1
|
Iwasaki A, Teramoto M, Muraki I, Shirai K, Tamakoshi A, Iso H. The Association Between Living Area in Childhood and Respiratory Disease Mortality in Adulthood. Int J Public Health 2022; 67:1604778. [PMID: 36275433 PMCID: PMC9585191 DOI: 10.3389/ijph.2022.1604778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: No studies have examined the association between characteristics of urban areas and future respiratory disease mortality. We examined whether the type of living area during childhood was associated with all-cause and respiratory disease mortality in adulthood. Methods: A total of 81,413 Japanese participants aged 40–79 years old completed a lifestyle questionnaire including the type of childhood living areas. The Cox proportional hazards regression model was used to calculate the multivariable hazard ratios (HRs) with 95% confidence intervals (CIs) of all-cause and respiratory disease mortality. Results: Living in large city areas in childhood was associated with a higher risk of all-cause mortality [HR = 1.05 (95% CI, 1.01–1.10)], but not with respiratory disease mortality [HR = 1.04 (95% CI, 0.92–1.18)] compared to rural and remote areas. The excess risk of all-cause and respiratory disease mortality was primarily found in industrial areas among men; the respective multivariable HRs were 1.28 (95% CI, 1.00–1.64) and 1.90 (95% CI: 1.10–3.29). Conclusion: Eliminating childhood health hazards associated with living in industrial areas suggested to reduce the risk of mortality from respiratory diseases in adulthood.
Collapse
Affiliation(s)
- Ayumu Iwasaki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Teramoto
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Isao Muraki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kokoro Shirai
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiko Tamakoshi
- Public Health, Department of Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- *Correspondence: Hiroyasu Iso,
| |
Collapse
|
2
|
de Souza Xavier Costa N, Mirtes Teles A, de Brito JM, de Barros Mendes Lopes T, Calciolari Rossi R, Magalhães Arantes Costa F, Mangueira Saraiva-Romanholo B, Perini A, Furuya TK, Germán Murillo Carrasco A, Matera Veras M, Nascimento Saldiva PH, Chammas R, Mauad T. Allergic sensitization and exposure to ambient air pollution beginning early in life lead to a COPD-like phenotype in young adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113821. [PMID: 36068749 DOI: 10.1016/j.ecoenv.2022.113821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The perinatal period and early infancy are considered critical periods for lung development. During this period, adversities such as environmental exposures, allergic sensitization, and asthma are believed to impact lung health in adulthood. Therefore, we hypothesized that concomitant exposure to allergic sensitization and urban-derived fine particulate matter (PM2.5) in the early postnatal period of mice would cause more profound alterations in lung alveolarization and growth and differently modulate lung inflammation and gene expression than either insult alone in adult life. BALB/c mice were sensitized with ovalbumin (OVA) and exposed to PM2.5 from the fifth day of life. Then, we assessed lung responsiveness, inflammation in BALF, lung tissue, and alveolarization by stereology. In addition, we performed a transcriptomic analysis of lung tissue on the 40th day of life. Our results showed that young adult mice submitted to allergic sensitization and exposure to ambient PM2.5 since early life presented decreased lung growth with impaired alveolarization, a mixed neutrophilic-eosinophilic pattern of lung inflammation, increased airway responsiveness, and increased expression of genes linked to neutrophil recruitment when compared to animals that were OVA-sensitized or PM2.5 exposed only. Both, early life allergic sensitization and PM2.5 exposure, induced inflammation and impaired lung growth, but concomitant exposure was associated with worsened inflammation parameters and caused alveolar enlargement. Our experimental data provide pathological support for the hypothesis that allergic or environmental insults in early life have permanent adverse consequences for lung growth. In addition, combined insults were associated with the development of a COPD-like phenotype in young adult mice. Together with our data, current evidence points to the urgent need for healthier environments with fewer childhood disadvantage factors during the critical windows of lung development and growth.
