1
|
Khalili-Hezarjaribi H, Bahrami AR, Sh Saljooghi A, Matin MM. Modified mesoporous silica nanocarriers containing superparamagnetic iron oxide nanoparticle, 5-fluorouracil or oxaliplatin, and metformin as a radiosensitizer, significantly impact colorectal cancer radiation therapy. Int J Pharm 2024; 666:124838. [PMID: 39419365 DOI: 10.1016/j.ijpharm.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the anticancer effects of SPION-based silica nanoparticles carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluated. Nanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of -21 and -22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.
Collapse
Affiliation(s)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Meijer RPJ, Galema HA, Faber RA, Bijlstra OD, Maat APWM, Cailler F, Braun J, Keereweer S, Hilling DE, Burggraaf J, Vahrmeijer AL, Hutteman M. Intraoperative molecular imaging of colorectal lung metastases with SGM-101: a feasibility study. Eur J Nucl Med Mol Imaging 2024; 51:2970-2979. [PMID: 37552367 PMCID: PMC11300526 DOI: 10.1007/s00259-023-06365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Metastasectomy is a common treatment option for patients with colorectal lung metastases (CLM). Challenges exist with margin assessment and identification of small nodules, especially during minimally invasive surgery. Intraoperative fluorescence imaging has the potential to overcome these challenges. The aim of this study was to assess feasibility of targeting CLM with the carcinoembryonic antigen (CEA) specific fluorescent tracer SGM-101. METHODS This was a prospective, open-label feasibility study. The primary outcome was the number of CLM that showed a true positive fluorescence signal with SGM-101. Fluorescence positive signal was defined as a signal-to-background ratio (SBR) ≥ 1.5. A secondary endpoint was the CEA expression in the colorectal lung metastases, assessed with the immunohistochemistry, and scored by the total immunostaining score. RESULTS Thirteen patients were included in this study. Positive fluorescence signal with in vivo, back table, and closed-field bread loaf imaging was observed in 31%, 45%, and 94% of the tumors respectively. Median SBRs for the three imaging modalities were 1.00 (IQR: 1.00-1.53), 1.45 (IQR: 1.00-1.89), and 4.81 (IQR: 2.70-7.41). All tumor lesions had a maximum total immunostaining score for CEA expression of 12/12. CONCLUSION This study demonstrated the potential of fluorescence imaging of CLM with SGM-101. CEA expression was observed in all tumors, and closed-field imaging showed excellent CEA specific targeting of the tracer to the tumor nodules. The full potential of SGM-101 for in vivo detection of the tracer can be achieved with improved minimal invasive imaging systems and optimal patient selection. TRIAL REGISTRATION The study was registered in ClinicalTrial.gov under identifier NCT04737213 at February 2021.
Collapse
Affiliation(s)
- Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Robin A Faber
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Alexander P W M Maat
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Françoise Cailler
- Surgimab, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Fu C, Gong S, Lin L, Bao Y, Li L, Chen Q. Characterization and efficacy of C 60 nano-photosensitive drugs in colorectal cancer treatment. Biomed Pharmacother 2024; 176:116828. [PMID: 38810406 DOI: 10.1016/j.biopha.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Fullerenes C60 shows great potential for drug transport. C60 generates large amounts of singlet oxygen upon photoexcitation, which has a significant inhibitory effect on tumor cells, so the photosensitive properties of C60 were exploited for photodynamic therapy of tumors by laser irradiation. METHODS In this study, C60-NH2 was functionalized by introducing amino acids on the surface of C60, coupled with 5-FU to obtain C60 amino acid-derived drugs (C60AF, C60GF, C60LF), and activated photosensitive drugs (C60AFL, C60GFL, C60LFL) were obtained by laser irradiation. The C60 nano-photosensitive drugs were characterized in various ways, and the efficacy and safety of C60 nano-photosensitive drugs were verified by cellular experiments and animal experiments. Bioinformatics methods and cellular experiments were used to confirm the photosensitive drug targets and verify the therapeutic targets with C60AF. RESULTS Photosensitised tumor-targeted drug delivery effectively crosses cell membranes, leads to more apoptotic cell death, and provides higher anti-tumor efficacy and safety in vitro and in vivo colorectal cancer pharmacodynamic assays compared to free 5-FU.C60 photosensitized drug promotes tumor killing by inhibiting the colorectal cancer FLOR1 tumor protein target, with no significant toxic effects on normal organs. CONCLUSION C60 photosensitized drug delivery systems are expected to improve efficacy and reduce side effects in the future treatment of colorectal cancer. Further and better development and design of drugs and vectors for colorectal cancer therapy.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Pharmaceutical Sciences Laboratory Center, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Lu Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yanru Bao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Li Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Al-Fatlawi INAA, Pouresmaeil V, Davoodi-Dehaghani F, Pouresmaeil A, Akhtari A, Tabrizi MH. Effects of solid lipid nanocarrier containing methyl urolithin A by coating folate-bound chitosan and evaluation of its anti-cancer activity. BMC Biotechnol 2024; 24:18. [PMID: 38600497 PMCID: PMC11005287 DOI: 10.1186/s12896-024-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 μg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values of 45 μg/mL and 1500 μg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 μg/mL. CONCLUSIONS Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aida Pouresmaeil
