Disorders: A Review of Non-Food and Drug Administration Approved Indications. Stereotact Funct Neurosurg 2024; 102:93-108. [PMID: 38368868 DOI: 10.1159/000535621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION MRI-guided focused ultrasound (FUS) is an incisionless thermo-ablative procedure that may be used to treat medication-refractory movement disorders, with a growing number of potential anatomic targets and clinical applications. As of this article's publication, the only US Food and Drug Administration (FDA)-approved uses of FUS for movement disorders are thalamotomy for essential tremor (ET) and tremor-dominant Parkinson's Disease (PD), and pallidotomy for other cardinal symptoms of PD. We present a state-of-the-art review on all non-FDA approved indications of FUS for movement disorders, beyond the most well-described indications of ET and PD. Our objective was to summarize the safety and efficacy of FUS in this setting and provide a roadmap for future directions of FUS for movement disorders. METHODS A state-of-the-art review was conducted on use of FUS for non-FDA approved movement disorders. All movement disorders excluding FDA-approved uses for ET and PD were included. RESULTS A total of 25 studies on 172 patients were included. In patients with tremor plus dystonia syndromes (n = 6), ventralis intermediate nucleus of the thalamus (VIM)-FUS gave >50% tremor reduction, with no improvement in dystonia and worsened dystonia in 2/6 patients. Ventral-oralis complex (VO)-FUS gave >50% improvement for focal hand dystonia (n = 6) and 100% return to musical performance in musician's dystonia (n = 6). In patients with multiple sclerosis (MS) and tremor (n = 3), improvement in tremor was seen in 2 patients with a favorable skull density ratio; no MS disease change was noted after VIM-FUS. In patients with tremor and comorbid ataxia syndromes (n = 3), none were found to have worsened ataxia after VIM-FUS; all had clinically significant tremor improvement. Subthalamic nucleus (STN)-FUS for PD (n = 49) gave approximately 50% improvement in PD motor symptoms, with dystonia and mild dyskinesias as possible adverse effects. Cerebellothalamic tract (CTT-FUS) for ET (n = 42) gave 55-90% tremor improvement, with gait dysfunction as a rare persistent adverse effect. Pallidothalamic tract (PTT-FUS) for PD (n = 50) gave approximately 50% improvement in motor symptoms, with mild speech dysfunction as a possible adverse effect. CONCLUSION VIM-FUS appeared safe and effective for heterogenous tremor etiologies, and VO-FUS appeared most effective for isolated segmental dystonia. STN-FUS was effective for PD symptom reduction; postoperative dystonia and mild on-medication dyskinesias required medical management. Tractography-based targeting with CTT-FUS for ET and PTT-FUS for PD demonstrated promising early results. Larger prospective trials with long-term follow-up are needed to the evaluate the safety and efficacy non-FDA approved indications for FUS.
Collapse
Affiliation(s)
- Daniel D Cummins
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - John M Bernabei
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Doris D Wang
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
7
|
Expression of fibrinogen-like protein 2 (Fgl2) on Toll-like receptor 9 (TLR9) expression in autoimmune myelitis. Int Immunopharmacol 2023; 114:109539. [PMID: 36508913 DOI: 10.1016/j.intimp.2022.109539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 9 (TLR9) can participate in the signal transduction of activated immune cells and induce myelitis and other autoimmune diseases. The effector molecule fibrin-like protein 2 (Fgl2) plays a role in regulating the body's autoimmune signaling pathway. They both have the conditions for the treatment of this disease target. The objective of this work was to investigate the effect of Fgl2 on the expression of DNA receptor TLR9 in autoimmune myelitis. 140 rats were randomly divided into a normal control group, an autoimmune myelitis group, a low-dose Fgl2 group, a middle-dose Fgl2 group, a higher-dose Fgl2 group, a high-dose Fgl2 group, and a methylprednisolone group. Different injection methods were used in each group. The changes of rat behavior and disease were recorded, and brain and spinal cord tissue slices were made for observation. The results showed that in the high dose Fgl2 group, the incidence of disease was 15 %, the nerve injury score was 1.0 ± 0.15, the body weight change was -5.8 ± 1.24 g, the number of spinal cord tissue injury was 1.82 ± 0.44, the number of TLR9 positive cells in the brain tissue was 7.53 ± 1.84, and the number of TLR9 positive cells in spinal cord tissue was 5.02 ± 1.81. These indexes were lower than those in other Fgl2 groups and significantly lower than those in autoimmune myelitis group (P < 0.05). The average incubation period of the disease was 13.66 ± 0.41 days, which was significantly higher than that of the autoimmune myelitis group (P < 0.05). It can be observed that TLR9 signaling pathway played an important role in the occurrence and development of autoimmune myelitis. With the increase of Fgl2 dose, the number of TLR9 positive cells decreased gradually. Fgl2 treatment can reduce the expression of inflammatory factors and the severity of dysfunction in autoimmune myelitis, inhibit the expression of TLR9, and improve the condition of autoimmune myelitis.