Collapse
Affiliation(s)
- Natália de Souza Xavier Costa
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aila Mirtes Teles
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jôse Mára de Brito
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thaís de Barros Mendes Lopes
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renata Calciolari Rossi
- Department of Pathology, Universidade do Oeste Paulista UNOESTE, Presidente Prudente, SP, Brazil
| | - Fernanda Magalhães Arantes Costa
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adenir Perini
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tatiane Katsue Furuya
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexis Germán Murillo Carrasco
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mariana Matera Veras
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Mauad
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Galderisi A, Perilongo G, Caprio S, Da Dalt L, Di Salvo G, Gatta M, Giaquinto C, Rizzuto R, Robb A, Sly PD, Simonelli A, Staiano A, Vettor R, Baraldi E. Pediatric Preventive Care in Middle-High Resource Countries-The Padova Chart for Health in Children. Front Pediatr 2022; 10:803323. [PMID: 35498805 PMCID: PMC9047691 DOI: 10.3389/fped.2022.803323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
Importance The Padova Chart for Health in Children (PCHC) aims to gather the evidence of healthcare promotion and protection for chidren and adolescents (i.e., aged <18 y) into a single document in order to guide families, healthcare providers and social actors on healthy choices. No more than 2% of Europeans and North Americans aged <30 y have a healthy lifestyle. This, together with metabolic and brain plasticity during childhood, creates the ideal opportunity to implement preventive strategies. Guided interventions promoting healthy lifestyle in children and families therefore have a key role in abating the unprecedented pandemic of non-communicable diseases (NCDs) in adulthood. Observations The PCHC is divided into four sections: nutrition, cardiovascular health, respiratory health, and mental and social health. Each section is structured in an ALICE approach (assessment, lobbying, intervention, call-for-action, evaluation): assessment of necessity, describing relevance to healthcare; lobbying to identify those who can effect the proposed interventions; interventions involving family, school and peers; a call-for-action to define priorities among the proposed interventions; and objective evaluation measures that can be applied on a population basis. Conclusions and Relevance Interventions promoting health in childhood require joint action from multiple institutional, local and family representatives, with the shared goal of promoting health across the entire age group. These lifestyle interventions have the potential to change the lifetime risk trajectory for NCDs.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Giorgio Perilongo
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New Haven, CT, United States
| | - Liviana Da Dalt
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Michela Gatta
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Carlo Giaquinto
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Adelaide Robb
- Division of Psychiatry and Behavioral Sciences, Children's National Hospital, Washington, DC, United States
| | - Peter David Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Simonelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Roberto Vettor
- Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Eugenio Baraldi
- Department of Woman and Child's Health, University Hospital of Padova, Padova, Italy
| |
Collapse
|
4
|
Wu IP, Liao SL, Lai SH, Wong KS. The Respiratory Impacts of Air Pollution in Children: Global and Domestic (Taiwan) Situation. Biomed J 2021; 45:88-94. [PMID: 34929408 PMCID: PMC9133359 DOI: 10.1016/j.bj.2021.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Air pollution is a global issue that threatens the health of human beings. Epidemiologic reports have shown air pollution exposures to result in millions of deaths annually. Infancy and childhood, the period of organ and lung development, is most susceptible to these environmental hazards; as a result, the risks of respiratory diseases are increased after air pollution exposure. These pollutants can originate from indoor and ambient environment, presenting as vapor or particles, and differ in chemical compositions. This review will give brief introduction to various major pollutants and their origin, as well the correlation with respiratory diseases after exposure. We will also present several current facts in domestic area (Taiwan), regarding the status of local air-pollution, and discuss its impacts on pediatric respiratory health. This report will provide useful information for clinicians and offer advice for policy makers to develop public health guidelines of pollution control and prevention.
