1
|
Dubrova A, Cavaniol C, Van de Walle A, Mathieu P, Fusilier Z, Yaacoub N, Lalatonne Y, Descroix S, Wilhelm C. Magnetite Nanoparticle Photothermal Therapy in a Pancreatic Tumor-on-Chip: A Dual-Action Approach Targeting Cancer Cells and their Microenvironment. ACS NANO 2025. [PMID: 40397413 DOI: 10.1021/acsnano.5c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The application of magnetite nanoparticles (MagNPs) for photothermal therapy (MagNP-PTT) has recently expanded to cancer treatment. This study introduces MagNP-PTT in a tumor-on-a-chip model to target highly aggressive pancreatic ductal adenocarcinoma (PDAC). A tumor-on-chip system was developed using PANC-1 PDAC cells embedded in a collagen type I extracellular matrix and cultured for 1 week to form tumor spheroids. This platform offers a framework for applying PTT in a model system that aims to mimic the native tumor microenvironment. MagNPs efficiently penetrate the tumor spheroids, achieving controlled heating via near-infrared (NIR) light. By adjusting nanoparticle concentration and laser power, temperature increments of 2 °C between 38-48 °C were established. Temperatures above 44 °C significantly increased cell death, while lower temperatures allowed partial recovery. Beyond inducing cancer cell death, MagNP-PTT altered the extracellular matrix and triggered a slight epithelial-mesenchymal transition marked by increased vimentin expression. These findings highlight MagNP-PTT as a dual-action therapy, targeting both tumor cells and their microenvironment, offering an alternative approach for overcoming stromal barriers in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Anastasiia Dubrova
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Charles Cavaniol
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Aurore Van de Walle
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Paul Mathieu
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny F-93017, France
| | - Zoé Fusilier
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Nader Yaacoub
- Institut des Molécules et Materiaux du Mans, CNRS UMR-6283, Le Mans Université, F-72085 Le Mans, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny F-93017, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne F- 93009, Bobigny, France
| | - Stephanie Descroix
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Chen P, Ren L, Guo Y, Sun Y. Boosting antitumor immunity in breast cancers: Potential of adjuvants, drugs, and nanocarriers. Int Rev Immunol 2025; 44:141-164. [PMID: 39611269 DOI: 10.1080/08830185.2024.2432499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Despite advancements in breast cancer treatment, therapeutic resistance, and tumor recurrence continue to pose formidable challenges. Therefore, a deep knowledge of the intricate interplay between the tumor and the immune system is necessary. In the pursuit of combating breast cancer, the awakening of antitumor immunity has been proposed as a compelling avenue. Tumor stroma in breast cancers contains multiple stromal and immune cells that impact the resistance to therapy and also the expansion of malignant cells. Activating or repressing these stromal and immune cells, as well as their secretions can be proposed for exhausting resistance mechanisms and repressing tumor growth. NK cells and T lymphocytes are the prominent components of breast tumor immunity that can be triggered by adjuvants for eradicating malignant cells. However, stromal cells like endothelial and fibroblast cells, as well as some immune suppressive cells, consisting of premature myeloid cells, and some subsets of macrophages and CD4+ T lymphocytes, can dampen antitumor immunity in favor of breast tumor growth and therapy resistance. This review article aims to research the prospect of harnessing the power of drugs, adjuvants, and nanoparticles in awakening the immune reactions against breast malignant cells. By investigating the immunomodulatory properties of pharmacological agents and the synergistic effects of adjuvants, this review seeks to uncover the mechanisms through which antitumor immunity can be triggered. Moreover, the current review delineates the challenges and opportunities in the translational journey from bench to bedside.