Collapse
|
8
|
Yamamoto K, Sarica C, Loh A, Vetkas A, Samuel N, Milano V, Zemmar A, Germann J, Cheyuo C, Boutet A, Elias GJ, Ito H, Taira T, Lozano AM. Magnetic resonance-guided focused ultrasound for the treatment of tremor. Expert Rev Neurother 2022; 22:849-861. [PMID: 36469578 DOI: 10.1080/14737175.2022.2147826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging treatment for tremor and other movement disorders. An incisionless therapy, it is becoming increasingly common worldwide. However, given MRgFUS' relative novelty, there remain limited data on its benefits and adverse effects. AREAS COVERED We review the current state of evidence of MRgFUS for tremor, highlight its challenges, and discuss future perspectives. EXPERT OPINION Essential tremor (ET) has been the major indication for MRgFUS since a milestone randomized controlled trial (RCT) in 2016, with substantial evidence attesting to the efficacy and acceptable safety profile of this treatment. Patients with other tremor etiologies are also being treated with MRgFUS, with studies - including an RCT - suggesting parkinsonian tremor in particular responds well to this intervention. Additionally, targets other than the ventral intermediate nucleus, such as the subthalamic nucleus and internal segment of the globus pallidus, have been reported to improve parkinsonian symptoms beyond tremor, including rigidity and bradykinesia. Although MRgFUS is encumbered by certain unique technical challenges, it nevertheless offers significant advantages compared to alternative neurosurgical interventions for tremor. The fast-growing interest in this treatment modality will likely lead to further scientific and technological advancements that could optimize and expand its therapeutic potential.
Collapse
Affiliation(s)
- Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Department of Neurosurgery, School of Medicine, University of Tartu, Estonia
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, University of Louisville, School of Medicine, KY, USA.,Department of Neurosurgery, Henan University People's Hospital, Henan University School of Medicine, China
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Hisashi Ito
- Department of Neurology, Shonantobu General Hospital, Japan.,Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Movement Disorders in Multiple Sclerosis: An Update. Tremor Other Hyperkinet Mov (N Y) 2022; 12:14. [PMID: 35601204 PMCID: PMC9075048 DOI: 10.5334/tohm.671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Multiple sclerosis (MS), a subset of chronic primary inflammatory demyelinating disorders of the central nervous system, is closely associated with various movement disorders. These disorders may be due to MS pathophysiology or be coincidental. This review describes the full spectrum of movement disorders in MS with their possible mechanistic pathways and therapeutic modalities. Methods: The authors conducted a narrative literature review by searching for ‘multiple sclerosis’ and the specific movement disorder on PubMed until October 2021. Relevant articles were screened, selected, and included in the review according to groups of movement disorders. Results: The most prevalent movement disorders described in MS include restless leg syndrome, tremor, ataxia, parkinsonism, paroxysmal dyskinesias, chorea and ballism, facial myokymia, including hemifacial spasm and spastic paretic hemifacial contracture, tics, and tourettism. The anatomical basis of some of these disorders is poorly understood; however, the link between them and MS is supported by clinical and neuroimaging evidence. Treatment options are disorder-specific and often multidisciplinary, including pharmacological, surgical, and physical therapies. Discussion: Movements disorders in MS involve multiple pathophysiological processes and anatomical pathways. Since these disorders can be the presenting symptoms, they may aid in early diagnosis and managing the patient, including monitoring disease progression. Treatment of these disorders is a challenge. Further work needs to be done to understand the prevalence and the pathophysiological mechanisms responsible for movement disorders in MS.
Collapse
|
10
|
Bancel T, Houdouin A, Annic P, Rachmilevitch I, Shapira Y, Tanter M, Aubry JF. Comparison Between Ray-Tracing and Full-Wave Simulation for Transcranial Ultrasound Focusing on a Clinical System Using the Transfer Matrix Formalism. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2554-2565. [PMID: 33651688 DOI: 10.1109/tuffc.2021.3063055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Only one high-intensity focused ultrasound device has been clinically approved for transcranial brain surgery at the time of writing. The device operates within 650 and 720 kHz and corrects the phase distortions induced by the skull of each patient using a multielement phased array. Phase correction is estimated adaptively using a proprietary algorithm based on computed-tomography (CT) images of the patient's skull. In this article, we assess the performance of the phase correction computed by the clinical device and compare it to: 1) the correction obtained with a previously validated full-wave simulation algorithm using an open-source pseudo-spectral toolbox and 2) a hydrophone-based correction performed invasively to measure the aberrations induced by the skull at 650 kHz. For the full-wave simulation, three different mappings between CT Hounsfield units and the longitudinal speed of sound inside the skull were tested. All methods are compared with the exact same setup due to transfer matrices acquired with the clinical system for N = 5 skulls and T = 2 different targets for each skull. We show that the clinical ray-tracing software and the full-wave simulation restore, respectively, 84% ± 5% and 86% ± 5% of the pressure obtained with hydrophone-based correction for targets located in central brain regions. On the second target (off-center), we also report that the performance of both algorithms degrades when the average incident angles of the acoustic beam at the skull surface increase. When incident angles are higher than 20°, the restored pressure drops below 75% of the pressure restored with hydrophone-based correction.