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Akhtari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
5
|
Gonzalez T, Muminovic M, Nano O, Vulfovich M. Folate Receptor Alpha-A Novel Approach to Cancer Therapy. Int J Mol Sci 2024; 25:1046. [PMID: 38256120 PMCID: PMC11154542 DOI: 10.3390/ijms25021046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Folate receptor α (FR) was discovered many decades ago, along with drugs that target intracellular folate metabolism, such as pemetrexed and methotrexate. Folate is taken up by the cell via this receptor, which also targeted by many cancer agents due to the over-expression of the receptor by cancer cells. FR is a membrane-bound glycosyl-phosphatidylinositol (GPI) anchor glycoprotein encoded by the folate receptor 1 (FOLR1) gene. FR plays a significant role in DNA synthesis, cell proliferation, DNA repair, and intracellular signaling, all of which are essential for tumorigenesis. FR is more prevalent in cancer cells compared to normal tissues, which makes it an excellent target for oncologic therapeutics. FRα is found in many cancer types, including ovarian cancer, non-small-cell lung cancer (NSCLC), and colon cancer. FR is widely used in antibody drug conjugates, small-molecule-drug conjugates, and chimeric antigen-receptor T cells. Current oncolytic therapeutics include mirvetuximab soravtansine, and ongoing clinical trials are underway to investigate chimeric antigen receptor T cells (CAR-T cells) and vaccines. Additionally, FRα has been used in a myriad of other applications, including as a tool in the identification of tumor types, and as a prognostic marker, as a surrogate of chemotherapy resistance. As such, FRα identification has become an essential part of precision medicine.
Collapse
Affiliation(s)
- Teresita Gonzalez
- Memorial Cancer Institute, Pembroke Pines, FL 33028, USA; (M.M.); (O.N.); (M.V.)
| | | | | | | |
Collapse
|
6
|
Li J, Sun Y, Cao L, Wang F. Correlation of NPDC1 Expression and Perineural Invasion Status with Clinicopathological Features in Patients with Colon Cancer. Int J Gen Med 2023; 16:4549-4563. [PMID: 37822345 PMCID: PMC10563778 DOI: 10.2147/ijgm.s428590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Background Colon cancer is a prevalent gastrointestinal malignancy that often exhibits distant metastasis, hindering the effectiveness of surgical interventions. In addition to well-known hematogenous and lymphatic metastasis, perineural invasion (PNI) has emerged as a significant mode of distant metastasis in colon tumors. PNI is closely associated with oncologic pain in advanced cancer patients, but the underlying mechanisms and associated biomarkers, which might be the novel therapeutic targets, remain poorly understood. Methods In this study, we employed large databases and bioinformatics methods to identify genes strongly linked to PNI in colon cancer and investigated their involvement in tumor nerve invasion, progression mechanisms, and chemotherapy resistance. Immunohistochemical techniques were utilized to validate the expression of target genes in 384 colon cancer tissues, and their expression was correlated with clinicopathological characteristics and patient survival data in our hospital. Furthermore, we conducted a comprehensive literature review to explore the potential functions of the target genes and their associated genes. Results Our screening revealed a significant correlation between neural proliferation differentiation and control-1 (NPDC1) expression and patient prognosis, suggesting a potential association with neural infiltration in colon cancer. Additionally, NPDC1 may promote tumorigenesis, progression, and chemoresistance through various related pathways. Conclusion Our study provides novel insights into the utility of NPDC1 as a predictive marker for PNI status, disease-free survival, and overall survival in patients with colon cancer, highlighting the prevalence of NPDC1 overexpression in patients with PNI in colon cancer.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Medical Microbiology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
- Department of Colorectal and Anal Surgery, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Yao Sun
- Department of Colorectal and Anal Surgery, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Lanqing Cao
- Department of Pathology, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Fang Wang
- Department of Medical Microbiology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|