1
|
Xu S, He L, Chen Y, Lin T, Tang L, Wu Y, He Y, Sun X. Clinical implications of miR-195 in cancer: mechanisms, potential applications, and therapeutic strategies. J Cancer Res Clin Oncol 2025; 151:148. [PMID: 40261408 PMCID: PMC12014848 DOI: 10.1007/s00432-025-06195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
This review explores the dual role of miR-195 in cancer, acting as both a tumor suppressor and, in specific contexts, a tumor promoter. It highlights its molecular mechanisms, focusing on key signaling pathways such as Wnt-1/β-catenin, VEGF/VEGFR, and PI3K/AKT/mTOR, as well as its involvement in competitive gene regulation. The clinical potential of miR-195 in cancer screening, diagnosis, prognosis, and therapy is examined, particularly its ability to enhance therapeutic efficacy and reduce recurrence risk when combined with chemotherapy or immunotherapy. Despite these promising aspects, challenges such as precise regulation, efficient delivery systems, and clinical translation remain. Future research should prioritize advancing miR-195's integration into personalized medicine, immunotherapy, and novel delivery technologies, aiming to establish it as a reliable biomarker and therapeutic target for improved cancer care.
Collapse
Affiliation(s)
- Shuli Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lan He
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yan Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ting Lin
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Le Tang
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yonghui Wu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingchun He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Provincial Key Lab for the Prevention, Treatment of Ophthalmology and Otolaryngology Diseases With Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xiaofeng Sun
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Zheng Z, Wang W, Chen B, Huang M, Wang T, Xu Z, Dai X. LncRNA BANCR/miR-15a/MAPK1 Induces Apoptosis and Increases Proliferation of Vascular Smooth Muscle Cells in Aortic Dissection by Enhancing MMP2 Expression. Cell Biochem Biophys 2025:10.1007/s12013-025-01738-x. [PMID: 40156764 DOI: 10.1007/s12013-025-01738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Aortic dissection is associated with a high mortality rate, contributing to an unfavorable prognosis. Preventive measures are more effective than therapeutic interventions for aortic dissection. While LncRNA BANCR is recognized as a functional translational regulator in various diseases, its role in aortic dissection remains unexplored. This study aims to elucidate the functions and molecular mechanisms of BANCR in aortic dissection. Vascular smooth muscle cells were isolated from dissected aortic tunica media samples and their phenotypes were compared with those of commercial vascular smooth muscle cells. BANCR expression was modulated via transient transfection (overexpression) and small interfering RNA (knockdown). The involvement of the p38 MAPK pathway was examined using the inhibitor SB202190. The competing endogenous RNA network was validated through a dual luciferase assay. Cellular phenotypes were assessed using the CCK-8 assay, scratch assay, and flow cytometry. BANCR was overexpressed in dissected aortic tissues and isolated vascular smooth muscle cells. MiR-15a-5p exhibited binding affinity to both BANCR and MAPK1. Overexpression of BANCR activated p38 phosphorylation, enhanced cell proliferation and migration, and increased apoptosis. SB202190 mitigated these BANCR-induced phenotypes by inhibiting p38 phosphorylation. Additionally, MMP2 upregulation was linked to BANCR overexpression via the p38 MAPK pathway. Suppression of BANCR expression or inhibition of p38 phosphorylation reduced MMP2 levels, thereby reversing BANCR-induced phenotypes. The LncRNA BANCR/miR-15a-5p/MAPK1 axis forms a ceRNA network that modulates MMP2 expression through the p38 MAPK signaling pathway in vascular smooth muscle cells. BANCR overexpression activates p38 MAPK phosphorylation, leading to enhanced MMP2 expression and subsequent increases in cell proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Zihe Zheng
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Bo Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
- Department of Cardiovascular Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Ming Huang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zheng Xu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofu Dai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Song X, Liu S, Zeng Y, Cai Y, Luo H. BANCR-containing extracellular vesicles enhance breast cancer resistance. J Biol Chem 2025; 301:108304. [PMID: 39947472 PMCID: PMC11999273 DOI: 10.1016/j.jbc.2025.108304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 04/04/2025] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by many cell types-including tumor cells-and play key roles in cellular communication by transporting functional RNAs. This study aims to elucidate the role of long noncoding RNA BRAF-activated nonprotein coding RNA (BANCR) in EVs derived from breast cancer (BC) cells in trastuzumab resistance. Differentially expressed long noncoding RNA and downstream targets in BC-resistant samples were identified. SKBR-3 cells were treated with trastuzumab to generate resistant cells (SKBR-3TR), and EVs from these cells (SKBR-3TR-EVs) were isolated and characterized. Functional studies of BANCR were performed in SKBR-3 and SKBR-3TR cells. Coculturing SKBR-3 cells with SKBR-3TR-EVs assessed changes in cell behavior. A xenograft model in nude mice examined in vivo tumorigenicity and trastuzumab resistance. BANCR was highly expressed in SKBR-3TR cells and EVs, linked to trastuzumab resistance. SKBR-3TR-EVs transferred BANCR to SKBR-3 cells, where BANCR inhibited miR-34a-5p, reducing its expression. High-mobility group A1 (HMGA1) was identified as a miR-34a-5p target. BANCR activated the HMGA1/Wnt/β-catenin pathway by inhibiting miR-34a-5p, promoting resistance. In vivo experiments showed that BANCR inhibition delayed tumorigenesis and reversed trastuzumab resistance. BC cell-derived EVs containing BANCR may enhance resistance to trastuzumab by regulating the miR-34a-5p/HMGA1/Wnt/β-catenin axis, presenting a potential target for BC therapy.
