1
|
Wong LY, Berry MF. Metastasectomy in Head and Neck Cancers. Thorac Surg Clin 2025; 35:257-265. [PMID: 40246415 DOI: 10.1016/j.thorsurg.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Pulmonary metastases occur relatively commonly in head and neck cancer patients. Careful evaluation to establish whether a lung nodule in head and neck cancer patients is a metastasis or a separate primary lung cancer is critical in providing optimal care. Surgical resection of pulmonary metastases is appropriate in select patients and is associated with reasonable long-term survival.
Collapse
Affiliation(s)
- Lye-Yeng Wong
- Department of Cardiothoracic Surgery, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94303, USA. https://twitter.com/LyeYengWongMD
| | - Mark F Berry
- Department of Cardiothoracic Surgery, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94303, USA.
| |
Collapse
|
2
|
Bryant JM, Mills MN, Liveringhouse C, Palm R, Druta M, Brohl A, Reed DR, Johnstone PA, Miller JT, Latifi K, Feygelman V, Yang GQ, Naghavi AO. Hypofractionated accelerated radiation dose-painting (HARD) improves outcomes in unresected soft-tissue sarcoma. Radiother Oncol 2025; 202:110644. [PMID: 39571685 DOI: 10.1016/j.radonc.2024.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Soft tissue sarcomas (STS) are radioresistant with a low α/β, which may have a biologic benefit with hypofractionation. For unresectable STS, the dose escalation required to achieve durable control is often limited by long-term toxicity risk. We sought to compare an isotoxic approach utilizing hypofractionated accelerated radiation dose-painting (HARD) versus standard fractionated radiation therapy (SFT) in patients with unresected STS. We conducted a retrospective analysis of patients with unresected STS who received either HARD (n = 49) or SFT (n = 43) with photon-based therapy between 1990 and 2022. The 2 HARD regimens each use 3 dose levels based on risk of disease burden. The gross disease, intermediate risk, and low-risk clinical target volumes were treated with either 20-22 fractions of 3/2.5/2-2.2 Gy or 28 fractions of 2.5/2.2/1.8 Gy. SFT included patients treated with definitive intent, receiving ≥ 50 Gy in 1.8-2 Gy per fraction. Clinical endpoints included 3-year local control (LC), overall survival (OS), and progression-free survival (PFS), along with treatment-related toxicity. With a median age of 67 and tumor size of 7 cm, most patients were stage IV (37 %), grade 3 (67 %), had no concurrent systemic therapy (70 %), and were lower extremity tumors (24 %). HARD cohort consisted of higher age, stage, recurrent disease, and median BED4 (p < 0.05), when compared to SFT. With a median follow-up of 35.9 months, HARD demonstrated significant improvement in 3-year LC (96.4 % vs. 48.4 %, p < 0.001), compared to SFT overall, with a median PFS benefit (16 vs. 10 months, p = 0.037) for non-distantly metastatic patients at baseline. On multivariate analysis, HARD was significantly associated with improved LC (HR 0.058, 95 % CI 0.005-0.682, p = 0.024). The HARD regimen found no significant increase in toxicity, with limited acute grade 3 (24 %, all dermatitis) and late grade 3 toxicity (6 %) observed, with no grade 4 or 5 events. HARD regimen significantly improves LC for unresectable STS without a significant increase in toxicity, when compared to a standard fractionated approach, supporting further prospective investigation of this treatment approach.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA.
| | - Matthew N Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Casey Liveringhouse
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Russell Palm
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Mihaela Druta
- Department of Sarcoma, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Andrew Brohl
- Department of Sarcoma, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Damon R Reed
- Department of Sarcoma, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Peter A Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Justin T Miller
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - George Q Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA
| | - Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, FL, USA.
| |
Collapse
|
3
|
Ferro M, Macchia G, Pezzulla D, Cilla S, Romano C, Ferro M, Boccardi M, Bonome P, Picardi V, Buwenge M, Morganti AG, Deodato F. Pattern of recurrence after stereotactic body radiotherapy of nodal lesions: a single-institution analysis. Br J Radiol 2024; 97:1295-1301. [PMID: 38741392 PMCID: PMC11186556 DOI: 10.1093/bjr/tqae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Stereotactic body radiotherapy (SBRT) and/or single fraction stereotactic body radiosurgery (SRS) are effective treatment options for the treatment of oligometastatic disease of lymph nodes. Despite the encouraging local control rate, progression-free survival remains unfair due to relapses that might occur in the same district or at other sites. The recurrence pattern analysis after nodal local ablative RT (laRT) in oligometastatic patients is presented in this study. METHODS The pattern of failure of patients with nodal metastases who were recruited and treated with SBRT in the Destroy-1 or SRS in the Destroy-2 trials was investigated in this single-institution, retrospective analysis. The different relapsed sites following laRT were recorded. RESULTS Data on 190 patients who received SBRT or SRS on 269 nodal lesions were reviewed. A relapse rate of 57.2% (154 out of 269 nodal lesions) was registered. The pattern of failure was distant in 88 (57.4%) and loco-regional in 66 (42.6%) patients, respectively. The most frequent primary malignancies among patients experiencing loco-regional failure were genitourinary and gynaecological cancers. Furthermore, the predominant site of loco-regional relapse (62%) was the pelvic area. Only 26% of locoregional relapses occurred contra laterally, with 74% occurring ipsilaterally. CONCLUSIONS The recurrence rates after laRT for nodal disease were more frequent in distant regions compared to locoregional sites. The most common scenarios for locoregional relapse appear to be genitourinary cancer and the pelvic site. In addition, recurrences often occur in the same nodal station or in a nodal station contiguous to the irradiated nodal site. ADVANCES IN KNOWLEDGE Local ablative radiotherapy is an effective treatment in managing nodal oligometastasis. Despite the high local control rate, the progression free survival remains dismal with recurrences that can occur both loco-regionally or at distance. To understand the pattern of failure could aid the physicians to choose the best treatment strategy. This is the first study that reports the recurrence pattern of a significant number of nodal lesions treated with laRT.