Collapse
|
11
|
Martínez-Fernández R, Matarazzo M, Máñez-Miró JU, Obeso JA. The Role of Focused Ultrasound in the Management of Movement Disorders: Insights after 5 Years of Experience. Mov Disord Clin Pract 2021; 8:681-687. [PMID: 34307739 DOI: 10.1002/mdc3.13223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Raúl Martínez-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) Hospital Universitario HM Puerta del Sur, HM Hospitales Madrid Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases Carlos III Institute Madrid Spain
| | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) Hospital Universitario HM Puerta del Sur, HM Hospitales Madrid Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases Carlos III Institute Madrid Spain
| | - Jorge U Máñez-Miró
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) Hospital Universitario HM Puerta del Sur, HM Hospitales Madrid Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases Carlos III Institute Madrid Spain
| | - Jose A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) Hospital Universitario HM Puerta del Sur, HM Hospitales Madrid Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases Carlos III Institute Madrid Spain
| |
Collapse
|
12
|
Preoperative imaging findings in patients undergoing transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy. Sci Rep 2021; 11:2524. [PMID: 33510338 PMCID: PMC7843629 DOI: 10.1038/s41598-021-82271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
The prevalence and impact of imaging findings detected during screening procedures in patients undergoing transcranial MR-guided Focused Ultrasound (tcMRgFUS) thalamotomy for functional neurological disorders has not been assessed yet. This study included 90 patients who fully completed clinical and neuroradiological screenings for tcMRgFUS in a single-center. The presence and location of preoperative imaging findings that could impact the treatment were recorded and classified in three different groups according to their relevance for the eligibility and treatment planning. Furthermore, tcMRgFUS treatments were reviewed to evaluate the number of transducer elements turned off after marking as no pass regions the depicted imaging finding. A total of 146 preoperative imaging findings in 79 (87.8%) patients were detected in the screening population, with a significant correlation with patients' age (rho = 483, p < 0.001). With regard of the group classification, 119 (81.5%), 26 (17.8%) were classified as group 1 or 2, respectively. One patient had group 3 finding and was considered ineligible. No complications related to the preoperative imaging findings occurred in treated patients. Preoperative neuroradiological findings are frequent in candidates to tcMRgFUS and their identification may require the placement of additional no-pass regions to prevent harmful non-targeted heating.
Collapse
|
13
|
Beisteiner R, Lozano AM. Transcranial Ultrasound Innovations Ready for Broad Clinical Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002026. [PMID: 33304757 PMCID: PMC7709976 DOI: 10.1002/advs.202002026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Indexed: 05/08/2023]
Abstract
Brain diseases are one of the most important problems in our rapidly ageing society. Currently, there are not many effective medications and surgical options are limited due to invasiveness and non-invasive brain stimulation techniques cannot be well targeted and cannot access deep brain areas. A novel therapy is transcranial ultrasound which allows a variety of treatments without opening of the skull. Recent technological developments generated three revolutionary options including 1) targeted non-invasive surgery, 2) highly targeted drug, antibody, or gene therapy via local opening of the blood-brain barrier, and 3) highly targeted brain stimulation to improve pathological brain functions. This progress report summarizes the current state of the art for clinical application and the results of recent patient investigations.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of NeurologyMedical University of ViennaVienna1090Austria
| | - Andres M. Lozano
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoON M5T 2S8Canada
| |
Collapse
|
14
|
Transcranial magnetic resonance-guided focused ultrasound thalamotomy as a safe treatment option in multiple sclerosis patients with essential tremor. Neurol Sci 2020; 42:1139-1143. [PMID: 33094429 DOI: 10.1007/s10072-020-04841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023]
Abstract
Transcranial magnetic resonance-guided focused ultrasound is a recently introduced incisionless treating option for essential tremor and tremor-dominant idiopathic Parkinson disease. There is preliminary evidence that it may result in a promising effective treatment option for other movement disorders too. Here, we report on two patients with multiple sclerosis with medication refractory debilitating essential tremor comorbidity who successfully underwent unilateral Vim tcMRgFUS thalamotomy for tremor control. Patients' clinical condition and expanded disability status scale scores showed no changes during the 1-year follow-up period with no evidence of multiple sclerosis activity or progression.
Collapse
|
15
|
van der Walt A. Addressing the treatment gap in MS-associated tremor: A new door opens. Mult Scler 2019; 26:858. [PMID: 31617440 DOI: 10.1177/1352458519880453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia/Department of Neurology, MSNI Service, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|