1
|
Li Y, Zhang X, Guan S, Ma G, Kong Y. Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1550-1561. [PMID: 40257873 DOI: 10.1109/tnsre.2025.3562662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Exploring the pathogenic mechanisms of brain disorders within population is an important research in the field of neuroscience. Existing methods either combine clinical information to assist analysis or use data augmentation for sample expansion, ignoring the mining of individual information and the exploration of inter-individual associations in population. To solve these problems, this work proposes a novel approach for detecting abnormal neural circuits associated with brain diseases, named Topology-guided Graph Masked autoencoder Learning method (TGML), which focuses on individual representation and intra-population association, to achieve the effective diagnosis of brain diseases within the population. Concretely, the TGML comprises 1) the topology-guided group association module (T ${G}^{{2}}$ AM) that reconstructs the edges and update the initial population graph, 2) the intra-population interaction masked autoencoder network (IPI_MAE) captures the discriminative characteristics of subjects based on the novel Masked Autoencoder, which incorporates traditional masked autoencoders into a task-related process. The proposed method is evaluated on two neurodevelopmental disorder diagnosis tasks of Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). The results show that the proposed TGML achieves significant improvements and surpasses the state-of-the-art methods.
Collapse
|
2
|
Chen M, Guo L, Li Q, Yang S, Li W, Lai Y, Lv Z. Research progress on hippocampal neurogenesis in autism spectrum disorder. Pediatr Investig 2024; 8:215-223. [PMID: 39347523 PMCID: PMC11427895 DOI: 10.1002/ped4.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/10/2024] [Indexed: 10/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders with unclear etiology and significant heterogeneity that is emerging as a global public health concern. Increasing research suggests the involvement of hippocampal neurogenesis defects in the onset and development of ASD, drawing increasing amounts of attention to hippocampal neurogenesis issues in ASD. In this paper, we analyze relevant international studies on hippocampal neurogenesis in ASD, discuss the role of neurobiology in the pathogenesis of ASD, and explore the potential of improving hippocampal neurogenesis as a therapeutic approach for ASD. This review aims to provide new treatment perspectives and theoretical foundations for clinical practice.
Collapse
Affiliation(s)
- Mengxiang Chen
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| | - Lanmin Guo
- Department of Child HealthThe Third Affiliated Hospital of Jiamusi UniversityHeilongjiangChina
| | - Qinghong Li
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| | - Shunbo Yang
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| | - Wei Li
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| | - Yanmei Lai
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| | - Zhihai Lv
- Department of Pediatric RehabilitationLonggang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)GuangdongChina
| |
Collapse
|
3
|
Chen L, Liu J, Kang JB, Rosenberg-Lee M, Abrams DA, Menon V. Atypical pattern separation memory and its association with restricted interests and repetitive behaviors in autistic children. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1503-1518. [PMID: 38263761 PMCID: PMC11132949 DOI: 10.1177/13623613231223354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
LAY ABSTRACT Memory challenges remain understudied in childhood autism. Our study investigates one specific aspect of memory function, known as pattern separation memory, in autistic children. Pattern separation memory refers to the critical ability to store unique memories of similar stimuli; however, its role in childhood autism remains largely uncharted. Our study first uncovered that the pattern separation memory was significantly reduced in autistic children, and then showed that reduced memory performance was linked to their symptoms of repetitive, restricted interest and behavior. We also identified distinct subgroups with profiles of reduced and increased generalization for pattern separation memory. More than 72% of autistic children showed a tendency to reduce memory generalization, focusing heavily on unique details of objects for memorization. This focus made it challenging for them to identify commonalities across similar entities. Interestingly, a smaller proportion of autistic children displayed an opposite pattern of increased generalization, marked by challenges in differentiating between similar yet distinct objects. Our findings advance the understanding of memory function in autism and have practical implications for devising personalized learning strategies that align with the unique memory patterns exhibited by autistic children. This study will be of broad interest to researchers in psychology, psychiatry, and brain development as well as teachers, parents, clinicians, and the wider public.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053
- Neuroscience Program, Santa Clara University, Santa Clara, CA 95053
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Jin Liu
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Rutgers University, Newark, NJ 07102
| | - Daniel A. Abrams
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Kember J, Patenaude P, Sweatman H, Van Schaik L, Tabuenca Z, Chai XJ. Specialization of anterior and posterior hippocampal functional connectivity differs in autism. Autism Res 2024; 17:1126-1139. [PMID: 38770780 DOI: 10.1002/aur.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Structural and functional differences in the hippocampus have been related to the episodic memory and social impairments observed in autism spectrum disorder (ASD). In neurotypical individuals, hippocampal-cortical functional connectivity systematically varies between anterior and posterior hippocampus, with changes observed during typical development. It remains unknown whether this specialization of anterior-posterior hippocampal connectivity is disrupted in ASD, and whether age-related differences in this specialization exist in ASD. We examined connectivity of the anterior and posterior hippocampus in an ASD (N = 139) and non-autistic comparison group (N = 133) aged 5-21 using resting-state functional magnetic resonance imaging (MRI) data from the Healthy Brain Network (HBN). Consistent with previous results, we observed lower connectivity between the whole hippocampus and medial prefrontal cortex in ASD. Moreover, preferential connectivity of the posterior relative to the anterior hippocampus for memory-sensitive regions in posterior parietal cortex was reduced in ASD, demonstrating a weaker anterior-posterior specialization of hippocampal-cortical connectivity. Finally, connectivity between the posterior hippocampus and precuneus negatively correlated with age in the ASD group but remained stable in the comparison group, suggesting an altered developmental specialization. Together, these differences in hippocampal-cortical connectivity may help us understand the neurobiological basis of the memory and social impairments found in ASD.