Collapse
Affiliation(s)
- I-Ping Wu
- Departments of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University, Taoyuan, Taiwan
| | - Sui-Ling Liao
- Division of Pediatric Pulmonology, Department of Pediatric, Chang Gung Memorial Hospital, Keelung, Taiwan; Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hao Lai
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University, Taoyuan, Taiwan.
| | - Kin-Sun Wong
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
Impact of prenatal and early life environmental exposures on normal human development. Paediatr Respir Rev 2021; 40:10-14. [PMID: 34148806 DOI: 10.1016/j.prrv.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022]
Abstract
The global burden and pattern of disease has changed in recent decades, with fewer early childhood deaths and longer lives complicated by chronic disease. Disruption of normal human growth and development by adverse environmental exposures, especially during foetal development and early postnatal life increase life-long risk of chronic disease. The developmental timing and method of adverse exposure determines the likely impact on health and development. While many organ systems are structurally and functionally mature at birth, the CNS, respiratory and immune systems are not and undergo prolonged periods of postnatal growth and development. As such, these organ systems are vulnerable to adverse effects of both prenatal and postnatal environmental exposures. While the precise mechanisms underlying chronic disease are unknown, epigenetic mechanisms and the induction of oxidative stress are likely to be involved. An understanding of these processes is necessary to develop mitigation strategies aimed at reducing chronic disease prevalence.
Collapse
|
6
|
A prospective cohort study of in utero and early childhood arsenic exposure and infectious disease in 4- to 5-year-old Bangladeshi children. Environ Epidemiol 2020; 4:e086. [PMID: 32656486 PMCID: PMC7319226 DOI: 10.1097/ee9.0000000000000086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previous research found that infants who were exposed to high levels of arsenic in utero had an increased risk of infectious disease in the first year of life. This prospective study examined the association between arsenic exposures during gestation, and respiratory, diarrheal, and febrile morbidity in children 4–5 years of age.
Collapse
|
7
|
Health Consequences for E-Waste Workers and Bystanders-A Comparative Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051534. [PMID: 32120921 PMCID: PMC7084368 DOI: 10.3390/ijerph17051534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/20/2023]
Abstract
Informal e-waste recycling is associated with several health hazards. Thus far, the main focus of research in the e-waste sector has been to assess the exposure site, such as the burden of heavy metals or organic pollutants. The aim of this study was to comprehensively assess the health consequences associated with informal e-waste recycling. A questionnaire-based assessment regarding occupational information, medical history, and current symptoms and complaints was carried out with a group of n = 84 e-waste workers and compared to a control cohort of n = 94 bystanders at the e-waste recycling site Agbogbloshie. E-waste workers suffered significantly more from work-related injuries, back pain, and red itchy eyes in comparison to the control group. In addition, regular drug use was more common in e-waste workers (25% vs. 6.4%). Both groups showed a noticeable high use of pain killers (all workers 79%). The higher frequency of symptoms in the e-waste group can be explained by the specific recycling tasks, such as burning or dismantling. However, the report also indicates that adverse health effects apply frequently to the control group. Occupational safety trainings and the provision of personal protection equipment are needed for all workers.
Collapse
|
8
|
Dalibalta S, Samara F, Qadri H, Adouchana H. Potential causes of asthma in the United Arab Emirates: drawing insights from the Arabian Gulf. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:205-212. [PMID: 29664734 DOI: 10.1515/reveh-2017-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
There is considerable concern on the rise in the incidence of asthma worldwide with statistics in the United Arab Emirates (UAE) indicating that at least 13% of schoolchildren, particularly of Emirati descent, suffer from asthma. With its high rates of hospital admissions, negative socioeconomic impact and significant morbidity, this is a disease that requires optimal guidelines for control and awareness. In this article, we review the current knowledge of asthma in the UAE and draw on studies, especially from the surrounding region, to identify its contributing factors within this population. The most frequently identified agents pertinent to the UAE include outdoor and indoor environmental causes exacerbated by the country's rapid urbanization, genetic factors aided in transmission by consanguineous marriage, the patient's socioeconomic status and a rise in vitamin D deficiencies. This evidence aims to inform healthcare professionals and governmental agencies in order to best create guidelines for controlling the burden of this debilitating disease.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE, Phone: 00971-65154421, Fax: 00971-65152450
| | - Fatin Samara
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Haya Qadri
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Hibatallah Adouchana
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
9
|
Abstract
A substantial proportion of the global burden of disease is directly or indirectly attributable to exposure to air pollution. Exposures occurring during the periods of organogenesis and rapid lung growth during fetal development and early post-natal life are especially damaging. In this State of the Art review, we discuss air toxicants impacting on children's respiratory health, routes of exposure with an emphasis on unique pathways relevant to young children, methods of exposure assessment and their limitations and the adverse health consequences of exposures. Finally, we point out gaps in knowledge and research needs in this area. A greater understanding of the adverse health consequences of exposure to air pollution in early life is required to encourage policy makers to reduce such exposures and improve human health.