Collapse
Affiliation(s)
- Milena Ferro
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Donato Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Savino Cilla
- Medical Physics Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Carmela Romano
- Medical Physics Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Marica Ferro
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Mariangela Boccardi
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Paolo Bonome
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Vincenzo Picardi
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
| | - Milly Buwenge
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Alessio G Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine—DIMES, Alma Mater Studiorum, Bologna University, Bologna 40138, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso 86100, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
4
|
Bryant JM, Mills MN, Yang GQ, Liveringhouse C, Palm R, Johnstone PA, Miller JT, Latifi K, Feygelman V, Naghavi AO. Novel Definitive Hypofractionated Accelerated Radiation Dose-painting (HARD) for Unresected Soft Tissue Sarcomas. Adv Radiat Oncol 2024; 9:101447. [PMID: 38778821 PMCID: PMC11110037 DOI: 10.1016/j.adro.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 05/25/2024] Open
Abstract
Purpose Soft tissue sarcomas (STS) are historically radioresistant, with surgery being an integral component of their treatment. With their low α/β, STS may be more responsive to hypofractionated radiation therapy (RT), which is often limited by long-term toxicity risk to surrounding normal tissue. An isotoxic approach using a hypofractionated accelerated radiation dose-painting (HARD) regimen allows for dosing based on clinical risk while sparing adjacent organs at risk. Methods and Materials We retrospectively identified patients from 2019 to 2022 with unresected STS who received HARD with dose-painting to high, intermediate, and low-risk regions of 3.0 Gy, 2.5 Gy, and 2.0 to 2.3 Gy, respectively, in 20 to 22 fractions. Clinical endpoints included local control, locoregional control, progression free survival, overall survival, and toxicity outcomes. Results Twenty-seven consecutive patients were identified and had a median age of 68 years and tumor size of 7.0 cm (range, 1.2-21.0 cm). Tumors were most often high-grade (70%), stage IV (70%), located in the extremities (59%), and locally recurrent (52%). With a median follow-up of 33.4 months, there was a 3-year locoregional control rate of 100%. The 3-year overall and progression-free survival were 44.9% and 23.3%, respectively. There were 5 (19%) acute and 2 (7%) late grade 3 toxicities, and there were no grade 4 or 5 toxicities at any point. Conclusions The HARD regimen is a safe method of dose-escalating STS, with durable 3-year locoregional control. This approach is a promising alternative for unresected STS, though further follow-up is required to determine long-term control and toxicity.
Collapse
Affiliation(s)
| | | | - George Q. Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Casey Liveringhouse
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Russell Palm
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin T. Miller
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arash O. Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
5
|
Aibe N, Ogino H, Wakatsuki M, Fujikawa K, Teramukai S, Fukumitsu N, Shiba S, Yamamoto N, Nomoto A, Ono T, Oguri M, Yamaguchi H, Numajiri H, Shibuya K, Okazaki S, Miyasaka Y, Okonogi N, Murata K, Tatebe H, Motegi A, Okimoto T, Yoshino T, Mandai M, Katoh N, Tsuji H, Sakurai H. Comprehensive analysis of Japanese nationwide cohort data of particle beam therapy for pulmonary, liver and lymph node oligometastases: particle beam therapy versus high-precision X-ray radiotherapy. JOURNAL OF RADIATION RESEARCH 2023; 64:i69-i83. [PMID: 37053162 PMCID: PMC10278882 DOI: 10.1093/jrr/rrad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/29/2022] [Indexed: 06/19/2023]
Abstract
Japanese national oncological experts convened to evaluate the efficacy and safety of particle beam therapy (PT) for pulmonary, liver and lymph node oligometastases (P-OM, L-OM and LN-OM, respectively) and to conduct a statistically comparative analysis of the local control (LC) rate and overall survival (OS) rate of PT versus those of X-ray stereotactic body radiotherapy (X-SBRT) and X-ray intensity-modulated radiotherapy (X-IMRT). They conducted [1] an analysis of the efficacy and safety of metastasis-directed therapy with PT for P-OM, L-OM and LN-OM using a Japanese nationwide multi-institutional cohort study data set; [2] a systematic review of X-ray high-precision radiotherapy (i.e. X-SBRT/X-IMRT) and PT for P-OM, L-OM and LN-OM; and [3] a statistical comparison between LC and OS of the cohort data set in PT and that of the extracted historical data set in X-SBRT/X-IMRT from the preceding systematic review. Safety was evaluated as the incidence of grade ≥ 3 adverse events, while statistical comparisons of LC and OS were conducted by estimating the incidence rate ratios (IRR) for local progression and mortality, respectively. This study demonstrated that PT provided durable LC (3-year LC rate: 72.8-83.2%) with acceptable OS (3-year OS rate: 38.5-68.1%) and risk of severe toxicity incidence of 0.8-3.5% in radical metastasis-directed therapy for P-OM, L-OM and LN-OM. Compared to LC with X-SBRT or X-IMRT, LC with PT was potentially superior for P-OM; superior for L-OM; and equivalent for LN-OM. In particular, this study demonstrated that PT may be a new treatment option for L-OM tumors measuring > 5 cm.
Collapse
Affiliation(s)
- Norihiro Aibe
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya 462-8508, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kei Fujikawa
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Naoyoshi Yamamoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Akihiro Nomoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Yamagata University, Faculty of Medicine, Yamagata 990-9585, Japan
| | - Masanosuke Oguri
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya 462-8508, Japan
| | - Hisashi Yamaguchi
- Department of Radiology, Southern Tohoku Proton Therapy Center, Koriyama City, Fukushima 963-8052, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8550, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hitoshi Tatebe
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-0846, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Hyogo, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Hokkaido 060-0808, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8550, Japan
| |
Collapse
|
6
|
Camps-Malea A, Pointreau Y, Chapet S, Calais G, Barillot I. Stereotactic body radiotherapy for mediastinal lymph node with CyberKnife®: Efficacy and toxicity. Cancer Radiother 2023; 27:225-232. [PMID: 37080855 DOI: 10.1016/j.canrad.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/22/2023]
Abstract
PUPRPOSE Stereotactic body radiotherapy is more and more used for treatment of oligometastatic mediastinal lymph nodes. The objective of this single-centre study was to evaluate its efficacy in patients with either a locoregional recurrence of a pulmonary or oesophageal cancer or with distant metastases of extrathoracic tumours. PATIENTS AND METHODS Patients with oligometastatic mediastinal lymph nodes treated with CyberKnife from June 2010 to September 2020 were screened. The primary endpoint was to assess local progression free survival and induced toxicity. Secondary endpoints were overall survival and progression free survival. The delay before introduction of systemic treatment in the subgroup of patients who did not receive systemic therapy for previous progression was also evaluated. RESULTS Fifty patients were included: 15 with a locoregional progression of a thoracic primary tumour (87% pulmonary) and 35 with mediastinal metastasis of especially renal tumour (29%). Median follow-up was 27 months (6-110 months). Local progression free survival at 6, 12 and 18 months was respectively 94, 88 and 72%. The rate of local progression was significantly lower in patients who received 36Gy in six fractions (66% of the cohort) versus other treatment schemes. Two grade 1 acute oesophagitis and one late grade 2 pulmonary fibrosis were described. Overall survival at 12, 18 and 24 months was respectively 94, 85 and 82%. Median progression free survival was 13 months. Twenty-one patients were treated by stereotactic body irradiation alone without previous history of systemic treatment. Among this subgroup, 11 patients (52%) received a systemic treatment following stereotactic body radiotherapy with a median introduction time of 17 months (5-52 months) and 24% did not progress. CONCLUSION Stereotactic body irradiation as treatment of oligometastatic mediastinal lymph nodes is a well-tolerated targeted irradiation that leads to a high control rate and delay the introduction of systemic therapy in selected patients.