Collapse
Affiliation(s)
- J Kember
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - P Patenaude
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - H Sweatman
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - L Van Schaik
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Z Tabuenca
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Department of Statistics, University of Zaragoza, Zaragoza, Spain
| | - X J Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Hashimoto T, Hotta R, Kawashima R. Enhanced memory and hippocampal connectivity in humans 2 days after brief resistance exercise. Brain Behav 2024; 14:e3436. [PMID: 38383042 PMCID: PMC10881282 DOI: 10.1002/brb3.3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Exercise has significant health benefits and can enhance learning. A single bout of high-intensity resistance training may be sufficient to improve memory. This study aimed to assess memory enhancement by a single bout of high-intensity resistance training and to examine the neural underpinnings using resting-state functional magnetic resonance imaging (MRI). METHODS Sixty young adults (34 men and 26 women), divided into the training and control groups, participated. The first session included verbal memory recall tests (cued- and free-recall), resting-state functional MRI (rs-fMRI), and a single-bout high-intensity resistance training for the training group. Two days later, they underwent post-intervention memory tests and rs-fMRI. The study design was 2 groups × 2 sessions for memory tests, and within training group comparisons for rs-fMRI. RESULTS Compared to the control group without resistance training, the training group showed higher cued-recall performance 2 days after the brief resistance training (training: +0.27, control: -0.13, interaction: p = .01), and their free-recall scores were associated with enhanced left posterior hippocampal connectivity (r = .64, p < .001). CONCLUSIONS These results suggest that brief high-intensity resistance exercise/strength training could enhance memory without repeated exercising. The quick effect of resistance training on memory and hippocampal connectivity could be revealed. A focused and one-shot exercise may be sufficient to enhance memory performance and neural plasticity in a few days.
Collapse
Affiliation(s)
- Teruo Hashimoto
- Department of Functional Brain Imaging, Institute Development, Aging and CancerTohoku UniversitySendaiJapan
| | | | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
6
|
Liu J, Chen L, Chang H, Rudoler J, Al-Zughoul AB, Kang JB, Abrams DA, Menon V. Replicable Patterns of Memory Impairments in Children With Autism and Their Links to Hyperconnected Brain Circuits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1113-1123. [PMID: 37196984 PMCID: PMC10646152 DOI: 10.1016/j.bpsc.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Memory impairments have profound implications for social communication and educational outcomes in children with autism spectrum disorder (ASD). However, the precise nature of memory dysfunction in children with ASD and the underlying neural circuit mechanisms remain poorly understood. The default mode network (DMN) is a brain network that is associated with memory and cognitive function, and DMN dysfunction is among the most replicable and robust brain signatures of ASD. METHODS We used a comprehensive battery of standardized episodic memory assessments and functional circuit analyses in 25 8- to 12-year-old children with ASD and 29 matched typically developing control children. RESULTS Memory performance was reduced in children with ASD compared with control children. General and face memory emerged as distinct dimensions of memory difficulties in ASD. Importantly, findings of diminished episodic memory in children with ASD were replicated in 2 independent data sets. Analysis of intrinsic functional circuits associated with the DMN revealed that general and face memory deficits were associated with distinct, hyperconnected circuits: Aberrant hippocampal connectivity predicted diminished general memory while aberrant posterior cingulate cortex connectivity predicted diminished face memory. Notably, aberrant hippocampal-posterior cingulate cortex circuitry was a common feature of diminished general and face memory in ASD. CONCLUSIONS Our results represent a comprehensive appraisal of episodic memory function in children with ASD and identify extensive and replicable patterns of memory reductions in children with ASD that are linked to dysfunction of distinct DMN-related circuits. These findings highlight a role for DMN dysfunction in ASD that extends beyond face memory to general memory function.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, California
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jeremy Rudoler
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ahmad Belal Al-Zughoul
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
7
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
8
|
Dynamic functional connectivity associated with prospective memory success in children. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Shi C, Xin X, Zhang J. A novel multigranularity feature-selection method based on neighborhood mutual information and its application in autistic patient identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|