Collapse
Affiliation(s)
- Fiona C Goldizen
- Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia.,Children's Health and Environment Program, Children's Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia.,Children's Health and Environment Program, Children's Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Abstract
Arsenic is an enigmatic xenobiotic that causes a multitude of chronic diseases including cancer and also is a therapeutic with promise in cancer treatment. Arsenic causes mitotic delay and induces aneuploidy in diploid human cells. In contrast, arsenic causes mitotic arrest followed by an apoptotic death in a multitude of virally transformed cells and cancer cells. We have explored the hypothesis that these differential effects of arsenic exposure are related by arsenic disruption of mitosis and are differentiated by the target cell's ability to regulate or modify cell cycle checkpoints. Functional p53/CDKN1A axis has been shown to mitigate the mitotic block and to be essential to induction of aneuploidy. More recent preliminary data suggest that microRNA modulation of chromatid cohesion also may play a role in escape from mitotic block and in generation of chromosomal instability. Other recent studies suggest that arsenic may be useful in treatment of solid tumors when used in combination with other cytotoxic agents such as cisplatin.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA,
| |
Collapse
|
11
|
Hantos Z, Czövek D, Gyurkovits Z, Szabó H, Maár BA, Radics B, Virág K, Makan G, Orvos H, Gingl Z, Sly PD. Assessment of respiratory mechanics with forced oscillations in healthy newborns. Pediatr Pulmonol 2015; 50:344-52. [PMID: 25154334 DOI: 10.1002/ppul.23103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lung function data in healthy newborn infants are scarce largely due to lack of suitable techniques, although data for developmental and prenatal exposure studies are much needed. We have modified the forced oscillation technique (FOT) for the measurement of respiratory mechanical impedance (Zrs) in unsedated sleeping infants in the first 3 days of life. METHODS Zrs was measured during 30-s epochs of quiet sleep in term neonates born via spontaneous vaginal delivery with a non-invasive FOT between 8 and 48 Hz. Total respiratory resistance (R), compliance (C) and inertance (I) were obtained by fitting Zrs spectra. Cluster analysis was used to determine a set of minimal Zrs spectra representing optimal respiratory mechanics for each infant. RESULTS Successful measurements were obtained in each of the first 3 days in 30/38 (78.9%) neonates. Group mean (± SD) values of R, C, I, and resonant frequency pooled for the 3 days were 45.9 ± 16.6 hPa s L(-1), 0.97 ± 0.21 ml hPa(-1), 0.082 ± 0.031 hPa s(2) L(-1) and 19.2 ± 3.2 Hz, respectively. Within-session variability represented by coefficient of variation was 5.34 ± 3.18% for R and 13.80 ± 8.57% for C. Greater between-session variability was observed for the individual infants; however, the only statistically significant change over time was a 13% increase in R from day 1 to day 2. Parameter interdependence was significant (r(2) = 0.63) between R and I reflecting the large contribution of the upper airways to the total Zrs. CONCLUSIONS Noninvasive measurement of Zrs can be made in neonates during natural sleep with a high success rate, even in the first hours of life.