Collapse
Affiliation(s)
- A Camps-Malea
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France.
| | - Y Pointreau
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France; Institut Inter-régional de cancérologie, centre Jean-Bernard, clinique Victor-Hugo, Le Mans, France
| | - S Chapet
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - G Calais
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - I Barillot
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| |
Collapse
|
7
|
Ottaiano A, Santorsola M, Circelli L, Trotta AM, Izzo F, Perri F, Cascella M, Sabbatino F, Granata V, Correra M, Tarotto L, Stilo S, Fiore F, Martucci N, Rocca AL, Picone C, Muto P, Borzillo V, Belli A, Patrone R, Mercadante E, Tatangelo F, Ferrara G, Di Mauro A, Scognamiglio G, Berretta M, Capuozzo M, Lombardi A, Galon J, Gualillo O, Pace U, Delrio P, Savarese G, Scala S, Nasti G, Caraglia M. Oligo-Metastatic Cancers: Putative Biomarkers, Emerging Challenges and New Perspectives. Cancers (Basel) 2023; 15:1827. [PMID: 36980713 PMCID: PMC10047282 DOI: 10.3390/cancers15061827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Some cancer patients display a less aggressive form of metastatic disease, characterized by a low tumor burden and involving a smaller number of sites, which is referred to as "oligometastatic disease" (OMD). This review discusses new biomarkers, as well as methodological challenges and perspectives characterizing OMD. Recent studies have revealed that specific microRNA profiles, chromosome patterns, driver gene mutations (ERBB2, PBRM1, SETD2, KRAS, PIK3CA, SMAD4), polymorphisms (TCF7L2), and levels of immune cell infiltration into metastases, depending on the tumor type, are associated with an oligometastatic behavior. This suggests that OMD could be a distinct disease with specific biological and molecular characteristics. Therefore, the heterogeneity of initial tumor burden and inclusion of OMD patients in clinical trials pose a crucial methodological question that requires responses in the near future. Additionally, a solid understanding of the molecular and biological features of OMD will be necessary to support and complete the clinical staging systems, enabling a better distinction of metastatic behavior and tailored treatments.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Anna Maria Trotta
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Luca Tarotto
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Salvatore Stilo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Fiore
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Nicola Martucci
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Antonello La Rocca
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Carmine Picone
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Muto
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Valentina Borzillo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Andrea Belli
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Edoardo Mercadante
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Gerardo Ferrara
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Giosué Scognamiglio
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | | | - Angela Lombardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ugo Pace
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Delrio
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Stefania Scala
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
8
|
Abstract
The benefit of radiation is immense in the field of gastroenterology. Radiation is used daily in different gastrointestinal imaging and diagnostic and therapeutic interventional procedures. Radiotherapy is one of the primary modalities of treatment of gastrointestinal malignancies. There are various modalities of radiotherapy. Radiotherapy can injure malignant cells by directly damaging DNA, RNA, proteins, and lipids and indirectly by forming free radicals. External beam radiation, internal beam radiation and radio-isotope therapy are the major ways of delivering radiation to the malignant tissue. Radiation can also cause inflammation, fibrosis, organ dysfunction, and malignancy. Patients with repeated exposure to radiation for diagnostic imaging and therapeutic procedures are at slightly increased risk of malignancy. Gastrointestinal endoscopists performing fluoroscopy-guided procedures are also at increased risk of malignancy and cataract formation. The radiological protection society recommends certain preventive and protective measures to avoid side effects of radiation. Gastrointestinal complications related to radiation therapy for oncologic processes, and exposure risks for patients and health care providers involved in diagnostic or therapeutic imaging will be discussed in this review.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Razin Ahmed
- California Cancer Associates for Research and Excellence, Fresno, CA, USA
| |
Collapse
|
9
|
MRI-guided Radiotherapy (MRgRT) for treatment of Oligometastases: Review of clinical applications and challenges. Int J Radiat Oncol Biol Phys 2022; 114:950-967. [PMID: 35901978 DOI: 10.1016/j.ijrobp.2022.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver MR-guided radiation therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiotherapy (SBRT) in treatment of oligometastatic disease. Here we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiotherapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance (QA) of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS The promising early indications of safety and effectiveness of MRgRT for SBRT-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.
Collapse
|
10
|
Stereotactic Body Radiation Therapy (SBRT) for Oligorecurrent/Oligoprogressive Mediastinal and Hilar Lymph Node Metastasis: A Systematic Review. Cancers (Basel) 2022; 14:cancers14112680. [PMID: 35681659 PMCID: PMC9179886 DOI: 10.3390/cancers14112680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This paper is a review of the literature on oligorecurrent/oligoprogressive mediastinal and hilar lymph node metastasis treated with SBRT. The use of mediastinal SBRT had historically been not feasible in view of the expected toxicity due to the proximity of critical structures such as the airways and esophagus. Despite the heterogeneity and lack of some data in the studies analyzed, this literature review is the first published and can be a valid guide for the radiotherapist in the management of oligometastatic/oligoprogressive patients, with particular regard to the radiotherapy doses, dose constraints for organs at risk, and clinical outcomes. Abstract Introduction: Mediastinal or hilar lymph node metastases are a challenging condition in patients affected by solid tumors. Stereotactic body radiation therapy (SBRT) could play a crucial role in the therapeutic management and in the so-called “no-fly zone”, delivering high doses of radiation in relatively few treatment fractions with excellent sparing of healthy surrounding tissues and low toxicity. The aim of this systematic review is to evaluate the feasibility and tolerability of SBRT in the treatment of mediastinal and hilar lesions with particular regard to the radiotherapy doses, dose constraints for organs at risk, and clinical outcomes. Materials and methods: Two blinded investigators performed a critical review of the Medline, Web of Knowledge, Google Scholar, Scopus, and Cochrane databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA), starting from a specific question: What is the clinical impact of SBRT for the treatment of oligorecurrent/oligoprogressive mediastinal and hilar metastasis? All retrospective and prospective clinical trials published in English up to February 2022 were analyzed. Results: A total of 552 articles were identified and 12 of them were selected with a total number of 478 patients treated with SBRT for mediastinal or hilar node recurrence. All the studies are retrospective, published between 2015 and 2021 with a median follow-up ranging from 12 to 42.2 months. Studies following SBRT for lung lesions or retreatments after thorax radiotherapy for stage III lung cancer were also included. The studies showed extensive heterogeneity in terms of patient and treatment characteristics. Non-small cell lung cancer was the most frequently reported histology. Different dose schemes were used, with a higher prevalence of 4–8 Gy in 5 or 6 fractions, but dose escalation was also used up to 52 Gy in 4 fractions with dose constraints mainly derived from RTOG 0813 trial. The radiotherapy technique most frequently used was volumetric modulated arc therapy (VMAT) with a median PTV volume ranging from 7 to 25.7 cc. The clinical outcome seems to be very encouraging with 1-year local control (LC), overall survival (OS) and progression-free survival (PFS) rates ranging from 84 to 94%, 53 to 88% and 23 to 53.9%, respectively. Half of the studies did not report toxicity greater than G3 and only five cases of fatal toxicity were reported. CONCLUSIONS: From the present review, it is not possible to draw definitive conclusions because of the heterogeneity of the studies analyzed. However, SBRT appears to be a safe and effective option in the treatment of mediastinal and hilar lymph node recurrence, with a good toxicity profile. Its use in clinical practice is still limited, and there is extensive heterogeneity in patient selection and fractionation schedules. Good performance status, small PTV volume, absence of previous thoracic irradiation, and administration of a high biologically effective dose (BED) seem to be factors that correlate with greater local control and better survival rates. In the presence of symptoms related to the thoracic lymph nodes, SBRT determines a rapid control that lasts over time. We look forward to the prospective studies that are underway for definitive conclusions.