Collapse
Affiliation(s)
- Xinming Song
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shen Liu
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Zeng
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yilin Cai
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haiqing Luo
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
4
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
5
|
Sun Y, Shen Y, Li X. Retracted article: Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered 2024; 15:1995573. [PMID: 34709983 PMCID: PMC10802192 DOI: 10.1080/21655979.2021.1995573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Yi Sun, Yulong Shen and Xing Li. Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1995573.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yulong Shen
- Department of Neurosurgery, Huaihua First People’s Hospital, Huaihua City, Hunan Province, China
| | - Xing Li
- Department of Neurosurgery, Taizhou First People’s Hospital, Taizhou City, Zhejiang Province, China
| |
Collapse
|
6
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
7
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
8
|
Nevskaya KV, Pershina AG, Hmelevskaya ES, Efimova LV, Ibragimova MK, Dolgasheva DS, Tsydenova IA, Ufandeev AA, Buyko EE, Perina EA, Gaptulbarova KA, Kravtsova EA, Krivoshchekov SV, Ivanov VV, Guriev AM, Udut EV, Litviakov NV. Prevention of Metastasis by Suppression of Stemness Genes Using a Combination of microRNAs. J Med Chem 2024; 67:5591-5602. [PMID: 38507819 DOI: 10.1021/acs.jmedchem.3c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We propose an original strategy for metastasis prevention using a combination of three microRNAs that blocks the dedifferentiation of cancer cells in a metastatic niche owing to the downregulation of stemness genes. Transcriptome microarray analysis was applied to identify the effects of a mixture of microRNAs on the pattern of differentially expressed genes in human breast cancer cell lines. Treatment of differentiated CD44- cancer cells with the microRNA mixture inhibited their ability to form mammospheres in vitro. The combination of these three microRNAs encapsulated into lipid nanoparticles prevented lung metastasis in a mouse model of spontaneous metastasis. The mixture of three microRNAs (miR-195-5p/miR-520a/miR-630) holds promise for the development of an antimetastatic therapeutic that blocks tumor cell dedifferentiation, which occurs at secondary tumor sites and determines the transition of micrometastases to macrometastases.
Collapse
Affiliation(s)
- Kseniya V Nevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Alexandra G Pershina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina S Hmelevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Lina V Efimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Marina K Ibragimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Darya S Dolgasheva
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Irina A Tsydenova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Alexander A Ufandeev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Evgeny E Buyko
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ekaterina A Perina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ksenia A Gaptulbarova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina A Kravtsova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Sergei V Krivoshchekov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Ivanov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Artem M Guriev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Elena V Udut
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Nikolai V Litviakov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| |
Collapse
|
9
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
10
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
11
|
Chuang YT, Shiau JP, Tang JY, Farooqi AA, Chang FR, Tsai YH, Yen CY, Chang HW. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers (Basel) 2023; 15:cancers15082215. [PMID: 37190145 DOI: 10.3390/cancers15082215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Diao X, Yao L, Duan T, Qin J, He L, Zhang W. Melatonin promotes the development of the secondary hair follicles by regulating circMPP5. J Anim Sci Biotechnol 2023; 14:51. [PMID: 37024982 PMCID: PMC10080870 DOI: 10.1186/s40104-023-00849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/05/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The quality and yield of cashmere fibre are closely related to the differentiation and development of secondary hair follicles in the skin of cashmere goats. The higher the density of secondary hair follicles, the higher the quality and yield of cashmere from the fleece. Development of secondary hair follicles commences in the embryonic stage of life and is completed 6 months after birth. Preliminary experimental results from our laboratory showed that melatonin (MT) treatment of goat kids after their birth could increase the density of secondary hair follicles and, thus, improve the subsequent yield and quality of cashmere. These changes in the secondary hair follicles resulted from increases in levels of antioxidant and expression of anti-apoptotic protein, and from a reduction in apoptosis. The present study was conducted to explore the molecular mechanism of MT-induced secondary hair follicle differentiation and development by using whole-genome analysis. RESULTS MT had no adverse effect on the growth performance of cashmere kids but significantly improved the character of the secondary hair follicles and the quality of cashmere, and this dominant effect continued to the second year. Melatonin promotes the proliferation of secondary hair follicle cells at an early age. The formation of secondary hair follicles in the MT group was earlier than that in the control group in the second year. The genome-wide data results involved KEGG analysis of 1044 DEmRNAs, 91 DElncRNAs, 1054 DEcircRNAs, and 61 DEmiRNAs which revealed that the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the development of secondary hair follicles, with key genes (FGF2, FGF21, FGFR3, MAPK3 (ERK1)) being up-regulated and expressed. We also found that the circMPP5 could sponged miR-211 and regulate the expression of MAPK3. CONCLUSIONS We conclude that MT achieves its effects by regulating the MAPK pathway through the circMPP5 sponged the miR-211, regulating the expression of MAPK3, to induce the differentiation and proliferation of secondary hair follicle cells. In addition there is up-regulation of expression of the anti-apoptotic protein causing reduced apoptosis of hair follicle cells. Collectively, these events increase the numbers of secondary hair follicles, thus improving the production of cashmere from these goats.
Collapse
Affiliation(s)
- Xiaogao Diao
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyun Yao
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Duan
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Qin
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liwen He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Al-Noshokaty TM, Mansour A, Abdelhamid R, Abdellatif N, Alaaeldien A, Reda T, Abdelmaksoud NM, Doghish AS, Abulsoud AI, Elshaer SS. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol Res Pract 2023; 245:154438. [PMID: 37043965 DOI: 10.1016/j.prp.2023.154438] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
14
|
Gallo Cantafio ME, Torcasio R, Viglietto G, Amodio N. Non-Coding RNA-Dependent Regulation of Mitochondrial Dynamics in Cancer Pathophysiology. Noncoding RNA 2023; 9:ncrna9010016. [PMID: 36827549 PMCID: PMC9964195 DOI: 10.3390/ncrna9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondria are essential organelles which dynamically change their shape and number to adapt to various environmental signals in diverse physio-pathological contexts. Mitochondrial dynamics refers to the delicate balance between mitochondrial fission (or fragmentation) and fusion, that plays a pivotal role in maintaining mitochondrial homeostasis and quality control, impinging on other mitochondrial processes such as metabolism, apoptosis, mitophagy, and autophagy. In this review, we will discuss how dysregulated mitochondrial dynamics can affect different cancer hallmarks, significantly impacting tumor growth, survival, invasion, and chemoresistance. Special emphasis will be given to emerging non-coding RNA molecules targeting the main fusion/fission effectors, acting as novel relevant upstream regulators of the mitochondrial dynamics rheostat in a wide range of tumors.