Collapse
Affiliation(s)
- Zoltán Hantos
- Department of Medical Physics and Informatics, University of Szeged, Szeged, 6720, Hungary; Queensland Children's Medical Research Institute, University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K. Xenotransplantation models to study the effects of toxicants on human fetal tissues. ACTA ACUST UNITED AC 2014; 101:410-22. [PMID: 25477288 DOI: 10.1002/bdrb.21131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tao MH, Zhou J, Rialdi AP, Martinez R, Dabek J, Scelo G, Lissowska J, Chen J, Boffetta P. Indoor air pollution from solid fuels and peripheral blood DNA methylation: findings from a population study in Warsaw, Poland. ENVIRONMENTAL RESEARCH 2014; 134:325-30. [PMID: 25199973 DOI: 10.1016/j.envres.2014.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
DNA methylation is a potential mechanism linking indoor air pollution to adverse health effects. Fetal and early-life environmental exposures have been associated with altered DNA methylation and play a critical role in progress of diseases in adulthood. We investigated whether exposure to indoor air pollution from solid fuels at different lifetime periods was associated with global DNA methylation and methylation at the IFG2/H19 imprinting control region (ICR) in a population-based sample of non-smoking women from Warsaw, Poland. Global methylation and IFG2/H19 ICR methylation were assessed in peripheral blood DNA from 42 non-smoking women with Luminometric Methylation Assay (LUMA) and quantitative pyrosequencing, respectively. Linear regression models were applied to estimate associations between indoor air pollution and DNA methylation in the blood. Compared to women without exposure, the levels of LUMA methylation for women who had ever exposed to both coal and wood were reduced 6.70% (95% CI: -13.36, -0.04). Using both coal and wood before age 20 was associated with 6.95% decreased LUMA methylation (95% CI: -13.79, -0.11). Further, the negative correlations were more significant with exposure to solid fuels for cooking before age 20. There were no clear associations between indoor solid fuels exposure before age 20 and through the lifetime and IFG2/H19 ICR methylation. Our study of non-smoking women supports the hypothesis that exposure to indoor air pollution from solid fuels, even early-life exposure, has the capacity to modify DNA methylation that can be detected in peripheral blood.
Collapse
Affiliation(s)
- Meng-Hua Tao
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jiachen Zhou
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Alexander P Rialdi
- Department of Community and Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Regina Martinez
- Department of Biochemistry, Baylor University, Waco, TX 76798, United States
| | - Joanna Dabek
- Department of Cancer Epidemiology and Prevention, Cancer Center and M. Sklodowska-Curie Memorial Institute of Oncology, Warsaw 02781, Poland
| | - Ghislaine Scelo
- Section of Genetic Epidemiology, International Agency for Research on Cancer, Lyon 69372, France
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Cancer Center and M. Sklodowska-Curie Memorial Institute of Oncology, Warsaw 02781, Poland
| | - Jia Chen
- Department of Community and Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Ruttenberg Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Paolo Boffetta
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
14
|
Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 2014; 53:289-305. [PMID: 23744968 DOI: 10.1093/ilar.53.3-4.289] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This review focuses on how environmental factors through epigenetics modify disease risk and health outcomes. Major epigenetic events, such as histone modifications, DNA methylation, and microRNA expression, are described. The function of dose, duration, composition, and window of exposure in remodeling the individual's epigenetic terrain and disease susceptibility are addressed. The ideas of lifelong editing of early-life epigenetic memories, transgenerational effects through germline transmission, and the potential role of hydroxylmethylation of cytosine in developmental reprogramming are discussed. Finally, the epigenetic effects of several major classes of environmental factors are reviewed in the context of pathogenesis of disease. These include endocrine disruptors, tobacco smoke, polycyclic aromatic hydrocarbons, infectious pathogens, particulate matter, diesel exhaust particles, dust mites, fungi, heavy metals, and other indoor and outdoor pollutants. We conclude that the summation of epigenetic modifications induced by multiple environmental exposures, accumulated over time, represented as broad or narrow, acute or chronic, developmental or lifelong, may provide a more precise assessment of risk and consequences. Future investigations may focus on their use as readouts or biomarkers of the totality of past exposure for the prediction of future disease risk and the prescription of effective countermeasures.