Collapse
|
11
|
Longo N, Celentano G, Napolitano L, La Rocca R, Capece M, Califano G, Collà Ruvolo C, Mangiapia F, Fusco F, Morra S, Turco C, Di Bello F, Fusco GM, Cirillo L, Cacciapuoti C, Spirito L, Calogero A, Sica A, Sagnelli C, Creta M. Metastasis-Directed Radiation Therapy with Consolidative Intent for Oligometastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:2373. [PMID: 35625979 PMCID: PMC9139743 DOI: 10.3390/cancers14102373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The management of patients with oligometastatic urothelial carcinoma (UC) represents an evolving field in uro-oncology, and the role of metastasis-directed therapies, including metastasectomy and metastasis-directed radiation therapy (MDRT), is gaining increasing attention. Herein, we summarize available evidence about the role of MDRT with consolidative intent in oligometastatic UC patients. A systematic review was performed in December 2021. Six studies involving 158 patients were identified. Most patients (n = 120, 90.2%) had a history of bladder cancer and the most frequent sites of metastases were lymph nodes (n = 61, 52.1%) followed by the lungs (n = 34, 29%). Overall, 144 metastases were treated with MDRT. Median follow-up ranged from 17.2 to 25 months. Local control rates ranged from 57% to 100%. Median Overall Survival (OS) ranged from 14.9 to 51.0 months and median progression-free survival ranged from 2.9 to 10.1 months. Rates of OS at one and two years ranged from 78.9% to 96% and from 26% to 63%, respectively. Treatment-related toxicity was recorded in few patients and in most cases a low-grade toxicity was evident. MDRT with consolidative intent represents a potential treatment option for selected patients with oligometastatic UC.
Collapse
Affiliation(s)
- Nicola Longo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Giuseppe Celentano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Roberto La Rocca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Marco Capece
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Gianluigi Califano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Claudia Collà Ruvolo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Francesco Mangiapia
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Ferdinando Fusco
- Department of Woman, Child and General, Specialized Surgery, Urology Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.F.); (L.S.)
| | - Simone Morra
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Carmine Turco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Francesco Di Bello
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Crescenzo Cacciapuoti
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| | - Lorenzo Spirito
- Department of Woman, Child and General, Specialized Surgery, Urology Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.F.); (L.S.)
| | - Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Va Pansini, 5, 80131 Naples, Italy;
| | - Antonello Sica
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy;
| | - Massimiliano Creta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (N.L.); (G.C.); (R.L.R.); (M.C.); (G.C.); (C.C.R.); (F.M.); (S.M.); (C.T.); (F.D.B.); (G.M.F.); (L.C.); (C.C.); (M.C.)
| |
Collapse
|
12
|
Kutuk T, Herrera R, Mustafayev TZ, Gungor G, Ugurluer G, Atalar B, Kotecha R, Hall MD, Rubens M, Mittauer KE, Contreras JA, McCulloch J, Kalman NS, Alvarez D, Romaguera T, Gutierrez AN, Garcia J, Kaiser A, Mehta MP, Ozyar E, Chuong MD. Multi-Institutional Outcomes of Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy (SMART) with a Median Biologically Effective Dose of 100 Gy10 for Non-Bone Oligometastases. Adv Radiat Oncol 2022; 7:100978. [PMID: 35647412 PMCID: PMC9130084 DOI: 10.1016/j.adro.2022.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Randomized data show a survival benefit of stereotactic ablative body radiation therapy in selected patients with oligometastases (OM). Stereotactic magnetic resonance guided adaptive radiation therapy (SMART) may facilitate the delivery of ablative dose for OM lesions, especially those adjacent to historically dose-limiting organs at risk, where conventional approaches preclude ablative dosing. Methods and Materials The RSSearch Registry was queried for OM patients (1-5 metastatic lesions) treated with SMART. Freedom from local progression (FFLP), freedom from distant progression (FFDP), progression-free survival (PFS), and overall survival (LS) were estimated using the Kaplan-Meier method. FFLP was evaluated using RECIST 1.1 criteria. Toxicity was evaluated using Common Terminology Criteria for Adverse Events version 4 criteria. Results Ninety-six patients with 108 OM lesions were treated on a 0.35 T MR Linac at 2 institutions between 2018 and 2020. SMART was delivered to mostly abdominal or pelvic lymph nodes (48.1%), lung (18.5%), liver and intrahepatic bile ducts (16.7%), and adrenal gland (11.1%). The median prescribed radiation therapy dose was 48.5 Gy (range, 30-60 Gy) in 5 fractions (range, 3-15). The median biologically effective dose corrected using an alpha/beta value of 10 was 100 Gy10 (range, 48-180). No acute or late grade 3+ toxicities were observed with median 10 months (range, 3-25) follow-up. Estimated 1-year FFLP, FFDP, PFS, and OS were 92.3%, 41.1%, 39.3%, and 89.6%, respectively. Median FFDP and PFS were 8.9 months (95% confidence interval, 5.2-12.6 months) and 7.6 months (95% confidence interval, 4.5-10.6 months), respectively. Conclusions To our knowledge, this represents the largest analysis of SMART using ablative dosing for non-bone OM. A median prescribed biologically effective dose of 100 Gy10 resulted in excellent early FFLP and no significant toxicity, likely facilitated by continuous intrafraction MR visualization, breath hold delivery, and online adaptive replanning. Additional prospective evaluation of dose-escalated SMART for OM is warranted.