Collapse
Affiliation(s)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
15
|
LncRNA MBNL1-AS1 Suppresses Cell Proliferation and Metastasis of Pancreatic Adenocarcinoma through Targeting Carcinogenic miR-301b-3p. Genet Res (Camb) 2023; 2023:6785005. [PMID: 36908851 PMCID: PMC9995204 DOI: 10.1155/2023/6785005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) has been a huge challenge to public health due to its increasing incidence, frequent early metastasis, and poor outcome. The molecular basis of tumorigenesis and metastasis in PAAD is largely unclear. Here, we identified a novel tumor-suppressor long noncoding RNA (lncRNA) MBNL1-AS1, in PAAD and revealed its downstream mechanism. Quantitative real-time PCR (qRT-PCR) data showed that MBNL1-AS1 expression was significantly downregulated in PAAD tissues and cells, which was closely associated with metastasis and poor prognosis. Cell counting kit-8 (CCK-8) assay, transwell assay, and western blot verified that overexpression of MBNL1-AS1 suppressed cell proliferation, migration, and epithelial mesenchymal transformation (EMT) behavior in PAAD cells. By using a dual luciferase reporter gene system, we confirmed that miR-301b-3p was a direct target of MBNL1-AS1. Further mechanismic study revealed that upregulation of miR-301b-3p abolished the inhibitory effect of MBNL1-AS1 overexpression on cell proliferation, tumorigenesis, migration and EMT. Our results demonstrate that MBNL1-AS1 plays a tumor-suppressive role in PAAD mainly by downregulating miR-301b-3p, providing a novel therapeutic target for PAAD.
Collapse
|
16
|
Wang C, Wang Z, Zhao Y, Jia R. Tumor mutation burden-related long non-coding RNAs is predictor for prognosis and immune response in pancreatic cancer. BMC Gastroenterol 2022; 22:495. [PMID: 36451085 PMCID: PMC9710014 DOI: 10.1186/s12876-022-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant tumors with extremely poor prognosis. It is urgent to identify promising prognostic biomarkers for pancreatic cancer. METHODS A total of 266 patients with pancreatic adenocarcinoma (PAAD) in the Cancer Genome Atlas (TCGA)-PAAD cohort and the PACA-AU cohort were enrolled in this study. Firstly, prognostic tumor mutation burden (TMB)-related long non-coding RNAs (lncRNAs) were identified by DESeq2 and univariate analysis in the TCGA-PAAD cohort. And then, the TCGA-PAAD cohort was randomized into the training set and the testing set. Least absolute shrinkage and selection operator (LASSO) was used to construct the model in the training set. The testing set, the TCGA-PAAD cohort and the PACA-AU cohort was used as validation. The model was evaluated by multiple methods. Finally, functional analysis and immune status analysis were applied to explore the potential mechanism of our model. RESULTS A prognostic model based on fourteen TMB-related lncRNAs was established in PAAD. Patients with High risk score was associated with worse prognosis compared to those with low risk score in all four datasets. Besides, the model had great performance in the prediction of 5-year overall survival in four datasets. Multivariate analysis also indicated that the risk score based on our model was independent prognostic factor in PAAD. Additionally, our model had the best predictive efficiency in PAAD compared to typical features and other three published models. And then, our findings also showed that high risk score was also associated with high TMB, microsatellite instability (MSI) and homologous recombination deficiency (HRD) score. Finally, we indicated that high risk score was related to low immune score and less infiltration of immune cells in PAAD. CONCLUSION we established a 14 TMB-related lncRNAs prognostic model in PAAD and the model had excellent performance in the prediction of prognosis in PAAD. Our findings provided new strategy for risk stratification and new clues for precision treatment in PAAD.
Collapse
Affiliation(s)
- Chunjing Wang
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Wang
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Zhao
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruichun Jia
- grid.412463.60000 0004 1762 6325Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| |
Collapse
|
17
|
Sun J, Jin R. PFKFB4 modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Bioorg Med Chem Lett 2022; 73:128916. [DOI: 10.1016/j.bmcl.2022.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
|
18
|
Ashrafizadeh M, Rabiee N, Kumar AP, Sethi G, Zarrabi A, Wang Y. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today 2022; 27:2181-2198. [PMID: 35589014 DOI: 10.1016/j.drudis.2022.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules involved in gene regulation at transcriptional, post-transcriptional, and epigenetic levels. LncRNAs participate in regulating apoptosis and autophagy in pancreatic cancer (PCa) and can promote and/or decrease the proliferation rate of tumor cells. The metastasis of PCa cells is tightly regulated by lncRNAs and they can affect the mechanism of epithelial-mesenchymal transition (EMT) to modulate metastasis. The drug resistance of PCa cells, especially to gemcitabine, can be affected by lncRNAs. In addition, lncRNAs enriched in exosomes can be transferred among tumor cells to regulate their proliferation and metastasis. Antitumor compounds, such as curcumin and ginsenosides, can regulate lncRNA expression in PCa therapy. As we discuss here, the expression level of lncRNAs can be considered as both a diagnostic and prognostic tool in patients with PCa.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey.