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Hillemeier MM, Lanza ST, Landale NS, Oropesa RS. Measuring early childhood health and health disparities: a new approach. Matern Child Health J 2013; 17:1852-61. [PMID: 23225206 PMCID: PMC3615056 DOI: 10.1007/s10995-012-1205-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Efforts to improve the health of U.S. children and reduce disparities have been hampered by lack of a rigorous way to summarize the multi-dimensional nature of children's health. This research employed a novel statistical approach to measurement to provide an integrated, comprehensive perspective on early childhood health and disparities. Nationally-representative data (n = 8,800) came from the Early Childhood Longitudinal Study, Birth Cohort. Latent class analysis was used to classify health at 48 months, incorporating health conditions, functioning, and aspects of physical, cognitive, and emotional development. Health disparities by gender, poverty, race/ethnicity, and birthweight were examined. Over half of all children were classified as healthy using multidimensional latent class methodology; others fell into one of seven less optimal health statuses. The analyses highlighted pervasive disparities in health, with poor children at increased risk of being classified into the most disadvantaged health status consisting of chronic conditions and a cluster of developmental problems including low cognitive achievement, poor social skills, and behavior problems. Children with very low birthweight had the highest rate of being in the most disadvantaged health status (25.2 %), but moderately low birthweight children were also at elevated risk (7.9 vs. 3.4 % among non-low birthweight children). Latent class analysis provides a uniquely comprehensive picture of child health and health disparities that identifies clusters of problems experienced by some groups. The findings underscore the importance of continued efforts to reduce preterm birth, and to ameliorate poverty's effects on children's health through access to high-quality healthcare and other services.
Collapse
Affiliation(s)
- Marianne M Hillemeier
- Department of Health Policy and Administration, Pennsylvania State University, 504S Ford Building, University Park, PA, 16802, USA,
| | | | | | | |
Collapse
|
17
|
Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. THE LANCET RESPIRATORY MEDICINE 2013; 1:728-42. [PMID: 24429276 DOI: 10.1016/s2213-2600(13)70118-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interest in the contribution of changes in lung development during early life to subsequent respiratory morbidity is increasing. Most evidence of an association between adverse intrauterine factors and structural effects on the developing lung is from animal studies. Such evidence has been augmented by epidemiological studies showing associations between insults to the developing lung during prenatal and early postnatal life and adult respiratory morbidity or reduced lung function, and by physiological studies that have elucidated mechanisms underlying these associations. The true effect of early insults on subsequent respiratory morbidity can be understood only if the many prenatal and postnatal factors that can affect lung development are taken into account. Adverse factors affecting lung development during fetal life and early childhood reduce the attainment of maximum lung function and accelerate lung function decline in adulthood, initiating or worsening morbidity in susceptible individuals. In this Review, we focus on factors that adversely affect lung development in utero and during the first 5 years after birth, thereby predisposing individuals to reduced lung function and increased respiratory morbidity throughout life. We focus particularly on asthma and COPD.
Collapse
Affiliation(s)
- Janet Stocks
- University College London, Institute of Child Health, London, UK.