Collapse
|
13
|
Puente-Vallejo R, Ochoa P, Núñez C, De Los Reyes L. Management of an Unusual Metastasis of Cervical Cancer in the Adrenal Bed With Stereotactic Ablative Body Radiation Therapy. Cureus 2022; 14:e22178. [PMID: 35308681 PMCID: PMC8923247 DOI: 10.7759/cureus.22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cervical carcinoma is an important type of cancer among Ecuadorian women, especially in adult women. Survival rates have improved with the development of radiotherapy, surgical techniques, and chemotherapy. However, recurrence and/or metastasis are not unusual phenomena. Frequent sites of metastasis are the lungs, regional lymph nodes, and bones. Atypical locations can also occur on solid organs, such as adrenal glands. Treatment for the rare complication that is adrenal metastasis is individualized, it can include surgical resection, chemotherapy, local ablation, or different types of radiotherapy. We aimed to report a case of an Ecuadorian woman from Quito city with a diagnosis of cervical carcinoma diagnosed in 2009, treated surgically and with adjuvant chemotherapy. Her progression was monitored with medical controls with no recurrence until 2018, when she relapsed with a metastatic invasion of the pelvic ganglia and the surroundings of the abdominal aorta, with a histopathologic diagnosis of adenocarcinoma. She was then treated with chemotherapy and radiotherapy until June 2019. In 2020, she went through a splenectomy and left adrenalectomy to treat vascular thrombosis. In 2021, 37 x 15 mm mass was discovered in the surgical bed of the previously removed adrenal gland. It was treated as an oligometastatic carcinoma with stereotactic body radiotherapy (SBRT) by a linear accelerator.
Collapse
|
14
|
Regnery S, Buchele C, Piskorski L, Weykamp F, Held T, Eichkorn T, Rippke C, Katharina Renkamp C, Klüter S, Ristau J, König L, Koerber SA, Adeberg S, Debus J, Hörner-Rieber J. SMART ablation of lymphatic oligometastases in the pelvis and abdomen: Clinical and dosimetry outcomes. Radiother Oncol 2022; 168:106-112. [PMID: 35121031 DOI: 10.1016/j.radonc.2022.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To demonstrate dosimetry benefits and report clinical outcomes of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of abdominopelvic lymphatic oligometastases. PATIENTS & METHODS Prospective registry data of 26 patients with 31 oligoprogressive lymphatic metastases (1 - 2 lesions) who received SMART between April 2020 and April 2021 was analyzed. Prostate cancer was the most common histology (69%). Most patients (63%) had received previous abdominopelvic radiotherapy (RT). SMART was delivered in 3 - 7 fractions based on planning target volume (PTV) location and previous dose exposures. For SMART, the baseline plan was recalculated on daily 3D MR-imaging (predicted plan), and plan adaptation was mandatory in case of planning objective violations. RESULTS Plan adaptation was mostly performed due to violation of planning objectives in the predicted plan (134/140 fractions, 96%) and significantly improved plan dosimetry: 1) PTV coverage was increased (predicted: median 89%, adapted: median 95%, p < 0.001), 2) organs-at-risk (OAR) overdoses were reduced (predicted: 27/140 (19%), adapted: 1/140 (1%), p < 0.001) and 3) PTV overdoses were reduced (predicted: 21/140 (15%), adapted: 1/140 (1%), p < 0.001). After a median follow-up of 9.8 months, one patient had in-field tumor progression and twelve patients had out-field tumor progression (at 6 months: progression-free survival: 63% [46 - 88%], local control rate: 97% [90 - 100%]). Treatment was tolerated well and no grade ≥ 3 toxicity was reported. CONCLUSION SMART improves target volume coverage and yields superior OAR protection compared to non-adaptive radiotherapy, thus representing an innovative approach to challenging cases, such as repeated radiotherapy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Lars Piskorski
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Minami T, Miyake H, Nagai H, Yoshioka Y, Shibata K, Takahashi D, Yuasa N, Fujino M. Long-term survivor who underwent surgical resections of repeated peritoneal oligometastases from colon cancer : a rare case report. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:302-307. [DOI: 10.2152/jmi.69.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takayuki Minami
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Hideo Miyake
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Hidemasa Nagai
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yuichiro Yoshioka
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Koji Shibata
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Daigoro Takahashi
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Norihiro Yuasa
- Department of Gastrointestinal Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Masahiko Fujino
- Department of Cytology and Molecular Pathology, Japanese Red Cross Aichi Medical Center, Nagoya Daiichi Hospital, Nagoya, Japan
| |
Collapse
|
16
|
Stereotactic body radiotherapy of lymph node metastases under MR-guidance: First clinical results and patient-reported outcomes. Strahlenther Onkol 2021; 198:56-65. [PMID: 34468783 PMCID: PMC8760210 DOI: 10.1007/s00066-021-01834-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/01/2021] [Indexed: 12/04/2022]
Abstract
Objective Stereotactic body radiotherapy (SBRT) is a noninvasive treatment option for lymph node metastases (LNM). Magnetic resonance (MR)-guidance offers superior tissue contrast and enables treatment of targets in close vicinity to radiosensitive organs at risk (OAR). However, literature on MR-guided SBRT of LNM is scarce with no report on outcome parameters. Materials and methods We report a subgroup analysis of a prospective observational study comprising patients with LNM. Patients received MR-guided SBRT at our MRIdian Linac (ViewRay Inc., Mountain View, CA, USA) between January 2019 and February 2020. Local control (LC), progression-free survival (PFS) and overall survival (OS) analysis were performed using the Kaplan–Meier method with log rank test to test for significance (p < 0.05). Our patient-reported outcome questionnaire was utilized to evaluate patients’ perspective. The CTCAE (Common Terminology Criteria for Adverse Events) v. 5.0 was used to describe toxicity. Results Twenty-nine patients (72.4% with prostate cancer; 51.7% with no distant metastases) received MR-guided SBRT for in total 39 LNM. Median dose was 27 Gy in three fractions, prescribed to the 80% isodose. At 1‑year, estimated LC, PFS and OS were 92.6, 67.4 and 100.0%. Compared to baseline, six patients (20.7%) developed new grade I toxicities (mainly fatigue). One grade II toxicity occurred (fatigue), with no adverse event grade ≥III. Overall treatment experience was rated particularly positive, while the technically required low room temperature still represents the greatest obstacle in the pursuit of the ideal patient acceptance. Conclusion MR-guided SBRT of LNM was demonstrated to be a well-accepted treatment modality with excellent preliminary results. Future studies should evaluate the clinical superiority to conventional SBRT. Video online The online version of this article contains one video. The article and the video are available online (10.1007/s00066-021-01834-w). The video can be found in the article back matter as “Supplementary Information”.