Collapse
Affiliation(s)
- Ping Chen
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Ren
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Youwei Guo
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Yan Sun
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
3
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
4
|
Arnold CR, Mangesius J, Portnaia I, Ganswindt U, Wolff HA. Innovative therapeutic strategies to overcome radioresistance in breast cancer. Front Oncol 2024; 14:1379986. [PMID: 38873260 PMCID: PMC11169591 DOI: 10.3389/fonc.2024.1379986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
Collapse
Affiliation(s)
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iana Portnaia
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hendrik Andreas Wolff
- Department of Radiology, Nuclear Medicine, and Radiotherapy, Radiology Munich, Munich, Germany
| |
Collapse
|
5
|
Orel VE, Diedkov AG, Ostafiichuk VV, Lykhova OO, Kolesnyk DL, Orel VB, Dasyukevich OY, Rykhalskyi OY, Diedkov SA, Prosvietova AB. Combination Treatment with Liposomal Doxorubicin and Inductive Moderate Hyperthermia for Sarcoma Saos-2 Cells. Pharmaceuticals (Basel) 2024; 17:133. [PMID: 38276006 PMCID: PMC10819935 DOI: 10.3390/ph17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Despite efforts in osteosarcoma (OS) research, the role of inductive moderate hyperthermia (IMH) in delivering and enhancing the antitumor effect of liposomal doxorubicin formulations (LDOX) remains unresolved. This study investigated the effect of a combination treatment with LDOX and IMH on Saos-2 human OS cells. We compared cell viability using a trypan blue assay, apoptosis and reactive oxygen species (ROS) measured by flow cytometry and pro-apoptotic Bax protein expression examined by immunocytochemistry in response to IMH (42 MHz frequency, 15 W power for 30 min), LDOX (0.4 μg/mL), and LDOX plus IMH. The lower IC50 value of LDOX at 72 h indicated increased accumulation of the drug in the OS cells. LDOX plus IMH resulted in a 61% lower cell viability compared to no treatment. Moreover, IMH potentiated the LDOX action on the Saos-2 cells by promoting ROS production at temperatures of <42 °C. There was a 12% increase in cell populations undergoing early apoptosis with a less heterogeneous distribution of Bax after combination treatment compared to those treated with LDOX (p < 0.05). Therefore, we determined that IMH could enhance LDOX delivery and its antitumor effect via altered membrane permeabilization, ROS generation, and a lower level of visualized Bax heterogeneity in the Saos-2 cells, suggesting the potential translation of these findings into in vivo studies.
Collapse
Affiliation(s)
- Valerii E. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Oleksandra O. Lykhova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Denys L. Kolesnyk
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Valerii B. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Serhii A. Diedkov
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
| | - Anna B. Prosvietova
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| |
Collapse
|
6
|
Orel VB, Papazoglou ΑS, Tsagkaris C, Moysidis DV, Papadakos S, Galkin OY, Orel VE, Syvak LA. Nanotherapy based on magneto-mechanochemical modulation of tumor redox state. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1868. [PMID: 36289050 DOI: 10.1002/wnan.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | - Christos Tsagkaris
- Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Dimitrios V Moysidis
- Department of Cardiology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Olexander Yu Galkin
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Valerii E Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | |
Collapse
|
7
|
Chia BSH, Ho SZ, Tan HQ, Chua MLK, Tuan JKL. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers (Basel) 2023; 15:cancers15020346. [PMID: 36672300 PMCID: PMC9856725 DOI: 10.3390/cancers15020346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Regional hyperthermia therapy (RHT) is a treatment that applies moderate heat to tumours in an attempt to potentiate the effects of oncological treatments and improve responses. Although it has been used for many years, the mechanisms of action are not fully understood. Heterogenous practices, poor quality assurance, conflicting clinical evidence and lack of familiarity have hindered its use. Despite this, several centres recognise its potential and have adopted it in their standard treatment protocols. In recent times, significant technical improvements have been made and there is an increasing pool of evidence that could revolutionise its use. Our narrative review aims to summarise the recently published prospective trial evidence and present the clinical effects of RHT when added to standard cancer treatments. In total, 31 studies with higher-quality evidence across various subsites are discussed herein. Although not all of these studies are level 1 evidence, benefits of moderate RHT in improving local tumour control, survival outcomes and quality of life scores were observed across the different cancer subsites with minimal increase in toxicities. This paper may serve as a reference when considering this technique for specific indications.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Correspondence:
| | - Shaun Zhirui Ho
- Department of Radiation Oncology, 585 North Bridge Rd, Level 10 Raffles Specialist Centre, Singapore 188770, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| |
Collapse
|
8
|
Injac R. Potential Medical Use of Fullerenols After Two Decades of Oncology Research. Technol Cancer Res Treat 2023; 22:15330338231201515. [PMID: 37724005 PMCID: PMC10510368 DOI: 10.1177/15330338231201515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Fullerenes are carbon molecules that are found in nature in various forms. They are composed of hexagonal and pentagonal rings that create closed structures. Almost 4 decades ago, fullerenes were identified in the form of C60 and C70, and following the award of the Nobel Prize in Chemistry for this discovery in 1996, many laboratories started working on their water-soluble derivatives that could be used in different industries, including pharmaceutical industries. One of the first fullerene forms that was the focus of different research groups was fullerenol, C60(OH)n (n = 2-44). Both in-vitro and in-vivo studies have shown that polyhydroxylate fullerene derivatives can potentially be used as either antioxidative agents or cytostatics (depending on their co-administration, forms, and concentration/dose) in biological systems. The current review aimed to present a critical view of the potential applications and limitations of fullerenols in oncology, as understood from the past 2 decades of research.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Androulakis I, Sumser K, Machielse MND, Koppert L, Jager A, Nout R, Franckena M, van Rhoon GC, Curto S. Patient-derived breast model repository, a tool for hyperthermia treatment planning and applicator design. Int J Hyperthermia 2022; 39:1213-1221. [DOI: 10.1080/02656736.2022.2121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Kemal Sumser