| | - Alison Hislop
- University College London, Institute of Child Health, London, UK
| | - Samatha Sonnappa
- University College London, Institute of Child Health, London, UK
| |
Collapse
|
18
|
Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2013; 7:161-73. [PMID: 23439689 PMCID: PMC4107852 DOI: 10.1177/1753465813479428] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that chronic obstructive pulmonary disease (COPD) is not simply a disease of old age that is largely restricted to heavy smokers, but may be associated with insults to the developing lung during foetal life and the first few years of postnatal life, when lung growth and development are rapid. A better understanding of the long-term effects of early life factors, such as intrauterine growth restriction, prenatal and postnatal exposure to tobacco smoke and other pollutants, preterm delivery and childhood respiratory illnesses, on the subsequent development of chronic respiratory disease is imperative if appropriate preventive and management strategies to reduce the burden of COPD are to be developed. The extent to which insults to the developing lung are associated with increased risk of COPD in later life depends on the underlying cause, timing and severity of such derangements. Suboptimal conditions in utero result in aberrations of lung development such that affected individuals are born with reduced lung function, which tends to remain diminished throughout life, thereby increasing the risk both of wheezing disorders during childhood and subsequent COPD in genetically susceptible individuals. If the current trend towards the ever-increasing incidence of COPD is to be reversed, it is essential to minimize risks to the developing lung by improvements in antenatal and neonatal care, and to reduce prenatal and postnatal exposures to environmental pollutants, including passive tobacco smoke. Furthermore, adult physicians need to recognize that lung disease is potentially associated with early life insults and provide better education regarding diet, exercise and avoidance of smoking to preserve precious reserves of lung function in susceptible adults. This review focuses on factors that adversely influence lung development in utero and during the first 5 years of life, thereby predisposing to subsequent COPD.
Collapse
Affiliation(s)
- Janet Stocks
- Portex Unit, University College London Institute of Child Health, 30, Guilford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
19
|
Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 2012; 14:542-55. [PMID: 22968315 PMCID: PMC3483370 DOI: 10.1007/s11883-012-0280-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In epidemiologic studies, high-chronic arsenic exposure has been associated with cardiovascular disease, despite methodological limitations. At low-moderate arsenic levels, the evidence was inconclusive. Here, we update a previous systematic review (Am J Epidemiol 2005;162:1037-49) examining the association between arsenic exposure and cardiovascular disease. Eighteen studies published since 2005 were combined with 13 studies from the previous review. We calculated pooled relative risks by comparing the highest versus the lowest exposure category across studies. For high exposure (arsenic in drinking water > 50 μg/L), the pooled relative risks (95 % confidence interval) for cardiovascular disease, coronary heart disease, stroke, and peripheral arterial disease were 1.32 (95 % CI:1.05-1.67), 1.89 (95 % CI:1.33-2.69), 1.08 (95 % CI:0.98-1.19), and 2.17 (95 % CI:1.47-3.20), respectively. At low-moderate arsenic levels, the evidence was inconclusive. Our review strengthens the evidence for a causal association between high-chronic arsenic exposure and clinical cardiovascular endpoints. Additional high quality studies are needed at low-moderate arsenic levels.
Collapse
Affiliation(s)
- Katherine Moon
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W7604, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
20
|
Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat Med 2012; 18:726-35. [PMID: 22561836 DOI: 10.1038/nm.2768] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prospective birth cohort studies tracking asthma initiation and consolidation in community cohorts have identified viral infections occurring against a background of allergic sensitization to aeroallergens as a uniquely potent risk factor for the expression of acute severe asthma-like symptoms and for the ensuing development of asthma that can persist through childhood and into adulthood. A combination of recent experimental and human studies have suggested that underlying this bipartite process are a series of interactions between antiviral and atopic inflammatory pathways that are mediated by local activation of myeloid cell populations in the airway mucosa and the parallel programming and recruitment of their replacements from bone marrow. Targeting key components of these pathways at the appropriate stages of asthma provides new opportunities for the treatment of established asthma but, more crucially, for primary and secondary prevention of asthma during childhood.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
21
|
Schlage WK, Westra JW, Gebel S, Catlett NL, Mathis C, Frushour BP, Hengstermann A, Van Hooser A, Poussin C, Wong B, Lietz M, Park J, Drubin D, Veljkovic E, Peitsch MC, Hoeng J, Deehan R. A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC SYSTEMS BIOLOGY 2011; 5:168. [PMID: 22011616 PMCID: PMC3224482 DOI: 10.1186/1752-0509-5-168] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
Background Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate. Results We have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung. Conclusions The results presented here describe the construction of a cellular stress network model and its application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis described here, coupled with the future development of additional network models covering distinct areas of biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors such as CS, in pulmonary and cardiovascular cells.
Collapse
Affiliation(s)
- Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstr.3, 51149 Koeln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|