1
|
Zanrè V, Bellinato F, Cardile A, Passarini C, Monticelli J, Di Bella S, Menegazzi M. Lamivudine, Doravirine, and Cabotegravir Downregulate the Expression of Human Endogenous Retroviruses (HERVs), Inhibit Cell Growth, and Reduce Invasive Capability in Melanoma Cell Lines. Int J Mol Sci 2024; 25:1615. [PMID: 38338893 PMCID: PMC10855363 DOI: 10.3390/ijms25031615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study explores the impact of antiretroviral administration on the expression of human endogenous retroviruses (HERVs), cell growth, and invasive capability of human melanoma cell lines in culture. We investigated three antiretrovirals-lamivudine, doravirine, and cabotegravir-in A375, FO-1, and SK-Mel-28, BRAF-mutated, and in MeWo, P53-mutated, melanoma cell lines. The findings indicate a general capability of these drugs to downregulate the expression of HERV-K Pol and Env genes and hinder cell viability, mobility, and colony formation capacity of melanoma cells. The antiretroviral drugs also demonstrate selectivity against malignant cells, sparing normal human epithelial melanocytes. The study reveals that the integrase inhibitor cabotegravir is particularly effective in inhibiting cell growth and invasion across different cell lines in comparison with lamivudine and doravirine, which are inhibitors of the viral reverse transcriptase enzyme. The investigation further delves into the molecular mechanisms underlying the observed effects, highlighting the potential induction of ferroptosis, apoptosis, and alterations in cell cycle regulatory proteins. Our findings showed cytostatic effects principally revealed in A375, and SK-Mel-28 cell lines through a downregulation of retinoblastoma protein phosphorylation and/or cyclin D1 expression. Signs of ferroptosis were detected in both A375 cells and FO-1 cells by a decrease in glutathione peroxidase 4 and ferritin expression, as well as by an increase in transferrin protein levels. Apoptosis was also detected in FO-1 and SK-Mel-28, but only with cabotegravir treatment. Moreover, we explored the expression and activity of the stimulator of interferon genes (STING) protein and its correlation with programmed death-ligand 1 (PD-L1) expression. Both the STING activity and PD-L1 expression were decreased, suggesting that the antiretroviral treatments may counteract the detrimental effects of PD-L1 expression activation through the STING/interferon pathway triggered by HERV-K. Finally, this study underscores the potential therapeutic significance of cabotegravir in melanoma treatment. The findings also raise the prospect of using antiretroviral drugs to downregulate PD-L1 expression, potentially enhancing the therapeutic responses of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy;
| | - Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| | - Jacopo Monticelli
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), Piazza dell’Ospitale 1, 34129 Trieste, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy;
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (V.Z.); (A.C.); (C.P.)
| |
Collapse
|
2
|
Takamatsu Y, Hayashi S, Kumamoto H, Imoto S, Tanaka Y, Mitsuya H, Higashi-Kuwata N. A novel anti-HBV agent, E-CFCP, restores Hepatitis B virus (HBV)-induced senescence-associated cellular marker perturbation in human hepatocytes. Virus Res 2023; 329:199094. [PMID: 36933835 PMCID: PMC10194405 DOI: 10.1016/j.virusres.2023.199094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Cellular senescence is a cellular state with a broad spectrum of age-related physiological conditions that can be affected by various infectious diseases and treatments. Therapy of hepatitis B virus (HBV) infection with nucleos(t)ide analogs [NA(s)] is well established and benefits many HBV-infected patients, but requires long-term, perhaps lifelong, medication. In addition to the effects of HBV infection, the effects of NA administration on hepatocellular senescence are still unclear. This study investigated how HBV infection and NA treatment influence cellular senescence in human hepatocytes and humanized-liver chimeric mice chronically infected with live HBV. HBV infection upregulates or downregulates multiple cellular markers including senescence-associated β-galactosidase (SA-β-Gal) activity and cell cycle regulatory proteins (e.g., p21CIP1) expression level in hepatocellular nuclei and humanized-mice liver. A novel highly potent anti-HBV NA, E-CFCP, per se did not have significant disturbance on markers evaluated. Besides, E-CFCP treatment restored HBV-infected cells to their physiological phenotypes that are comparable to the HBV-uninfected cells. The results reported here demonstrate that, regardless of the mechanism(s), chronic HBV infection perturbates multiple senescence-associated markers in human hepatocytes and humanized-mice liver, but E-CFCP can restore this phenomenon.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan; Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho, Nagoya, 467-8601 Japan
| | - Hiroki Kumamoto
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, lna-machi, Kitaadachi-gun, Saitama, 362-0806 Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi, Kumamoto 860-0082 Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan; Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho, Nagoya, 467-8601 Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 5A11, Bethesda, MD 20892-1868 USA; Department of Clinical Sciences, Kumamoto University Hospital, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan.
| |
Collapse
|
3
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|