| | - Yuzhuo Wang
- Department of Urological Sciences, Vancouver, BC V6H3Z6, Canada; Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| |
Collapse
|
19
|
Xu Q, Xu JL, Chen WQ, Xu WX, Song YX, Tang WJ, Xu D, Jiang MP, Tang J. Roles and mechanisms of miR-195-5p in human solid cancers. Biomed Pharmacother 2022; 150:112885. [PMID: 35453003 DOI: 10.1016/j.biopha.2022.112885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer persists as a worldwide disease that contributes to high morbidity and mortality rates. As a class of non-coding RNA, microRNAs (miRNAs) are one kind of important regulators in cancer and frequently implicated in tumor development and progression. Emerging experiments have suggested that miRNA-195-5p (miR-195-5p) can regulate neoplastic processes in many pathways. For instance, miR-195-5p can not only regulate proliferation, migration and invasion of tumor cells but also promote tumor cell apoptosis. Furthermore, low expression of miR-195-5p could induce drug resistance. Our review focuses on the expression of miR-195-5p in various tumors and elucidates the related mechanisms of which miR-195-5p participates in tumor biology, as well as summarizes the roles of miR-195-5p in tumor progression. We believe that miR-195-5p might have potential utility as a novel diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jia-Lin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Quan Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Juan Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
20
|
Gao KF, Zhao YF, Liao WJ, Xu GL, Zhang JD. CERS6-AS1 promotes cell proliferation and represses cell apoptosis in pancreatic cancer via miR-195-5p/WIPI2 axis. Kaohsiung J Med Sci 2022; 38:542-553. [PMID: 35199935 DOI: 10.1002/kjm2.12522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy that threatens human health. Long noncoding RNAs (lncRNAs) act as important mediators in PC development. Our study aimed to investigate the function and mechanism of lncRNA ceramide synthase 6 antisense RNA 1 (CERS6-AS1) in PC. As shown by RT-qPCR, CERS6-AS1 was significantly upregulated in PC cells and tissues. Silencing CERS6-AS1 suppressed PC cell viability and proliferation while enhancing cell apoptosis according to colony formation assays, EdU assays, and flow cytometry analyses. Mechanistically, CERS6-AS1 interacted with miR-195-5p to elevate the expression level of the WD repeat domain phosphoinositide interacting 2 (WIPI2), which is a downstream target gene of miR-195-5p in PC. Moreover, miR-195-5p expression was negatively associated with CERS6-AS1 expression (or WIPI2 expression) in PC tissues. Rescue assays revealed that WIPI2 overexpression rescued the effects of CERS6-AS1 deficiency on cell viability, proliferation, and apoptosis. In summary, CERS6-AS1 facilitates PC cell proliferation while inhibiting PC cell apoptosis by upregulating WIPI2 via miR-195-5p. This study might provide promising insight into the role of CERS6-AS1 in PC development.
Collapse
Affiliation(s)
- Kan-Fei Gao
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Yu-Fang Zhao
- Department of Operating Room, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Wu-Jun Liao
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Guo-Li Xu
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Jian-Dong Zhang
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| |
Collapse
|
21
|
Duan L, Wang J, Zhang D, Yuan Y, Tang L, Zhou Y, Jiang X. Immune-Related miRNA-195-5p Inhibits the Progression of Lung Adenocarcinoma by Targeting Polypyrimidine Tract-Binding Protein 1. Front Oncol 2022; 12:862564. [PMID: 35600383 PMCID: PMC9117652 DOI: 10.3389/fonc.2022.862564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Lung adenocarcinoma (LUAD) is the most common type of cancer and the leading cause of cancer-related death worldwide, resulting in a huge economic and social burden. MiRNA-195-5p plays crucial roles in the initiation and progression of cancer. However, the significance of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miRNA-195-5p/PTBP1) axis in the progression of lung adenocarcinoma (LUAD) remains unclear. Methods Data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The starBase database was employed to examine the expression of miRNA-195-5p, while the Kaplan–Meier plotter, UALCAN, and Gene Expression Profiling Interactive Analysis (GEPIA) databases were utilized to analyze the tumor stage and prognostic value of miRNA and PTBP1. Quantitative reverse transcription-polymerase chain reaction assay was conducted to detect the expression levels of miRNA-195-5p in LUAD cell lines and tissues. The effects of miRNA-195-5p on cell proliferation and migration were examined using the cell growth curve, clone information, transwell assays, and wound healing assays. Results We found that miRNA-195-5p was down-regulated in LUAD cancer and cell lines. Importantly, its low levels were related to the tumor stage, lymph node metastasis, and poor prognosis in LUAD. Overexpression of miR-195-5p significantly inhibited cell growth and migration promotes cell apoptosis. Further study revealed that PTBP1 is a target gene of miRNA-195-5p, and overexpression of miRNA-195-5p inhibited the progression of LUAD by inhibiting PTBP1 expression. MiRNA-195-5p expression was related to immune infiltration in lung adenocarcinoma. Moreover, PTBP1 was negatively correlated with diverse immune cell infiltration and drug sensitivity. Conclusion Our findings uncover a pivotal mechanism that miRNA-195-5p by modulate PTBP1 expression to inhibit the progression of LUAD. MiRNA-195-5p could be a novel diagnostic and prognostic molecular marker for LUAD.
Collapse
Affiliation(s)
- Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongchun Zhou
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yongchun Zhou, ; Xiulin Jiang,
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- *Correspondence: Yongchun Zhou, ; Xiulin Jiang,
| |
Collapse
|
22
|
Papaefthymiou A, Doukatas A, Galanopoulos M. Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clin Res Hepatol Gastroenterol 2022; 46:101911. [PMID: 35346893 DOI: 10.1016/j.clinre.2022.101911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer (PC) represents a malignancy with increased mortality rate, as less than 10% of patients survive for 5 years after diagnosis. Current evolution in basic sciences has revealed promising results by decrypting genetic loci vulnerable to mutations, as potential targets of novel treatment choices. In this regard, the "Oligonucleotide therapeutics", based on synthetic nucleotides, modify the function and expression of their targets. Antisense oligonucleotides (ASOs), small interfering RNA (siRNA), microRNAs (miRNAs), aptamers, CpG oligodeoxynucleotides and decoys comprise the main representatives of this emerging technology, by regulating oncogenes' expression, restoring DNA repairment mechanisms, sensitizing cancer cells in chemotherapy, and inhibiting PC progress. A plethora of genetic treatment molecules and respective targets have been described and are currently studied, thus providing a broad range of probable pharmaceutical options. This narrative review illuminates the main parameters of genetic treatment molecules for PC and underlines their deficiencies, to clarify the upcoming future and trigger further investigation in PC management.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Thessaly, Greece.