Collapse
|
17
|
Portelance L, Corradini S, Erickson B, Lalondrelle S, Padgett K, van der Leij F, van Lier A, Jürgenliemk-Schulz I. Online Magnetic Resonance-Guided Radiotherapy (oMRgRT) for Gynecological Cancers. Front Oncol 2021; 11:628131. [PMID: 34513656 PMCID: PMC8429611 DOI: 10.3389/fonc.2021.628131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is increasingly being used in gynecological cancer management. RT delivered with curative or palliative intent can be administered alone or combined with chemotherapy or surgery. Advanced treatment planning and delivery techniques such as intensity-modulated radiation therapy, including volumetric modulated arc therapy, and image-guided adaptive brachytherapy allow for highly conformal radiation dose delivery leading to improved tumor control rates and less treatment toxicity. Quality on-board imaging that provides accurate visualization of target and surrounding organs at risk is a critical feature of these advanced techniques. As soft tissue contrast resolution is superior with magnetic resonance imaging (MRI) compared to other imaging modalities, MRI has been used increasingly to delineate tumor from adjacent soft tissues and organs at risk from initial diagnosis to tumor response evaluation. Gynecological cancers often have poor contrast resolution compared to the surrounding tissues on computed tomography scan, and consequently the benefit of MRI is high. One example is in management of locally advanced cervix cancer where adaptive MRI guidance has been broadly implemented for adaptive brachytherapy. The role of MRI for external beam RT is also steadily increasing. MRI information is being used for treatment planning, predicting, and monitoring position shifts and accounting for tissue deformation and target regression during treatment. The recent clinical introduction of online MRI-guided radiation therapy (oMRgRT) could be the next step in high-precision RT. This technology provides a tool to take full advantage of MRI not only at the time of initial treatment planning but as well as for daily position verification and online plan adaptation. Cervical, endometrial, vaginal, and oligometastatic ovarian cancers are being treated on MRI linear accelerator systems throughout the world. This review summarizes the current state, early experience, ongoing trials, and future directions of oMRgRT in the management of gynecological cancers.
Collapse
Affiliation(s)
- Lorraine Portelance
- Sylvester Comprehensive Cancer Center, Radiation Oncology Department, University of Miami, Miami, FL, United States
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Lalondrelle
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research London, London, United Kingdom
| | - Kyle Padgett
- Sylvester Comprehensive Cancer Center, Radiation Oncology Department, University of Miami, Miami, FL, United States
| | - Femke van der Leij
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Astrid van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Ina Jürgenliemk-Schulz
- Department of Radiation Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Barberi V, Pietragalla A, Franceschini G, Marazzi F, Paris I, Cognetti F, Masetti R, Scambia G, Fabi A. Oligometastatic Breast Cancer: How to Manage It? J Pers Med 2021; 11:532. [PMID: 34207648 PMCID: PMC8227505 DOI: 10.3390/jpm11060532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer among women and represents the second leading cause of cancer-specific death. A subset of patients with metastatic breast cancer (MBC) presents limited disease, termed 'oligometastatic' breast cancer (OMBC). The oligometastatic disease can be managed with different treatment strategies to achieve long-term remission and eventually cure. Several approaches are possible to cure the oligometastatic disease: locoregional treatments of the primary tumor and of all the metastatic sites, such as surgery and radiotherapy; systemic treatment, including target-therapy or immunotherapy, according to the biological status of the primary tumor and/or of the metastases; or the combination of these approaches. Encouraging results involve local ablative options, but these trials are limited by being retrospective and affected by selection bias. Systemic therapy, e.g., the use of CDK4/6 inhibitors for hormone receptor-positive (HR+)/HER-2 negative BC, leads to an increase of progression-free survival (PFS) and overall survival (OS) in all the subgroups, with favorable toxicity. Regardless of the lack of substantial data, this subset of patients could be treated with curative intent; the appropriate candidates could be mostly young women, for whom a multidisciplinary aggressive approach appears suitable. We provide a global perspective on the current treatment paradigms of OMBC.
Collapse
Affiliation(s)
- Vittoria Barberi
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (V.B.); (F.C.)
| | - Antonella Pietragalla
- Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.P.); (G.S.)
| | - Gianluca Franceschini
- Comprehensive Cancer Center, Multidisciplinary Breast Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.F.); (R.M.)
| | - Fabio Marazzi
- UOC Radiotherapy, Department of Imaging Diagnostic, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (V.B.); (F.C.)
| | - Riccardo Masetti
- Comprehensive Cancer Center, Multidisciplinary Breast Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.F.); (R.M.)
| | - Giovanni Scambia
- Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.P.); (G.S.)
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Mat Lazim N, Elliott M, Wykes J, Clark J. Oligometastases in head and neck carcinoma and their impact on management. ANZ J Surg 2021; 91:2617-2623. [PMID: 33634950 DOI: 10.1111/ans.16622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Historically, patients with head and neck squamous cell carcinoma (HNSCC) with distant metastases were regarded as palliative. Oligometastasis (OM) refers to patients with a limited number of distant metastatic deposits. Treatment of patients with OMs has been reported in patients with lung, colon, breast, prostate and brain malignancies. Selected patients with oligometastatic HNSCC have a higher probability of durable disease control and cure and these patients should be treated aggressively. Treatment options for patients with HNSCC OMs include single or combinations of the three arms of cancer treatment, that is surgery, radiotherapy and chemotherapy/immunotherapy. To date, there are limited studies reporting the management of OM with head and neck malignancy. This review will give insights into the management of OMs in HNSCC.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Michael Elliott
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - James Wykes
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Jonathan Clark
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Burkon P, Selingerova I, Slavik M, Pospisil P, Bobek L, Kominek L, Osmera P, Prochazka T, Vrzal M, Kazda T, Slampa P. Stereotactic Body Radiotherapy for Lymph Node Oligometastases: Real-World Evidence From 90 Consecutive Patients. Front Oncol 2021; 10:616494. [PMID: 33614499 PMCID: PMC7892582 DOI: 10.3389/fonc.2020.616494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS To evaluate the efficacy and toxicity of extracranial stereotactic body radiotherapy (SBRT) in the treatment of oligometastatic lymph node involvement in the mediastinum, retroperitoneum, or pelvis, in a consecutive group of patients from real clinical practice outside clinical trials. METHODS A retrospective analysis of 90 patients with a maximum of four oligometastases and various primary tumors (the most common being colorectal cancers). The endpoints were local control of treated metastases (LC), freedom from widespread dissemination (FFWD), progression-free survival (PFS), overall survival (OS), and freedom from systemic treatment (FFST). Acute and delayed toxicities were also evaluated. RESULTS The median follow-up after SBRT was 34.9 months. The LC rate at three and five years was 68.4 and 56.3%, respectively. The observed median FFWD was 14.6 months, with a five-year FFWD rate of 33.7%. The median PFS was 9.4 months; the three-year PFS rate was 19.8%. The median FFST was 14.0 months; the five-year FFST rate was 23.5%. The OS rate at three and five years was 61.8 and 39.3%, respectively. Median OS was 53.1 months. The initial dissemination significantly shortened the time to relapse, death, or activation of systemic treatment-LC (HR 4.8, p < 0.001), FFWD (HR 2.8, p = 0.001), PFS (HR 2.1, p = 0.011), FFST (HR 2.4, p = 0.005), OS (HR 2.2, p = 0.034). Patients classified as having radioresistant tumors noticed significantly higher risk in terms of LC (HR 13.8, p = 0.010), FFWD (HR 3.1, p = 0.006), PFS (HR 3.5, p < 0.001), FFST (HR 3.2, p = 0.003). The multivariable analysis detected statistically significantly worse survival outcomes for initially disseminated patients as well as separately in groups divided according to radiosensitivity. No grade III or IV toxicity was reported. CONCLUSION Our study shows that targeted SBRT is a very effective and low toxic treatment for oligometastatic lymph node involvement. It can delay the indication of cytotoxic chemotherapy and thus improve and maintain patient quality of life. The aim of further studies should focus on identifying patients who benefit most from SBRT, as well as the correct timing and dosage of SBRT in treatment strategy.