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Melanie N. D. Machielse
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Linetta Koppert
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Remi Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Liebl CM, Kutschan S, Dörfler J, Käsmann L, Hübner J. Systematic review about complementary medical hyperthermia in oncology. Clin Exp Med 2022; 22:519-565. [PMID: 35767077 PMCID: PMC9244386 DOI: 10.1007/s10238-022-00846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Hyperthermia is a generic term for different techniques using heat in cancer therapies. Temperatures of about 42° Celsius in combination with chemo- or radiotherapy may improve the effectiveness of those treatments. Clinical benefit is shown in "standard hyperthermia" with tumour temperatures assessed during treatment. This systematic review thoroughly assesses the state of evidence concerning the benefits and side effects of electro hyperthermia or whole-body hyperthermia ("alternative hyperthermia") in oncology. From 26 April 2021 to 09 May 2021, a systematic search was conducted searching five electronic databases (Embase, Cochrane, PsycINFO, CINAHL and Medline) to find studies concerning the use, effectiveness and potential harm of alternative medical hyperthermia therapy on cancer patients. From all 47,388 search results, 53 publications concerning 53 studies with 2006 patients were included in this systematic review. The patients were diagnosed with different types of cancer. The hyperthermic methods included whole-body hyperthermia (WBH) with different methods and electro hyperthermia (EH). The majority of the included studies were single-arm studies, counting in total 32 studies. Six studies were randomized controlled trials (RCT). In addition, one systematic review (SR) was found. The most critical endpoints were tumour response, survival data, pain relief, myelosuppression and toxicities. Outcome was heterogeneous, and considering the methodological limitations, clinical evidence for the benefit of alternative hyperthermia in cancer patients is lacking. Neither for whole-body hyperthermia nor for electro hyperthermia there is any evidence with respect to improvement of survival or quality of life in cancer patients.
Collapse
Affiliation(s)
- Christina Maria Liebl
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lukas Käsmann
- Klinik und Poliklinik für Strahlentherapie, LMU Klinikum, Munich, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
11
|
Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries. Cancers (Basel) 2022; 14:cancers14020315. [PMID: 35053479 PMCID: PMC8774274 DOI: 10.3390/cancers14020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Loco-regional hyperthermia at 40-44 °C is a multifaceted therapeutic modality with the distinct triple advantage of being a potent radiosensitizer, a chemosensitizer and an immunomodulator. Risk difference estimates from pairwise meta-analysis have shown that the local tumour control could be improved by 22.3% (p < 0.001), 22.1% (p < 0.001) and 25.5% (p < 0.001) in recurrent breast cancers, locally advanced cervix cancer (LACC) and locally advanced head and neck cancers, respectively by adding hyperthermia to radiotherapy over radiotherapy alone. Furthermore, thermochemoradiotherapy in LACC have shown to reduce the local failure rates by 10.1% (p = 0.03) and decrease deaths by 5.6% (95% CI: 0.6-11.8%) over chemoradiotherapy alone. As around one-third of the cancer cases in low-middle-income group countries belong to breast, cervix and head and neck regions, hyperthermia could be a potential game-changer and expected to augment the clinical outcomes of these patients in conjunction with radiotherapy and/or chemotherapy. Further, hyperthermia could also be a cost-effective therapeutic modality as the capital costs for setting up a hyperthermia facility is relatively low. Thus, the positive outcomes evident from various phase III randomized trials and meta-analysis with thermoradiotherapy or thermochemoradiotherapy justifies the integration of hyperthermia in the therapeutic armamentarium of clinical management of cancer, especially in low-middle-income group countries.
Collapse
|
12
|
Lainetti PDF, Leis-Filho AF, Laufer-Amorim R, Battazza A, Fonseca-Alves CE. Mechanisms of Resistance to Chemotherapy in Breast Cancer and Possible Targets in Drug Delivery Systems. Pharmaceutics 2020; 12:1193. [PMID: 33316872 PMCID: PMC7763855 DOI: 10.3390/pharmaceutics12121193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most important cancers worldwide, and usually, chemotherapy can be used in an integrative approach. Usually, chemotherapy treatment is performed in association with surgery, radiation or hormone therapy, providing an increased outcome to patients. However, tumors can develop resistance to different drugs, progressing for a more aggressive phenotype. In this scenario, the use of nanocarriers could help to defeat tumor cell resistance, providing a new therapeutic perspective for patients. Thus, this systematic review aims to bring the molecular mechanisms involved in BC chemoresistance and extract from the previous literature information regarding the use of nanoparticles as potential treatment for chemoresistant breast cancer.
Collapse
Affiliation(s)
- Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Alexandre Battazza
- Department of Pathology, Botucatu Medical School, São Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
- Institute of Health Sciences, Paulista University–UNIP, Bauru-SP 17048-290, Brazil
| |
Collapse
|