| | - Aris Doukatas
- Department of Pharmacy, National and Kapodistrian University of Athens, Attiki, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
23
|
Abedi Kichi Z, Soltani M, Rezaei M, Shirvani-Farsani Z, Rojhannezhad M. The Emerging role of EMT-related lncRNAs in therapy resistance and their application as biomarkers. Curr Med Chem 2022; 29:4574-4601. [PMID: 35352644 DOI: 10.2174/0929867329666220329203032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/09/2022]
Abstract
Cancer is the world's second largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-to-mesenchymal transition (EMT), and metastasis are all pressing issues in cancer therapy today. Increasing evidence showed that drug-resistant and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent researches have demonstrated lncRNAs (long noncoding RNAs) are noncoding transcripts, which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic biomarker for cancer. Although, there are still many challenges to investigate lncRNAs for clinical applications.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Mona Soltani
- Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
24
|
Xia C, Li Q, Cheng X, Wu T, Gao P, Gu Y. Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered 2022; 13:2450-2469. [PMID: 35014946 PMCID: PMC8973703 DOI: 10.1080/21655979.2021.2012918] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to influence the chemoresistance of colorectal cancer (CRC). Therefore, the study is designed to investigate the regulatory function and mechanism of Taurine up-regulated gene 1 (TUG1) in the cisplatin resistance of CRC. qRT-PCR checked the expressions of TUG1, Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and miR-195-5p in CRC tissues and cells. The TUG1 or miR-195-5p overexpression model was engineered in CRC cells, followed by treatment with DDP or the autophagy inhibitor (Chloroquine, CQ). CCK8 (Cell Counting Kit-8) and the colony formation experiment monitored cell proliferation. Flow cytometry examined apoptosis, Transwell tracked migration and invasion, and Western blot ascertained the protein profiles of autophagy proteins (LC3I/LC3II and Beclin1) and the HDGF/DDX5/β-catenin pathway. Dual-luciferase gene reporter assay and RNA immunoprecipitation confirmed the binding correlation between TUG1 and miR-195-5p and between miR-195-5p and HDGF. Furthermore, in-vivo experiments in nude mice probed the function and mechanism of IGF2BP2 in CRC cell growth. The profiles of TUG1 and IGF2BP2 were elevated in CRC tissues, and IGF2BP2 enhanced TUG1's expression in CRC cells. TUG1 activated autophagy to facilitate CRC cells' resistance to DDP. TUG1 targets miR-195-5p, and miR-195-5p targets HDGF. Overexpression of miR-195-5p abated the cancer-promoting function of TUG1 and curbed the profile of the HDGF/DDX5/β-catenin axis. TUG1 stabilized by IGF2BP2 boosted CRC cell proliferation, migration, migration, and autophagy via the miR-195-5p/HDGF/DDX5/β-catenin axis, hence enhancing CRC cell's resistance to DDP.
Collapse
Affiliation(s)
- Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Qiang Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Tao Wu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Pin Gao
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yongfang Gu
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Qujing, Qujing, Yunnan, China
| |
Collapse
|
25
|
Tao F, Qi L, Liu G. Long intergenic non-protein coding RNA 662 accelerates the progression of gastric cancer through up-regulating centrosomal protein 55 by sponging microRNA-195-5p. Bioengineered 2022; 13:3007-3018. [PMID: 35037833 PMCID: PMC8974125 DOI: 10.1080/21655979.2021.2023978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important players in regulating diverse human diseases, including cancers. Nonetheless, the function of long intergenic non-protein coding RNA 662 (LINC00662) in gastric cancer (GC) carcinogenesis and progression remains to be delineated. In the present study, LINC00662, microRNA-195-5p (miR-195-5p) and centrosomal protein 55 (CEP55) mRNA expression levels were quantified by qRT-PCR. GC cell proliferation, migration and invasion were analyzed by CCK-8, BrdU and Transwell assays. Besides, dual-luciferase reporter and RNA pull-down assays were conducted for verifying the targeting relationships of LINC00662, miR-195-5p and CEP55. The regulatory functions of LINC00662 and miR-195-5p on CEP55 were examined utilizing Western blot. In this study, it was revealed that LINC00662 expression level was elevated in GC tissues and cells. LINC00662 overexpression facilitated the malignant biological behaviors of GC cells whereas knockdown of LINC00662 worked oppositely. In terms of mechanism, LINC00662 targeted miR-195-5p to modulate CEP55 expression. In conclusion, LINC00662 facilitates the malignant biological behaviors of GC cells via miR-195-5p/CEP55 axis, and therefore, it may be a promising target for GC treatment.
Collapse
Affiliation(s)
- Fei Tao
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Likun Qi
- Department of Gastrointestinal Surgery, Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoqing Liu
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
26
|
Rao M, Xu S, Zhang Y, Liu Y, Luan W, Zhou J. Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis 2021; 12:859. [PMID: 34552050 PMCID: PMC8458532 DOI: 10.1038/s41419-021-04123-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
The lncRNA ZFAS1 plays a carcinogenic regulatory role in many human tumours, but it is rarely reported in pancreatic cancer. We identify the role and molecular mechanisms of ZFAS1 in pancreatic cancer. The expression of ZFAS1, miR-497-5p and HMGA2 in pancreatic cancer tissues was detected by qRT-PCR. Pancreatic cancer data in The Cancer Genome Atlas were also included in this study. CCK8, EdU, transwell and scratch wound assays were used to investigate the biological effects of ZFAS1 in pancreatic cancer cells. MS2-RIP, RNA pull-down, RNA-ChIP and luciferase reporter assays were used to clarify the molecular biological mechanisms of ZFAS1 in pancreatic cancer. The role of ZFAS1 in vivo was also confirmed via xenograft experiments. ZFAS1 was overexpressed in pancreatic cancer tissues. ZFAS1 promoted the growth and metastasis of pancreatic cancer cells, and miR-497-5p acted as a tumour suppressor gene in pancreatic cancer by targeting HMGA2. We also demonstrated that ZFAS1 exerts its effects by promoting HMGA2 expression through decoying miR-497-5p. We also found that ZFAS1 promoted the progression of pancreatic cancer in vivo by modulating the miR-497-5p/HMGA2 axis. In conclusion, this study revealed a new role for and the molecular mechanisms of ZFAS1 in pancreatic cancer, identifying ZFAS1 as a novel target for the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Min Rao
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Song Xu
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Zhang
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Liu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junjing Zhou
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
27
|
Hussen BM, Azimi T, Abak A, Hidayat HJ, Taheri M, Ghafouri-Fard S. Role of lncRNA BANCR in Human Cancers: An Updated Review. Front Cell Dev Biol 2021; 9:689992. [PMID: 34409032 PMCID: PMC8367322 DOI: 10.3389/fcell.2021.689992] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Dobre M, Herlea V, Vlăduţ C, Ciocîrlan M, Balaban VD, Constantinescu G, Diculescu M, Milanesi E. Dysregulation of miRNAs Targeting the IGF-1R Pathway in Pancreatic Ductal Adenocarcinoma. Cells 2021; 10:1856. [PMID: 34440625 PMCID: PMC8391367 DOI: 10.3390/cells10081856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), the most prevalent neoplastic lethal pancreatic disease, has a poor prognosis and an increasing incidence. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is considered to be a contributing factor to the progression, metastasis, and therapy resistance of PDAC. Currently available treatment options for PDAC are limited, but microRNAs (miRNAs) may represent a new therapeutic strategy for targeting genes involved in the IGF-1R signaling pathway. METHOD We investigated the expression levels of 21 miRNAs involved in the IGF-1R signaling pathway in pancreatic tissue from 38 patients with PDAC and 11 controls (five patients with chronic pancreatitis and six patients with normal pancreatic tissue). RESULTS We found 19 differentially expressed miRNAs between the PDAC cases and the controls. In particular, miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively downregulated in PDAC tissue but not in chronic pancreatitis or normal pancreatic tissues; both control types presented similar levels. We also identified miR-29a-3p, miR-29b-3p, and miR-7-5p as downregulated miRNAs in PDAC tissues as compared with normal tissues but not with pancreatitis tissues. CONCLUSIONS We identified a panel of miRNAs that could represent putative therapeutic targets for the development of new miRNA-based therapies for PDAC.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Cătălina Vlăduţ
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Mihai Ciocîrlan
- Department of Gastroenterology, “Prof Dr Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
| | - Vasile Daniel Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania;
| | - Mircea Diculescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.B.); (M.D.)