Collapse
Affiliation(s)
- Petr Burkon
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Iveta Selingerova
- Research Center for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marek Slavik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lukas Bobek
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Libor Kominek
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Pavel Osmera
- Department of Nuclear Medicine and PET Center, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Tomas Prochazka
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Miroslav Vrzal
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
21
|
Systematic review of stereotactic body radiotherapy for nodal metastases. Clin Exp Metastasis 2021; 38:11-29. [PMID: 33452954 DOI: 10.1007/s10585-020-10071-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
The aim of this analysis was to assess the efficacy of stereotactic body radiotherapy (SBRT) in terms of local control (LC) and progression-free survival (PFS) in patients with lymph node metastases (NMs) from solid tumors. A systematic literature search from the earliest date to July 25th, 2019 was performed following PRISMA guidelines. Papers reporting LC and/or PFS of NMs using SBRT (< 10 fractions) were selected. The clinical outcomes rates were pooled by means of a random or fixed-effect model. Twenty-nine studies were eligible (969 patients: 938 (LC) and 698 (PFS)). LC and PFS results were reported in 28 and 18 papers, respectively. Heterogeneity was observed in terms of patient and treatment characteristics. Pooled 2-year LC reported in 11 studies was 79.3% (95%CI, 72.8%-85.7%) with substantial heterogeneity between studies (Q2 test: p = 0.0083; I2 = 57.9%), while pooled 2-year PFS reported in 8 studies was 35.9% (95%CI, 22.1%-49.7%) with very high heterogeneity between studies (Q2 test: p < 0.0001; I2 = 86.1%). Grade ≥ 3 and Grade 5 toxicity rates were 2.0% and 0.2%, respectively. SBRT of NMs seems to be safe and effective in terms of LC. However, due to the marked heterogeneity of the included series, prospective studies are required.
Collapse
|
22
|
Alcibar OL, Nadal E, Romero Palomar I, Navarro-Martin A. Systematic review of stereotactic body radiotherapy in stage III non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:529-538. [PMID: 33569334 PMCID: PMC7867744 DOI: 10.21037/tlcr-2020-nsclc-04] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite adequate treatment, 50% of stage III locally advanced inoperable non-small cell lung cancer (NSCLC) patients have a locoregional relapse. Local control on early stages on the contrary, is as high as 85-90% with stereotactic body radiotherapy (SBRT). The addition of SBRT to conventional chemoradiation or its use in monotherapy in stage III NSCLC is a novel strategy to decrease local failure that has been explored by various authors. This is a systematic review of studies using SBRT in inoperable stage III NSCLC. Search results obtained 141 articles of which only 6 original studies were pointed as relevant. Three of these studies were prospective, of which 2 were phase I dose-scalation studies and remaining 3 were retrospective. In summary, SBRT outcomes on 134 patients were included. Median dose in the SBRT treatment was 22.5 Gy in 2 to 7 fractions. Obtained global toxicity was 3.7% grade 5 and 14.17% grade 3. Dose-escalation studies proposed a 2 fraction SBRT schedule of 20-24 Gy, obtaining a 78% local control rate at 1 year and an OS of 67%. Initial improvement in local control with this innovative therapeutic strategy has led to ongoing phase II and III clinical trials that will evaluate the efficiency of SBRT in stage III NSCLC clinical scenario.
Collapse
Affiliation(s)
- Olwen Leaman Alcibar
- Department of Radiation Oncology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain.,Clinical Research in Solid Tumors (CReST) group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | - Arturo Navarro-Martin
- Department of Radiation Oncology, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain
| |
Collapse
|
23
|
Radiation Therapy in Adult Soft Tissue Sarcoma-Current Knowledge and Future Directions: A Review and Expert Opinion. Cancers (Basel) 2020; 12:cancers12113242. [PMID: 33153100 PMCID: PMC7693687 DOI: 10.3390/cancers12113242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Radiation therapy (RT) is an integral part of the treatment of adult soft-tissue sarcomas (STS). Although mainly used as perioperative therapy to increase local control in resectable STS with high risk features, it also plays an increasing role in the treatment of non-resectable primary tumors, oligometastatic situations, or for palliation. This review summarizes the current evidence for RT in adult STS including typical indications, outcomes, side effects, dose and fractionation regimens, and target volume definitions based on tumor localization and risk factors. It covers the different overall treatment approaches including RT either as part of a multimodal treatment strategy or as a sole treatment and is accompanied by a summary on ongoing clinical research pointing at future directions of RT in STS. Abstract Radiation therapy (RT) is an integral part of the treatment of adult soft-tissue sarcomas (STS). Although mainly used as perioperative therapy to increase local control in resectable STS with high risk features, it also plays an increasing role in the treatment of non-resectable primary tumors, oligometastatic situations, or for palliation. Modern radiation techniques, like intensity-modulated, image-guided, or stereotactic body RT, as well as special applications like intraoperative RT, brachytherapy, or particle therapy, have widened the therapeutic window allowing either dose escalation with improved efficacy or reduction of side effects with improved functional outcome. This review summarizes the current evidence for RT in adult STS including typical indications, outcomes, side effects, dose and fractionation regimens, and target volume definitions based on tumor localization and risk factors. It covers the different overall treatment approaches including RT either as part of a multimodal treatment strategy or as a sole treatment, namely its use as an adjunct to surgery in resectable STS (perioperative RT), as a primary treatment in non-resectable tumors (definitive RT), as a local treatment modality in oligometastatic disease or as palliative therapy. Due to the known differences in clinical course, general treatment options and, consequently, outcome depending on lesion localization, the main part of perioperative RT is divided into three sections according to body site (extremity/trunk wall, retroperitoneal, and head and neck STS) including the discussion of special applications of radiation techniques specifically amenable to this region. The review of the current evidence is accompanied by a summary on ongoing clinical research pointing at future directions of RT in STS.