- Department of Gastroenterology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (E.M.)
| |
Collapse
|
29
|
Ramya Devi KT, Karthik D, Mahendran T, Jaganathan MK, Hemdev SP. Long noncoding RNAs: role and contribution in pancreatic cancer. Transcription 2021; 12:12-27. [PMID: 34036896 DOI: 10.1080/21541264.2021.1922071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Collapse
Affiliation(s)
- K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthik
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India.,Department of Industrial Biotechnology, Sri Venkateswara College of Engineering, Chennai, India
| | - TharunSelvam Mahendran
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
30
|
Yu X, Huang M, Yang G. Long non‑coding RNA BANCR promotes proliferation, invasion and migration in esophageal squamous cell carcinoma cells via the Raf/MEK/ERK signaling pathway. Mol Med Rep 2021; 23:465. [PMID: 33880577 PMCID: PMC8097753 DOI: 10.3892/mmr.2021.12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological type of esophageal cancer, identified as a leading cause of tumor-associated death worldwide. In addition, long non-coding RNA (lncRNA) BRAF-activated non-coding RNA (BANCR) expression is increased in the plasma of patients with ESCC, which can be reversed by tumor resection. Thus, the aim of the present study was to investigate the underlying mechanism of BANCR in ESCC progression. The relative mRNA expression of BANCR was determined via reverse transcription-quantitative PCR. The cell behaviors of Eca-109 cells were detected using Cell Counting Kit-8, colony formation, wound healing and Transwell chamber assays. Finally, the expression levels of proteins involved in the Raf/MEK/ERK signaling pathway and cell metastasis were analyzed with western blotting. The results revealed that lncRNA BANCR was highly expressed in ESCC cells compared with in normal esophageal cells. BANCR overexpression enhanced proliferation, migration and invasion of ESCC cells, and BANCR silencing exerted opposite effects. Moreover, BANCR overexpression induced activation of the Raf/MEK/ERK signaling pathway in ESCC cells. Notably, U0126, a specific MEK inhibitor, decreased MEK and ERK expression, and blocked the promotive effects of BANCR overexpression on the proliferation, migration and invasion of ESCC cells. Overall, lncRNA BANCR facilitated the proliferation, migration and invasion of ESCC cells via the Raf/MEK/ERK signaling pathway. Thus, lncRNA BANCR may be a promising target for inhibiting ESCC growth and metastasis.
Collapse
Affiliation(s)
- Xiaogang Yu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Meng Huang
- Department of Radiology, Suining Municipal Hospital of TCM, Suining, Sichuan 629000, P.R. China
| | - Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
31
|
Miao X, Liu Y, Fan Y, Wang G, Zhu H. LncRNA BANCR Attenuates the Killing Capacity of Cisplatin on Gastric Cancer Cell Through the ERK1/2 Pathway. Cancer Manag Res 2021; 13:287-296. [PMID: 33469371 PMCID: PMC7811444 DOI: 10.2147/cmar.s269679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Chemotherapy-based comprehensive treatments are the most important therapeutic methods for patients with advanced gastric cancer, but chemoresistance often cause treatment failure. Long non-coding RNA (LncRNA) BRAF-activated non-coding RNA (BANCR) has been shown to participate in many biological behaviors of multiple cancers. However, the biological roles of LncRNA BANCR in chemoresistance of gastric cancer remain unclear. Here, we aimed to evaluate the functions of LncRNA BANCR on the therapy of gastric cancer. Methods In this study, LncRNA BANCR expression was detected in gastric cancer patient samples and cell lines by quantity polymerase chain reaction (qPCR). Cell proliferation and viability in cisplatin-treated cells were measured using clonogenic survival assay and cell counting kit-8. The levels of ERK1/2 pathway molecules were tested with Western blot. Ly3214996, an inhibitor of ERK signal pathway, was administered to assess the effects of BANCR overexpression on gastric cancer cell with cisplatin-treated resistance. Moreover, the role of BANCR in cisplatin resistance of gastric cancer was validated in xenograft mouse models in vivo. Results Our study revealed that LncRNA BANCR expression was also significantly increased in gastric cancer tissues compared with adjacent normal tissues. Furthermore, we found that BANCR overexpression promoted gastric cancer cell resistance to cisplatin in vitro. Ly3214996 treatment abolished the BANCR overexpression-mediated gastric cancer cell cisplatin resistance via regulating the phosphorylation of ERK protein. Knock-down of BANCR significantly delayed tumor growth in xenograft mouse models. Conclusion BANCR promoted cisplatin resistance of gastric cancer cells by activating ERK1/2 pathway. Inhibition of BANCR markedly suppressed the growth of gastric cancer cells in vitro as well as in vivo. These results provided a new strategy for gastric cancer therapy via targeting BANCR.
Collapse
Affiliation(s)
- Xiang Miao
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Yixiang Liu
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Yuzhu Fan
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Guoqiang Wang
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Hongbo Zhu
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| |
Collapse
|
32
|
Zhou L, Xing C, Zhou D, Yang R, Cai M. Downregulation of lncRNA FGF12-AS2 suppresses the tumorigenesis of NSCLC via sponging miR-188-3p. Open Med (Wars) 2020; 15:986-996. [PMID: 33344773 PMCID: PMC7724005 DOI: 10.1515/med-2020-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Non-small-cell lung carcinoma (NSCLC) seriously threatens the health of human beings. Aberrant expression of lncRNAs has been confirmed to be related with the progression of multiple malignant tumors, including NSCLC. LncRNA FGF12-AS2 has been considered to be upregulated in NSCLC. However, the mechanism by which FGF12-AS2 promotes the tumorigenesis of NSCLC remains elusive. Methods Gene and protein expressions in NSCLC cells were measured by q-PCR and western blot, respectively. CCK-8 and immunofluorescence staining were performed to detect the cell proliferation. Cell apoptosis was tested by flow cytometry. Transwell assay was used to detect the cell migration and invasion. Finally, the dual luciferase report assay was used to verify the relation among FGF12-AS2, miR-188-3p, and NCAPG2. Results Downregulation of FGF12-AS2 significantly inhibited the proliferation of NSCLC cells via inducing apoptosis. In addition, FGF12-AS2 silencing notably suppressed the migration and invasion of A549 cells. Meanwhile, FGF12-AS2 modulated the progression of NSCLC via regulation of miR-188-3p/NCAPG2 axis. Finally, knockdown of FGF12-AS2 inhibited the tumorigenesis of NSCLC via suppressing the EMT process of NSCLC. Conclusion Downregulation of lncRNA FGF12-AS2 suppressed the tumorigenesis of NSCLC via sponging miR-188-3p. Thus, FGF12-AS2 may serve as a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Chen Xing
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Dongxia Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Rong Yang
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Maohuai Cai
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| |
Collapse
|
33
|
Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer. Cancer Cell Int 2020; 20:457. [PMID: 32973402 PMCID: PMC7493950 DOI: 10.1186/s12935-020-01550-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
Collapse
|
34
|
Chen LY, Zhang XM, Han BQ, Dai HB. Long Noncoding RNA SNHG12 Indicates the Prognosis and Accelerates Tumorigenesis of Diffuse Large B-Cell Lymphoma Through Sponging microR-195. Onco Targets Ther 2020; 13:5563-5574. [PMID: 32606771 PMCID: PMC7305849 DOI: 10.2147/ott.s249429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Small nucleolar RNA host gene 12 (SNHG12) expression is associated with multiple cancers, including renal cell carcinoma, prostate cancer, cervical cancer, nasopharyngeal carcinoma, colorectal cancer, and hepatocellular carcinoma. However, SNHG12 biological function is unclear in diffuse large B-cell lymphoma (DLBCL). Methods SNHG12 expression and associated clinicopathological characteristics were evaluated in DLBCL tissues. CCK-8 and transwell assay were used to analyze the in vitro role of SNHG12 in DLBCL progression. The xenograft model was used to explore the in vivo role of SNHG12 in DLBCL growth. The physical interaction between SNHG12 and miR-195 was confirmed using bioinformatics analysis and a dual luciferase assay. Results SNHG12 expression was upregulated in DLBCL tissues and correlated with patients’ prognosis. SNHG12 downregulation inhibited cell growth, migration, and invasion of DLBCL cells in vitro, while its overexpression promoted these cellular processes. Moreover, SNHG12 knockdown repressed tumorigenesis of DLBCL cells in vivo. Further experiments demonstrated that miR-195 is a target of SNHG12 in DLBCL and that their expression negatively correlates in DLBCL. SNHG12 functioned as a competing endogenous RNA for miR-195 in DLBCL cells and miR-195 upregulation abolished the effects of SNHG12 on of DLBCL progression. Conclusion SNHG12 predicts poor clinical outcome and serves as a novel oncogene in DLBCL via miR-195 sponging. We also suggest that SNHG12 can be used as a potential therapeutic candidate for DLBCL patients.