Collapse
|
24
|
Kowalchuk RO, Waters MR, Richardson KM, Spencer K, Larner JM, Irvin WP, Kersh CR. Stereotactic body radiation therapy in the treatment of ovarian cancer. Radiat Oncol 2020; 15:108. [PMID: 32404167 PMCID: PMC7222303 DOI: 10.1186/s13014-020-01564-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study evaluates the outcomes and toxicity of stereotactic body radiation therapy (SBRT) in ovarian cancer. METHODS This retrospective analysis considered all patients treated with SBRT from 2009 to 2018 with a primary ovarian tumor. Follow-up included PET-CT and CT scans at 2-3 month intervals. Statistical analysis primarily consisted of univariate analysis, Cox proportional hazards analysis, and the Kaplan-Meier method. RESULTS The study included 35 patients with 98 treatments for lymph nodes (51), local recurrence (21), and de novo solid metastases (26). Median biologically effective dose (BED), gross tumor volume, and planning target volume were 38.40 Gy, 10.41 cc, and 25.21 cc, respectively. 52 lesions showed complete radiographic response, and two-year local control was 80%. Median overall survival (OS) was 35.2 months, and two-year progression-free survival (PFS) was 12%. On univariate analysis, Eastern Cooperative Oncology Group performance status > 0 was predictive of decreased OS (p = 0.0024) and PFS (p = 0.044). Factors predictive of local failure included lower BED (p = 0.016), treatment for recurrence (p = 0.029), and higher pre-treatment SUV (p = 0.026). Kaplan-Meier analysis showed BED ≤35 Gy (p < 0.005) and treatment for recurrence (p = 0.01) to be predictive of local failure. On Cox proportional hazards analysis, treatment of lymph nodes was predictive of complete radiographic response (hazard ratio (HR) = 4.95), as was higher BED (HR = 1.03). Toxicity included 27 cases of grade < 3 toxicity, and one grade 5 late toxicity of GI bleed from a radiation therapy-induced duodenal ulcer. CONCLUSIONS SBRT provides durable local control with minimal toxicity in ovarian cancer, especially with BED > 35 Gy and treatment for lymph nodes.
Collapse
Affiliation(s)
- Roman O Kowalchuk
- University of Virginia / Riverside, Radiosurgery Center, Newport News, VA, USA.
| | - Michael R Waters
- University of Virginia / Riverside, Radiosurgery Center, Newport News, VA, USA
| | - K Martin Richardson
- University of Virginia / Riverside, Radiosurgery Center, Newport News, VA, USA
| | - Kelly Spencer
- University of Virginia / Riverside, Radiosurgery Center, Newport News, VA, USA
| | - James M Larner
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - William P Irvin
- Department of Gynecologic Oncology, Riverside Regional Medical Center, Newport News, USA
| | - Charles R Kersh
- University of Virginia / Riverside, Radiosurgery Center, Newport News, VA, USA
| |
Collapse
|
25
|
Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastatic disease in head & neck oncology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:S1-S86. [PMID: 32469009 PMCID: PMC7263073 DOI: 10.14639/0392-100x-suppl.1-40-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The head and neck district represents one of the most frequent sites of cancer, and the percentage of metastases is very high in both loco-regional and distant areas. Prognosis refers to several factors: a) stage of disease; b) loco-regional relapses; c) distant metastasis. At diagnosis, distant metastases of head and neck cancers are present in about 10% of cases with an additional 20-30% developing metastases during the course of their disease. Diagnosis of distant metastases is associated with unfavorable prognosis, with a median survival of about 10 months. The aim of the present review is to provide an update on distant metastasis in head and neck oncology. Recent achievements in molecular profiling, interaction between neoplastic tissue and the tumor microenvironment, oligometastatic disease concepts, and the role of immunotherapy have all deeply changed the therapeutic approach and disease control. Firstly, we approach topics such as natural history, epidemiology of distant metastases and relevant pathological and radiological aspects. Focus is then placed on the most relevant clinical aspects; particular attention is reserved to tumours with distant metastasis and positive for EBV and HPV, and the oligometastatic concept. A substantial part of the review is dedicated to different therapeutic approaches. We highlight the role of immunotherapy and the potential effects of innovative technologies. Lastly, we present ethical and clinical perspectives related to frailty in oncological patients and emerging difficulties in sustainable socio-economical governance.
Collapse
Affiliation(s)
- Paolo Pisani
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Mario Airoldi
- Medical Oncology, Città della Salute e della Scienza, Torino, Italy
| | | | - Paolo Aluffi Valletti
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | | | - Marco Benazzo
- SC Otorinolaringoiatria, Fondazione IRCCS Policlinico “S. Matteo”, Università di Pavia, Italy
| | | | | | - Salvatore Cocuzza
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Andrea Colombo
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Laura della Vecchia
- Unit of Otorhinolaryngology General Hospital “Macchi”, ASST dei Settelaghi, Varese, Italy
| | - Nerina Denaro
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
| | | | - Danilo Galizia
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Massimiliano Garzaro
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Marco Krengli
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | - Giovanni Vittorio Lanza
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | | | - Maurizio Mancuso
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| | - Laura Masini
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
| | - Marco Carlo Merlano
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Marco Piemonte
- ENT Unit, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory Fondazione IRCCS Policlinico “S. Matteo”, Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Luca Prioglio
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | | | - Felice Scasso
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | - Agostino Serra
- University of Catania, Italy
- G.B. Morgagni Foundation, Catania, Italy
| | - Guido Valente
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Micol Zannetti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Angelo Zigliani
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| |
Collapse
|
26
|
Jung JO, Nienhüser H, Schleussner N, Schmidt T. Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach. Int J Mol Sci 2020; 21:E951. [PMID: 32023907 PMCID: PMC7038165 DOI: 10.3390/ijms21030951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gastric and esophageal cancers are dreaded malignancies, with a majority of patients presenting in either a locally advanced or metastatic state. Global incidences are rising and the overall prognosis remains poor. The concept of oligometastasis has been established for other tumor entities and is also proposed for upper gastrointestinal tract cancers. This review article explores metastasis mechanisms on the molecular level, specific to esophageal and gastric adenocarcinoma. Existing data and recent studies that deal with upper gastrointestinal tumors in the oligometastatic state are reviewed. Furthermore, current therapeutic targets in gastroesophageal cancers are presented and discussed. Finally, a perspective about future diagnostic and therapeutic strategies is given.
Collapse
Affiliation(s)
| | | | | | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (J.-O.J.); (H.N.); (N.S.)
| |
Collapse
|