Collapse
Affiliation(s)
- Li-Yan Chen
- Department of Hematology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Xiao-Min Zhang
- Department of Hematology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Bi-Qing Han
- Department of Hematology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Hai-Bin Dai
- Department of Hematology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| |
Collapse
|
35
|
Liu D, Song Z, Wang X, Ouyang L. Ubiquitin C-Terminal Hydrolase L5 (UCHL5) Accelerates the Growth of Endometrial Cancer via Activating the Wnt/β-Catenin Signaling Pathway. Front Oncol 2020; 10:865. [PMID: 32596150 PMCID: PMC7300206 DOI: 10.3389/fonc.2020.00865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
Endometrial cancer (EC) is the most prevalent gynecological malignancy with high mortality. Chemotherapy plays a pivotal role both in an adjuvant setting and in exclusive treatment. However, current pharmacotherapies are limited and not ideal for improving the overall survival of EC patients. Thus, identification of the underlying molecular mechanisms responsible for initiation and progression of EC is imperative for developing novel therapeutic strategies. Ubiquitin C-terminal hydrolase L5 (UCHL5) has been found to aggravate tumor growth and metastasis in several different types of tumor models such as esophageal squamous cell carcinoma, hepatocellular carcinoma, and epithelial ovarian cancer. However, whether UCHL5 influences the growth of EC has not been elucidated. To expose the role of UCHL5 on EC, bioinformatics analysis was conducted, and it hinted that UCHL5 was overexpressed in EC tissues and associated with lower overall survival. Consistently, the overexpression of UCHL5 in EC tissues and cell lines was further confirmed by western blot (WB) and polymerase chain reaction (PCR) compared with non-tumor control. Lentivirus vectors carrying UCHL5 shRNA or CD sequences were used to reduce or overexpress the UCHL5 gene, respectively. Cell proliferation and cycle were facilitated, and cell apoptosis was decreased when the UCHL5 gene was overexpressed in EC cell lines. These results were opposite in UCHL5 knockdown EC cells. Additionally, the expression of β-catenin is positively related to UCHL5 levels and the tumorigenic effects of UCHL5 overexpression were reversed by the Wnt/β-catenin pathway inhibitor XAV939. Thus, Wnt/β-catenin pathway activation may be a partial mechanism responsible for the promoting effects of UCHL5 on EC growth. In conclusion, UCHL5 accelerated the growth of EC via the Wnt/β-catenin pathway and was expected to be an attractive target for EC treatment.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Xu Y, Jiang W, Zhong L, Li H, Bai L, Chen X, Lin Y, Zheng D. miR-195-5p alleviates acute kidney injury through repression of inflammation and oxidative stress by targeting vascular endothelial growth factor A. Aging (Albany NY) 2020; 12:10235-10245. [PMID: 32492657 PMCID: PMC7346085 DOI: 10.18632/aging.103160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a common renal dysfunction. Renal ischemia-reperfusion (I/R) injury contributes to AKI progression. The microRNA miR-195-5p can act as a crucial tumor inhibitor in various cancers. However, the potential biological effects of miR-195-5p on AKI are not well-understood. We found that miR-195-5p levels were decreased in the serum samples of patients with AKI. Next, we determined miR-195-5p expression in the renal tissues of the rats and found that it was downregulated. Renal function was evaluated and confirmed using blood urea nitrogen and serum Cr levels. In parallel, the hypoxia-induced NRK-52E cell model was employed, and miR-195-5p was found to be markedly reduced under hypoxic conditions. Furthermore, miR-195-5p was modulated in NRK-52E cells. miR-195-5p induced NRK-52E cell proliferation and protected NRK-52E cells against hypoxia-triggered apoptosis. In an I/R mouse model, miR-195-5p alleviated renal injury triggered by I/R. In addition, oxidative stress and inflammatory factor concentrations were assessed using ELISA. The results showed that miR-195-5p mimicked attenuated oxidative stress induced by I/R injury and downregulated the protein expression of inflammatory factors. Moreover, we identified that vascular endothelial growth factor A (VEGFA) was a target gene of miR-195-5p, which could negatively regulate VEGFA expression in vitro. Inhibitors of miR-195-5p subsequently contributed to renal injury, which was reversed by VEGFA loss. In conclusion, miR-195-5p may repress AKI by targeting VEGFA.
Collapse
Affiliation(s)
- Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.,Department of Nephrology, Siyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Wei Jiang
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lili Zhong
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hailun Li
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lin Bai
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaoling Chen
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yongtao Lin
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
37
|
Xu X, Zhou X, Gao C, Cui Y. Hsa_circ_0018818 knockdown suppresses tumorigenesis in non-small cell lung cancer by sponging miR-767-3p. Aging (Albany NY) 2020; 12:7774-7785. [PMID: 32357143 PMCID: PMC7244049 DOI: 10.18632/aging.103089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
To identify potential therapeutic targets in non-small cell lung cancer NSCLC, we conducted a bioinformatics analysis of circRNAs differentially expressed between NSCLC tissues and adjacent normal tissues. Cell proliferation and apoptosis was assessed using CCK-8 and flow cytometry, respectively. A connection between hsa_circ_0018818 and miR-767-3p was confirmed in dual luciferase reporter assays. Gene and protein expression in NSCLC cells were measured using quantitative PCR and Western-blotting, respectively. And a xenograft tumor model was established to assess the function of hsa_circ_0018818 in NSCLC in vivo. Hsa_circ_0018818 was greatly upregulated in NSCLC tumor tissues. Knocking down hsa_circ_0018818 using a targeted shRNA inhibited the proliferation and invasiveness of NSCLC cells and induced their apoptosis via the miR-767-3p/Nidogen 1 (NID1) signaling axis. Hsa_circ_0018818 knockdown also inactivated Epithelial-mesenchymal transition (EMT) process and PI3K/Akt signaling. In summary, hsa_circ_0018818 knockdown inhibited NSCLC tumorigenesis in vitro and in vivo, which suggests it could potentially serve as a target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
38
|
Xu T, Lei T, Li SQ, Mai EH, Ding FH, Niu B. DNAH17-AS1 promotes pancreatic carcinoma by increasing PPME1 expression via inhibition of miR-432-5p. World J Gastroenterol 2020; 26:1745-1757. [PMID: 32351291 PMCID: PMC7183867 DOI: 10.3748/wjg.v26.i15.1745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence and mortality rates of pancreatic carcinoma (PC) are rapidly increasing worldwide. Long noncoding RNAs (lncRNAs) play critical roles during PC initiation and progression. Since the lncRNA DNAH17-AS1 is highly expressed in PC, the regulation of DNAH17-AS1 in PC was investigated in this study. AIM To investigate the expression and molecular action of lncRNA DNAH17-AS1 in PC cells. METHODS The PC expression data for the lncRNA DNAH17-AS1 was downloaded from The Cancer Genome Atlas database and used to examine its profile. Western blot and reverse transcription-quantitative PCR were employed to assess protein and mRNA expression. A subcellular fractionation assay was used to determine the location of DNAH17-AS1 in cells. In addition, the regulatory effects of DNAH17-AS1 on miR-432-5p, PPME1, and tumor activity were investigated using luciferase reporter assay, MTT viability analysis, flow cytometry, and transwell migration analysis. RESULTS DNAH17-AS1 was upregulated in PC cells and was associated with aggressive tumor behavior and poor prognosis for patients. Silencing DNAH17-AS1 promoted the apoptosis and reduced the viability, invasion, and migration of PC cells. In addition, DNAH17-AS1 served as a PC oncogene by downregulating miR-432-5p which normally directly targeted PPME1 to downregulate its expression. CONLUSION DNAH17-AS1 functions in PC as a tumor promoter by regulating the miR-432-5p/PPME1 axis. This finding may provide new insights for PC prognosis and therapy.
Collapse
Affiliation(s)
- Tao Xu
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Ting Lei
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Si-Qiao Li
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Er-Hui Mai
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Fei-Hu Ding
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Bin Niu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|